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Abstract: This study analysed the processes of damage formation and development in early age
unloaded concrete using the acoustic emission method (IADP). These are of great importance in the
context of the durability and reliability of a structure, as they contribute to reducing its failure-free
operation time. Concrete made with basalt aggregate and Portland or metallurgical cement cured
under different conditions after demoulding was the test material. The obtained damage values
were compared with the measured concrete shrinkage, and a shrinkage strain–acoustic emission
signal (resulting from damage) correlation was found. The correlation allows easy measurement
of damage level in the early period of concrete hardening, and consequently can be the basis of a
non-destructive method.
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1. Introduction

Concrete, especially reinforced concrete (RC), is currently the most commonly used
material for the construction of buildings and engineering structures. It is subjected to
various effects, i.e., mechanical loads (static and dynamic) [1,2], variable temperature [3,4]
and humidity, as well as chemical and biological attacks, contributing to the corrosion of
these objects [5,6].

An important aspect is not only the current strength of elements or entire structures
but also their durability [7].

Increasingly complex and ambitious design challenges and sustainable development
goals require using concrete and steel with new properties that significantly impact the
behaviour of structures [8,9]. Tight construction schedules, which is another factor influenc-
ing structural durability, have increased the attractiveness of prefabrication. The practice of
assembling components in a factory has helped improve the quality and durability of the
structures being built. Since prefabricated components require a high degree of manufac-
turing accuracy, poor supervision may affect the durability of mass-produced elements, as
experience shows [10]. Manufacturing errors in newly constructed buildings [11,12] impact
their performance [13,14], leading to extensive and costly repairs.

Undoubtedly, the width and growth of cracks are crucial parameters in diagnosing
buildings [15]. For this reason, cracks in concrete [16,17] and reinforced concrete [18–20] are
still extensively studied and analysed. Furthermore, the description of cracks is constantly
modified and developed due to the heterogeneity of concrete and complex states of stress
and strain that accompany cracking and microcracking [21–23].

The cracks observed in the structures are the final result of a more complex process
of the formation and development of damage in early age concrete [24]. When hardening,
concrete reduces its volume due to moisture loss and chemical processes, referred to as
shrinkage. Shrinkage is often discussed in the literature [25] not only as a phenomenon
that takes place in early-age concrete [14,25] but also as a factor impacting structural
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durability [26]. Various calculation models have been developed to determine shrinkage
strain as another type of load acting on a structure [27–30]. Shrinkage is responsible for
cracking that may lead to fatigue, shortened service life, or compromised load capacity.
Extensive research is performed to mitigate early microcracking in concrete by adding
fly ash or slag cement and using lightweight aggregate, as described in [31–33]. Another
approach to mitigate microcracks is to incorporate nanomaterials. For example, carbon
nanotubes were found to reduce the microcracks and shrinkage [34].

Stress concentration, caused by heterogeneous and often excessive temperature and
humidity fields, is also a factor in microcracking [14,35]. Microcracks can transform into
cracks observed on the surface of structures [36], thereby contributing to the ingress of
water and other aggressive substances that have an adverse effect on durability. A possible
solution to this issue may be the use of carbon nanotubes, although it requires additional
analysis regarding structural concretes [37].

Non-destructive or semi-destructive methods [38–41] are essential in diagnosing con-
crete. Chemical (qualitative and quantitative) analyses, physical (optical, thermographic,
radiological, acoustic, electromagnetic) methods, or biological methods (macroscopy, mi-
croscopy) allow the assessment of strength and homogeneity (sclerometric and acoustic
methods), location of defects and damage (acoustic and radiological methods), location of
reinforcement, corrosion assessment (electromagnetic, radiological, electrical methods), and
the evaluation of humidity and temperature distribution (indirect—physical, chemical).

One of the non-destructive methods (used in this paper) is the acoustic emission (AE)
method—IADP (identification of active destructive processes), which has been successfully
used to analyse the development of cracks resulting from loads on the structure, including
the service load [42–47]. AE methods are applied in analysing the parameters of elastic
(acoustic) waves generated in the material during the cracking process [48–51].

The objective of this paper is to analyse AE signals caused by destructive processes in
unloaded early age concrete, detected using the AE IADP technique, and their correlation
with the measured shrinkage strains.

In the papers [52,53], AE signals were assigned to the destructive processes identified
and tracked using the IADP technique. The authors of [54,55] verified the suitability of
IADP for testing destructive processes in unloaded concrete hardening at various tempera-
tures and under different maintenance conditions, taking into account the type of cement
and aggregate and the presence of reinforcement and admixtures.

This paper attempts to determine the correlation between the strain values and the
destructive processes recorded in the hardening concrete. The tests were performed on
unloaded concrete that varied in the type of cement and maintenance conditions after
removal from the moulds. The strains and the course of the destructive processes in concrete
were tested for 56 days. Furthermore, the shrinkage strains were estimated according to
three standard approaches: Eurocode 2 (EC2) [27], Model Code 90–99 (MC90–99) [28], and
Bazant Baweja—model B3 (B3) [29]. The influence of maintenance conditions on the level of
predicted strains was analysed. A robust correlation was observed and described between
the number of destructive processes, their energy, and the shrinkage strains. This means
that by knowing (measuring) early age concrete shrinkage strains, one can determine the
AE signal range as the basis for determining whether in addition to the basic processes
and other processes indicative of progressive internal micro-damage occurring in concrete,
thereby reducing structural durability and reliability. The tests and their analyses are a
continuation of the work aimed at developing a universal non-destructive method for
assessing early age concrete.

2. Materials and Methods

Destructive processes in the material (microcracks, crack propagation, and disloca-
tions) are accompanied by a rapid release of energy, generating elastic (acoustic) waves in
the material. These waves (Figure 1) gradually disappear as a result of energy absorption
in the thermal process.
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Figure 1. Acoustic signal parameters.

In this study, the IADP method was used to measure destructive processes. The
method does not rely on the selected parameters of the AE signal, but is based on the
reference signals created with the use of 12 parameters of the recorded electric signal:
counts, counts to peak, duration, rise time, amplitude in mV or dB, energy, strength, root
mean square, mean level, mean frequency, reverberation frequency, and initial frequency.
The use of this method for the evaluation of reinforced concrete structures (bridges) is
presented in [45–47].

The signal is measured when an active destructive process occurs in a given element
during the measurement, e.g., a crack is formed or propagated [56]. Damage in the element
but not developing does not generate AE signals. Acoustic waves generated in the material
can be recorded using acoustic sensors (usually piezoelectric). Their proper arrangement
enables the localisation of their source. The selected signal parameters are also analysed [57]
and can be used to determine the type of failure [49–51].

Using AE signals, it is also possible to analyse other destruction processes. In the
case of prestressed elements, these are [42,43]: microcracking, friction between crack faces,
initiation and growth of cracks, cracking at the concrete reinforcement interface, concrete
spalling, friction at the concrete reinforcement interface, corrosion, plastic deformation,
and cracking of cables and other reinforcement. This method was successfully used in
diagnosing prestressed concrete elements and structures [44].

In [53,55], the IADP method was used to analyse the failure processes in the early
phase of concrete hardening. Destructive (12 signal parameters) were assigned to following
classes of reference signals [47,52]:

• microcracks in the cement paste and at the aggregate-paste interface (Class 1),
• internal propagation of microcracks (Class 2),
• formation of microcracks on the concrete surface (Class 3), and
• growth of microcracks (Class 4).

A destructive process in concrete (for example, microcracks in the cement paste) is an
acoustic wave sources. Twelve parameters of the AE wave (signal) are recorded by the AE
sensors and compared with the base of reference signals, which allows us to determine the
destructive process (in this case, Class 1) and its location based on the arrival time of the
AE signal.

Although microcracks and damage in early age concrete do not have a direct impact
on the safety of the structure [21] (unless their size exceeds a certain level [26,58]), they
affect the durability of the structure because they become the sites of future crack initiation.

2.1. Test Elements

Nine concrete samples (three series of three samples) with dimensions of
150 × 150 × 600 mm were used in the tests. The samples varied in terms of selected
parameters described below and summarised in Table 1. The samples were made with
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basalt aggregate 2–16 mm from the Gracze quarry and different cement types. In sample
C−I (MC) CEM I 42.5N MSR/NA, Portland cement from the WARTA cement plant was
used, while in samples C−III (MC) and C−III (AC) CEM III/A 42.5N—LH/HSR/NA,
metallurgical cement from the Górażdże cement plant was used. After removal from the
moulds, C−III (MC) samples were cured at 100% humidity for 10 days and then subjected
to proper tests, i.e., measurements of strains and volume change, and AE signal recording.
The C−III (AC) samples were tested without prior curing in water. The moisture-cured sam-
ples (C−III (MC) and C−I (MC)) and the non-moist-cured sample (C−III (AC)) hardened
at a constant temperature of 22 ± 2 ◦C for 56 days.

Table 1. Characteristics of concrete samples.

Symbol Aggregate Cement Hardening Conditions Temperature Condition

C−I (MC) Basalt CEM I 10 days of wet curing Constant
C−III (MC) Basalt CEM III 10 days of wet curing Constant
C−III (AC) Basalt CEM III drying in air Constant

The composition of individual concrete mixes is shown in Table 2.

Table 2. Composition of concrete mixtures [kg/m3].

Symbol Basalt
2–8

Basalt
8–16

Sand
0–2 CEM I CEM III Water

C−I (MC) 581 731 691 360 x 180
C−III (MC) 581 731 691 x 360 180
C−III (AC) 581 731 691 x 360 180

2.2. Research Methods
2.2.1. Strain Measurements and Prediction

An 8 inch (~20 cm) demountable mechanical strain gauge was used for the strain test
(Figure 2b). The measurement points were steel elements glued to the four walls of the
sample, as shown in Figure 2a.
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Figure 2. (a) Spacing of metal tags for strain measurements, (b) measurement of strain with
an extensometer.

Strains were measured on four faces of each specimen and the basic statistical param-
eters were calculated, i.e., mean value, coefficient of variation, and variance. The strain
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results obtained for three series of specimens at varied curing conditions are shown in
Figure 3, where the vertical axis shows the results of shrinkage strains and the horizontal
axis shows the time, in days, for which the measurements were made. It also should be
noted that during the test, the samples were not additionally loaded.
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Figure 3. The result of the strain test of specimens from series C−I (MC), C−III (MC), and C−III (AC).

The strains (shrinkage) from the tests were compared with the results predicted
according to the following standards: Eurocode 2 (EC2)—PN-EN−1992−1−1 [27], Model
Code 90–99 (MC) [28], and the Bazant-Baweja approach (B3) [29]. The adopted assumptions
are given in Figure 4.

The strain values obtained in the C−I (MC) and C−III (MC) concrete (subjected to
10-day curing after removal from the moulds) are shown in Figure 5a,b, and for C−IIII
(AC) (no curing after demoulding) are shown in Figure 6.

The strains estimated according to the EC2, MC90–99, and B3 approaches in water-
cured samples C−I (MC) (with Portland cement) and C−III (MC) (with metallurgical
cement) fell within the range of +/− 20% in relation to the values obtained in the laboratory
tests. In the first week of the test, swelling of concrete C−I (MC) and C−III (MC) was
observed. The phenomenon was most likely due to the higher humidity in the thermal
chamber than the ambient humidity in the laboratory hall where the samples were prepared
for testing.

Higher ambient humidity in the climatic chamber resulted from samples with higher
humidity being placed there. With the same number of samples and the volume of the
climatic chamber, the result was a significant increase in humidity inside the chamber. As
a result, the humidity of the samples themselves increased, and, as a result, their volume
increased. Over time, the humidity decreased, contributing to the recorded shrinkage
deformations, not swelling. This was largely due to the low humidity of the environment
in which the chamber itself was located, which contributed to the final decrease in the level
of humidity.
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Figure 6. The strain results of non-cured C−III (AC) samples.

In the case of the non-moisture-cured C−III (AC) concrete with metallurgical cement,
the strain values predicted according to the standards were lower than the values obtained
from laboratory tests.
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The impact of not curing and curing errors in the initial stage of hardening on the
shrinkage strains are not taken into account in the adopted standards [27–29], which may
be the reason for the differences (Figure 6).

2.2.2. Measurements of Destructive Processes—IADP Method

The tests were carried out using the IADP acoustic emission method, validated, among
others, in [53]. The flow chart of the method is shown in Figure 7.
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Figure 7. The concept of the IADP method for early-age concrete.

Concrete samples C−I (MC) and C−III (MC) were removed from the moulds after
10 days of cure. C−III (AC) samples were tested without curing. Two Vallen VS30-V
sensors were placed on one side of each sample. The concrete surface was cleaned before
the sensors were attached to the surface with a thermally conductive silicone paste and
elastic rubber.

The calibration before the start of the test consisted of checking the amplitude of the
recorded AE signal from breaking the graphite of a pencil with a hardness of 2H, diameter
0.3 mm, length 3 mm (Hsu Nielsen source [59,60]) inclined to the surface of the sample at
an angle of 30◦ (Figure 8).
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Figure 8. Sensor calibration before testing—Hsu Nielsen source.

If the amplitude of the signal excited by breaking the pencil recorded on each sensor
reached 100 dB, calibration was performed successfully. If a lower amplitude was recorded,
the amount of thermal paste was added to improve the contact between the sensor and the
concrete surface.

Before the test, an input data file was created in the Mistras program. The dimensions
of the tested element, the spacing, and number of AE sensors as well as measurement
parameters were set. AE signals were recorded in the samples in 12 h cycles preceding the
measurement at 1–8, 12, 16, 20, 24, 28, 38, and 46 days at the points where strain values
were taken, the samples were weighed, and cracks were observed.

The test results were analysed using Noesis software and the reference signal database [53].
Based on that, the recorded signals were assigned to three classes that defined individual
processes using the supervised approach.
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The classification involved comparing the registered AE signals with the previously
prepared reference base. It was developed in the research described in [54].They were
based on the division of a broad database into 3 groups of signals (classes) on the basis
of the analysis of 12 parameters describing the AE signal. The exact process of creating
databases is presented in [43,49,54].

3. Results
3.1. Number of AE Signals Analysis

The correlation between the strains obtained from the tests and the number of AE
signals (destructive processes such as microcracks in the cement paste and at the aggregate-
paste interface (Class 1), the internal microcrack propagation (Class 2), and the formation
of microcracks on the concrete surface (Class 3) was recorded in concrete series C−I (MC)–
C−III (AC), and as shown in Figure 9a–c.
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concrete series (subjected to curing) (b) and C−III (AC) (without curing) (c).
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In the presented graphs on the horizontal axis, the values of shrinkage strains are
shown, while the vertical axes show the number of class 1 signals on the left axis, and the
number of class 2 and 3 signals on the right axis. The use of two vertical axes is due to
significant differences between the quantities of class 1, 2, and 3 signals. Presenting them
on one axis would make their analysis impossible. However, if class 3 signals were not
recorded in a sample, no additional vertical axis was added.

From the results in Figure 9, it follows that there is a very strong correlation, practically
linear, between the strain values and the number of destructive processes recorded in
the sample: microcracks in the cement paste and at the grain boundaries (Class 1), the
development of microcracks in the cement paste (Class 2), and the formation of microcracks
on the concrete surface (Class 3).

Equations of linear functions shown in Figure 9 are summarised in Table 3.

Table 3. Equations of linear functions of the correlation between strains and number of hits.

Concrete Series Class 1 Class 2 Class 3

C−I (MC) y = 8000x + 650 y = 35x + 7
C−III (MC) y = 4200x + 210 y = 1800x + 55
C−III (AC) y = 8800x + 110 y = 25x − 1.5 y = 5x − 0.5

3.2. AE Signal Energy Analysis

In a paper [53], the unit energy values of the signals of individual classes (1, 2, and 3)
were determined for concrete series C−III (MC) and C−III (AC). These values, summarised
in Table 4, were used to determine an increase in the signal energy in C−I (MC)-C−III (AC).

Table 4. The unit energy values.

Unit Energy C−I (MC) C−III (MC) C−III (AC)

Class 1 0.34 0.27 0.23
Class 2 14.05 17.57 18.99
Class 3 113.65

The obtained correlation between the unit energy of the signals of individual classes
(representing damage) and the strains is shown in Figure 10.
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(a) C−I (MC), (b) C−III (MC), and (c) C−III (AC) (without prior curing).

From the results in Figure 9, it follows that there is a very strong linear correlation
between the increase in strains and energy of destructive processes recorded for the samples.

The equations of linear functions shown in Figure 10 are summarised in Table 5.

Table 5. Equations of linear functions of the correlation between strains and energy of AE signals.

Concrete Series Class 1 Class 2 Class 3

C−I (MC) y = 2700x + 220 y = 515x + 100
C−III (MC) y = 15,600x + 785 y = 100x + 3
C−III (AC) y = 2000x + 25 y = 480x − 30 y = 555x − 30

3.3. Correlation Function of Strains and Destructive Processes in Unloaded Concrete

One of the objectives of the study was an attempt to develop a relationship that would
allow the prediction of the number of AE signals due to damage and processes in time.

On the basis of the trend lines in the graphs showing the increase in both shrinkage
strains and acoustic emission signals, a natural logarithm function was adopted as the base
function modified with adjustment coefficients.

y = α · ASK · ln(x) + β · BSK (1)

where:
α, β—estimated correction factors,
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Ask, Bsk—coefficients of the logarithmic trend line of the additional shrinkage strain
for the tested sample, and

x—time in days.
Correction factors, α and β, were adopted to better match the results. The coefficients

were estimated as the ratios of the A and B coefficients read from the trend line (logarithm
functions) of the increase in shrinkage strains (ASK and BSK) and the acoustic emission
signals (AAE and BAE).

α =
AAE
ASK

, β =
BAE
BSK

(2)

The values of the α and β coefficients were estimated with two methods (API and
APII) based on the results obtained from the concrete series. In the first approach (API),
the AAE/ASK and BAE/BSK ratios were determined for each concrete series (C−I (MC) to
C−III (AC) separately, and then the values were averaged, obtaining α and β coefficients,
respectively. The second approach (APII) consisted of determining the average AAE, ASK,
BAE, and BSK coefficients from the C−I (MC) to C−III (AC) concrete series. Then, α and
β coefficients were calculated from AAE/ASK and BAE/BSK relationships. The parameters
adopted to estimate the theoretical values of AE signal increase are presented in Table 6.

Table 6. Parameters determined with two methods.

Concrete Series ASK BSK AEA BEA
API APII

αI βI αII βII

C−I (MC) 0.024 −0.027 909 −388
34.614 9151 34.555 18.314C−III (MC) 0.018 −0.023 612 −270

C−III (AC) 0.034 0.015 1129 18

The initial verification of the results was carried out based on the calculated coefficients
(α and β) and the values of experimental shrinkage strains from the C−I (MC) to C−III
(AC) concrete series. The course of the predicted increase in acoustic emission signals over
time in relation to their experimental values is shown in Figure 11. The graphs show the
increase in the number of AE signals for all three classes of AE signals.
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Figure 11. The results of the number of hits predicted (based on strain measurements) and recorded
in samples: (a) C−I (MC), (b) C−III (MC) (series subjected to curing) and (c) C−III (AC).

The dotted lines (with markers at measurement points) show the real increase in AE
signals for the C−I (MC) to C−III (AC) concrete series over time, while the dashed lines
show the increase in predicted course of the AE signals. The black dashed line represents
the theoretical gain estimated from the αI and βI coefficients, while the dashed red line
represents the theoretical gain of the AE signals estimated from the αII and βII correction
factors. Both lines were developed on the basis of the shrinkage strains of the examined
concrete, i.e., the trend line in the diagram of the actual strain increment. The analysis
showed that the predicted values of the increase in the number of AE signals were consistent
with those obtained experimentally and, therefore, the adopted algorithm of the procedure
can be considered properly matched.

As has been shown, it is possible to describe the number of AE signals as a function
of shrinkage strains, which is the basis for the wide testing program taking into account
various parameters that affect the shrinkage in concrete.

4. Discussion

Using the AE technique, a very strong correlation, in the range of 0.91 to 0.99, between
the strain values and the number of AE signals related to destructive processes in early
age concrete was found. Additionally, the recorded processes were divided into three
classes, i.e., microcracks in the cement paste and at the grain boundaries in the cement paste
(Class 1), the formation of microcracks in the cement paste (Class 2), and the formation
of microcracks on the concrete surface (Class 3). The indicated correlation was described
using a simple logarithm function.

Additionally, a very strong correlation was found between the increase in strain
and the increase in energy of the AE signals, which can be described using a similar
logarithm function.
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Hence, by measuring shrinkage strains and knowing experimentally defined factors,
one can estimate the theoretical range of AE signals. On this basis, one can determine
whether, in addition to the basic processes, there are also those indicative of progressive
internal micro-damage. This is important, as they can reduce the structure’s durability
and reliability.

Additionally, a comparative analysis of experimental shrinkage strains and strains
estimated according to selected calculation models, including those used in the relative stan-
dards shown in Figures 5 and 6, was made. The values estimated according to approaches
EC2, MC 90–99, and B3 are within the +/− 20% range of these obtained in laboratory tests
for concrete subjected to 10-day water curing after demoulding (C−I (MC)) with Portland
cement and with metallurgical cement (C−III (MC)). However, in the case of concrete
with metallurgical cement hardening at the declared temperature without prior curing in
water (C−III (AC)), the strain values predicted according to the standards are lower than
those obtained from the laboratory tests. This may be due to the fact that no guidelines
are available in the adopted standards for estimating the impact of curing errors or lack of
curing in the initial period of concrete hardening on the values of shrinkage strains.

5. Conclusions

Presented results show that:

• The increase in the number of AE signals resulting from damage:

# Class 1—microcracks in the cement paste and at the aggregate-paste interface,
# Class 2—internal propagation of microcracks, and
# Class 3—formation of microcracks on the concrete surface

is strongly correlated with the increase in strain over time and can be described by logarith-
mic function. Simple logarithm functions describing this relation were developed for C−I
(MC), C−III (MC), and C−III (AC) concrete with specific parameters and variables.

• The increase in the energy of Class 1, 2, and 3 signals over time is strongly corre-
lated with the increase in strain over time and functions describing this relation
were developed.

• The results presented may form the basis for simple diagnostics of new elements. It
means that by knowing the early age shrinkage strains (easy to measure), one can
estimate the early age damage.

• More concrete tests should be performed to optimise the function formula and other
variables should be added, e.g., aggregate, admixtures, and concrete strength.

• It was also shown that:
• Experimental shrinkage strains and those estimated according to selected standards

show a strong correlation in the case of cured concrete C−I (MC) and C−III (MC)).
• In the case of non-cured concrete (C−III (AC)), the shrinkage strains estimated accord-

ing to the standards are lower than those measured in the laboratory tests.

The obtained results are very promising, in particular due to the diagnostic possibilities
they offer. For this reason, an extended program to verify these findings on other specimens
made with a different concrete composition is being prepared.
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Wydawnictwo Politechniki Świętokrzyskiej: Kielce, Poland, 2011; pp. 1–179.
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