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Abstract: Selective laser sintering of nanoparticles enables the direct and rapid formation of a func-
tional layer even on heat-sensitive flexible and stretchable substrates, and is rising as a pioneering
fabrication technology for future-oriented applications. To date, laser sintering has been successfully
applied to various target nanomaterials including a wide range of metal and metal-oxide nanopar-
ticles, and extensive investigation of relevant experimental schemes have not only reduced the
minimum feature size but also have further expanded the scalability of the process. In the begin-
ning, the selective laser sintering process was regarded as an alternative method to conventional
manufacturing processes, but recent studies have shown that the unique characteristics of the laser-
sintered layer may improve device performance or even enable novel functionalities which were
not achievable using conventional fabrication techniques. In this regard, we summarize the current
developmental status of the selective laser sintering technique for nanoparticles, affording special
attention to recent emerging applications that adopt the laser sintering scheme.
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1. Introduction

Emerging applications such as renewable energy devices [1], flexible/stretchable/wearable
electronics [2] and soft robotics [3] are still at their development stages, and discovery of
functional smart materials relevant to each application has played a critical role in the
advancement of these fields. Introduction of new materials requires concurrent evolution of
appropriate processing methods [4,5], discernable from conventional techniques, since the
existing technologies are generally designed and optimized for a specific material, i.e., pho-
tolithography for silicon wafer, and therefore, are often not compatible with other materials
such as chemically synthesized low-dimensional nanomaterials and polymer-based sub-
strates [6]. Among a wide range of processing schemes, the direct writing method, which
enables maskless and rapid prototyping, holds great promise, seeing that applications at
developmental stages commonly require frequent design changes [7].

Selective laser sintering of functional nanoparticles (NPs) is a representative direct
writing method. In a typical selective laser sintering process, a focused laser is utilized
as a localized heat source to selectively transform raw material in powder form into a
continuous functional layer [8]. An arbitrary patterning is readily accomplished through
a scanning procedure, and the feature size can easily reach several microns, allowing
high-resolution patterns on-demand. Once the target material is at nanoscale, additional
advantages are endorsed from the perspective of material processing. Melting temperature
depression observed in ultrasmall sized nanomaterial [9] enables significant suppression of
the overall processing temperature. At the same time, the optical properties of the target
NP can be fine-tuned [10] with the aim to maximize the absorbance at the wavelength of
the laser in use. The combination of these two effects permits energy-efficient sintering of a
target NP with minimized heat damage to the underlying substrate, which is important for
applications on non-rigid substrates, such as heat-vulnerable plastics and elastomers.
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Aided by its strengths, selective laser sintering of NPs has been actively studied in
the last two decades, and significant progress has been achieved in terms of the applicable
materials and relevant experimental schemes. Based on these advancements, selective laser
sintering of NPs has advanced to the rank of mature technologies and is now actively being
applied to emerging applications as a supplementary processing method and as a core,
indispensable technology. In this review, we briefly summarize the developmental status of
selective laser sintering of NPs in terms of applicable materials and experimental schemes,
affording special attention to the relevant emerging applications enabled by the selective
laser sintering process to discuss the directions of future developments.

2. Materials

Due to the unique physical and chemical properties arising from a high surface area
and confined size at nanoscale, NPs have been investigated extensively over wide range of
scientific areas [11,12]. In this section, we focus on a few types of NPs that draw special
attention for selective laser sintering purposes [13–16] (Figure 1).
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from Ref. [13]; 2003 American Institute of Physics; (b) Melting temperature of Ag NP according to
diameter calculated from the Gibbs-Thomson equation. (c) TGA and DSC measurements of the Ag
NP ink at ~5 nm diameter. Reprinted with permission from Ref. [14]; 2011 Wiley-VCH Verlag GmbH
& Co. KGaA, Weinheim, Germany; (d) Minimum resistivity of laser-sintered Cu electrodes depending
on the sintering time. Reprinted with permission from Ref. [15]; 2014 IOP Publishing Ltd., Bristol, UK;
(e) Chemical composition of NiO NP layer before and after the laser reductive sintering. Reprinted
with permission from Ref. [16]; 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.

2.1. Noble Metals

Noble metals, despite their scarcity, have been core materials of interest owing to the
excellent stability in ambient conditions and high electrical conductivity. Gold (Au) [17–19]
has been studied extensively in the early stages in both experimental and theoretical
aspects. Absorption depths calculated through different scattering theories [13] suggest
that the laser can be utilized as an efficient heating source once the size of the target Au
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NP is precisely controlled according to laser wavelength. (Figure 1a) Combined with the
melting temperature depression phenomenon (Figure 1b), selective laser sintering of Au
NP becomes feasible even on heat-sensitive flexible substrates [20]. Analogous ideas have
been later applied to different NPs, availing a wide range of materials to laser sintering for
flexible and stretchable applications. Early outcomes from laser sintering often show voids
at the center of the scanning path [13,21] or an unintended rim [17,22] at the edge due to the
thermocapillary force induced by the huge temperature gradient, but such problems can be
largely suppressed by controlling solvent evaporation [23]. The excessive thermocapillary
force, however, has recently enabled the concept of subtractive laser sintering [24] for highly
dense metallic patterns. Molecular dynamic (MD) simulations and experimental studies
on lithographically defined Au NPs suggests that the common coalescence time can be
in the order of ns after the initial neck growth [25–27], yet the characteristic time can be
considerably longer given that the number of NP subject to the sintering is much greater in
general [28]. The MD simulation also elucidates that other details of the sintering process,
which are often difficult to clarify experimentally, e.g., the resultant neck width at different
heating rates [26], can be predicted.

As synthesis routes for various silver (Ag) NPs at large quantities have been devel-
oped [29], selective laser sintering with Ag NPs has become more common than that of
other noble metals [14,30,31]. An Ag NP ink at an average diameter of ~5 nm shows that
the melting temperature can be reduced down to ~150 ◦C as confirmed through thermo-
gravimetric analysis (TGA) and differential scanning calorimeter (DSC) measurements as
shown in Figure 1c [14]. Once coupled with low thermal conductivity exhibited by Ag
NP compared to its bulk counterpart [32], heat damage can be effectively prevented even
on heat-vulnerable substrates [30,33,34] while the resultant electrode exhibits modest ro-
bustness against mechanical disturbances [35]. Instead of using presynthesized Ag NP, Ag
ion precursor [36,37] or organometallic ink [38] can be employed to achieve laser synthesis
and patterning simultaneously. Platinum (Pt), compared to Au and Ag, is not extensively
studied [39,40] due to the absence of effective synthesis methods for Pt NP [41]. Recent
studies, however, suggest that a Pt layer can be deposited in a precursor liquid environment
by laser irradiation to yield outcomes similar to NP sintering [42].

2.2. Copper

Among non-noble metals, copper (Cu) [15,43] receives special attention due to its
high electrical conductivity compared to that of noble metals, together with superior cost-
effectiveness. A critical issue, however, is that Cu is easily oxidized in ambient conditions.
As a result, laser scanning speed, which is directly connected to the local heating time,
should be carefully optimized [44,45] along with other laser parameters [46], in order
to suppress oxidation. More in-depth experiments have revealed that the effect from
oxidation becomes significant once the local heating time exceeds ~1 ms as shown in
Figure 1d [15]. For a longer heating time, inert gases such as Nitrogen or Argon [47,48]
should be introduced during the sintering process to create a highly conductive metallic
layer. At optimum conditions, the properties of the resultant Cu layer surpass those
created by thermal annealing [49] as confirmed from XRD and XPS analysis [50]. Instead
of reducing the local heating time, acid-assisted laser sintering has been developed [51] to
remove the oxide layer, and different types of Cu inks [52] are also under investigation for
further improvements.

2.3. Oxides and Others

There are two different approaches for using metal-oxide NPs in the laser sintering
technique, either as the oxide material itself or as a precursor for a conductive layer through
a reductive sintering process. ZnO and TiO2 are two common oxides that are investigated
for sintering processes due to the multiple applications enabled by these materials as
functional layers [53–55]. Since these oxides possess large band gaps and relatively high
melting temperatures, pulsed UV lasers including excimer lasers are widely implemented
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for efficient sintering, although a CW laser is also a possible option [56]. Upon laser
irradiation, the discrete NPs undergo melting and subsequent resolidification steps to
change their crystalline structure [53] or phase, which is important for specific applications
such as solar cells [54,57]. Direct application of the laser sintering scheme has been also
successful with other oxides such as ITO [58], WO3 [59], and more complex oxides [60].

As mentioned, a number of metals suffer from oxidation problems, which become more
severe when the material is in NP form that has higher surface-to-volume ratio. Therefore, it
is preferable to store an NP in its oxide form and transform it back to its metallic state when
needed. A laser-induced photothermochemical reaction enables such reductive sintering
of various metal-oxide NPs including CuO [61–64] and NiO [65–67] into their metallic
counterparts. (Figure 1e) Through time-resolved normal reflectance measurements, it is
suggested that the reductive sintering consists of several steps including densification,
reduction and sintering [68]. During the reductive sintering process, slight oxidation can
happen at the same time, while a number of intermediate states also can exist [59]. A
solvent [61] and capping agent such as polyvinylpyrrolidone (PVP) [16] also play critical
role for the corresponding process, acting as both a dispersant and reducing agent.

It should be noted that the range of NPs that is compatible with a laser sintering
scheme is continuously growing. Among metals, laser sintering is utilized as a post-process
for Al NP slurries to increase the performance of batteries [69]. On the other hand, Zinc (Zn)
has been successfully printed and sintered on a bioresorbable polymer substrate through
an evaporation–condensation-mediated sintering process [70]. For the improvement of the
resultant electrode, nanomaterials with different dimensionality can be mixed with NPs,
e.g., Ag nanowire (NW) with Ag NP [71], to create more mechanically robust electrodes,
borrowing the idea from steel-wire reinforced concrete. Recent studies include more diverse
materials such as liquid metal NP [72], alloy NP [73,74], and coreshell NPs [75] to expand
the applications enabled by laser sintering.

3. Experimental Schemes
3.1. Material Deposition

In a typical experiment, a target NP is deposited either uniformly or selectively on the
substrate. For uniform deposition of the target NP as a nanoscale thin film, spin-coating is
commonly used for a lab-scale experiment [30], however, since the unsintered NPs remain
on the substrate, the sample generally undergoes an additional cleaning step after laser
irradiation using the solvent of the original NP ink. The unsintered NPs can be recycled
after the cleaning step, but for minimum use of the NP from the beginning, the NP is
deposited only at the designated position using on-demand printing techniques [18,76]
as shown in Figure 2a. The initial feature size immediately after the printing process
can be as large as ~100 µm [22], but can be reduced down to several microns by using
a tightly focused laser beam as the sintering method [28]. Additional templates such as
crack-mediated random networks [77] can be implemented to deposit NP ink partially,
but where site-selectivity is not important for the target application, target NPs may be
provided by different schemes such as aerosol printing [54,78]. To ensure further scalability
of the laser sintering scheme, continuous sintering on roll-to-roll-printed Ag NP has been
also demonstrated [79,80].

For specific substrates such as polydimethylsiloxane (PDMS), uniform deposition of
NP ink is difficult due to their surface properties, and large differences in the mechanical
properties between the substrate and the sintered layer also act as obstacles for efficient
processing. As a consequence, different experimental configurations including capillary-
assisted [83] and shear-assisted [42,84] laser direct writing have been proposed to overcome
such limitation. It is further confirmed that a similar scheme is compatible with a wider
polymer substrates [85]. On the other hand, NP can be selectively transferred from the
donor substrate to the acceptor substrate using a pulsed laser [86–88], which is applicable
even to arbitrary 3D structures [89]. It has also been shown recently that ultrafast laser
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heating enables direct 3D assembly and fusion of nanoparticles to create metallic 3D
structure at submicron features through ligand transformation [90].
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3.2. Beam Focusing and Scanning Strategies

A laser beam is often focused and scanned at the same time in laser sintering to create
an arbitrary pattern with small feature size. The beam spot size created by a focusing
lens is directly related to the size of the laser-induced photothermal reaction [91], and
the smallest feature size achievable by a high numerical aperture (NA) lens is in the
submicron regime [14]. Scanning can be achieved by moving either the sample by a
motorized stage [24] or the galvanomirror combined with f-theta telecentric lens [30] which
is compatible with continuous production of conductive film by enabling rapid scanning
at meters per second [79] (Figure 2b). On the other hand, throughput can be enhanced by
creating a number of beamlets using a microlens array (MLA) [92] or a line beam focus
using a cylindrical lens [58]. An MLA can be substituted by a self-assembled microsphere
array, which also enables submicron feature size by harnessing near-field characteristics as
shown in Figure 2c [81]. For an areal pattern, hatch scanning is inevitable with a spherical
or a cylindrical lens, yet a digital micromirror device (DMD) can be implemented as an
on-demand digital mask to create a designated pattern instantly, analogous to an ‘optical
stamp’ [89,93]. Together with the rapid development of laser sources [94], these studies
suggest that the laser sintering scheme has strong potential to be a competent processing
technique that enables high-resolution patterning over a large area.
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3.3. Laser Parameters

Since the physical properties including optical absorbance and thermal characteristics
of the target NP are vastly different according to material [95], size [13], and even capping
agent [96], selection of adequate laser parameter is a priority [97]. To date, a wide range
of lasers at different wavelengths and pulse widths has been successfully implemented
as sintering sources, while the details of the resultants may vary. (Figure 2d,e) Since laser
sintering is a very complex process that includes a multiphysics problem and various
feedbacks between different mechanisms, the optimum laser condition is often found
through an experimental parametric study [28,50]. Although it is difficult to understand
the exact mechanism behind the sintering process [98], the effects from changing the laser
parameters have been investigated in the previous studies. Due to the variation in optical
penetration depths, the surface morphologies of the resultant sintered lines as well as the
minimum electrical resistivities are different according to the laser wavelength [38,99].
While on the other hand the effect from pulse width is more complex [100]. In terms of
processing window, the use of CW laser can be beneficial [101], yet an ultrashort pulsed
laser may provide higher conductivity as well as enhanced mechanical properties [82].

4. Applications

Until today, it has been confirmed that the laser sintering process can be applied to a
myriad of applications that span from common electronic components to unconventional
future-oriented devices. In this review, we focus on three different application categories
that have recently achieved notable development by adopting the laser sintering scheme.

4.1. Electrical Interconnections

Selective laser sintering is most intensively studied to create a conductive layer, i.e.,
electrical interconnections on various substrates, which is crucial for both passive and
active electronics. As a fine metallic patterns can be immediately created by the selective
laser sintering scheme, photolithographically defined conductive lines can be substituted
by the laser-sintered conductive lines. For instance, two parallel metallic microlines created
on a highly doped silicon wafer can act as the source and the drain of a transistor [18].
Once a semiconductor material such as air-stable carboxylate-functionalized polythiophene
is deposited, it is confirmed that the final device with the laser-sintered lines shows sim-
ilar performance to the one fabricated with lithographical methods. The corresponding
discussion, owing to the highly confined heat-affected zone created by the laser sintering
process, can be readily extended to multilayer structures even on flexible substrates. When
accompanied by laser ablation process that utilizes large difference in ablation thresholds
between sintered and unsintered metal NPs, sharply defined multilayer structure is created
without any observable damage on the underlying pattern [102]. Multilayer fabrication
capability enables the fabrication of other passive electrical components such as a capacitor
(Figure 3a) [76], whereas the reliability of the laser-sintered multilayer has further con-
firmed in the previous study through the production of 11,520 organic field effect transistor
(OFET) on 4-inch wafer size flexible substrate as shown in Figure 3b [28].

While on the other hand, we would like to emphasize that the electrical interconnec-
tions created by the selective laser sintering have been applied in two novel applications
recently. Firstly, laser-sintered metallic electrode is applied to thermochromic liquid crystal
(TLC) based artificial chameleon skin (ATACS) [103] to control multiple heaters separately,
which is directly associated to the color and the pattern that the device exhibit. The ATACS
is composed of a multilayer structure of colorless polyimide (cPI), Ag NW heater and TLC
layer (Figure 3c), and the number of layers increases according to the number of target
habitats to blend. In previous studies, laser sintering has been applied only to relatively
simple multilayer structures, e.g., transistor that requires two distinct layers with metallic
electrodes with an insulating layer in between, but the laser sintering can be applied con-
secutively to realize a more complex multilayer structure. In this regard, the laser sintering
steps are repeated more than three times for the fabrication of ATACS, accompanied by
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laser ablation process to create via holes, to enable complete electrical interconnections for
the final multilayer structure as shown in Figure 3d. The resultant ATACS not only shows
clear patterns according to the activation of each heater, but also superior stability towards
mechanical disturbances.
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with permission from Ref [104]. 2022 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.

Secondly, laser-sintered metallic electrode enables a new concept of evolvable skin
electronics, of which system’s impedance and functions can be altered during the opera-
tion [104]. The objective of a wearable electronics can be diverse, yet the one of the primary
concerns is to measure various physiological data from the body to acquire the current
state of the wearer, especially for healthcare purpose. Given that only a single device is
used, the conventional wearable device can face the following problems: necessity of new
functionality and mismatch of system impedance once the system is altered. The research
demonstrates that the combination of laser sintering and ablation of metallic NP using CW
laser and pulsed laser (Figure 3e) enables in-situ and in-operando adaptation (SOA) for ac-
tive, customized wearable devices. By connecting new electronic element via laser sintering,
additional measurements, e.g., UV and humidity sensors, become available for the original
device (Figure 3f), and it is also confirmed that the system impedance can be optimized
according to the body parts, e.g., hand, wrist, chest, where the device is attached. These
reports present that the laser sintering scheme is now at a mature technological level and
compatible to a complex multilayer structure, while more advanced device concept is real-
izable, e.g., reprogrammability, once it is combined with other supplementary processes.
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4.2. Sensors

Among diverse sensors, a strain-gauge is often the simplest sensor that consists of
metallic strips of known electrical properties under the applied strain. Similar to the afore-
mentioned electrical interconnections, the strain-dependent metallic strip can be directly
substituted by the laser-sintered metallic layers [105]. The laser-printed metallic strain
gauge responses well to the applied stretch or deflection [70] which is predictable from any
other strain sensor. Recent skin sensor demonstrated by Kim et al. [106], on the other hand,
proves that the laser sintering possesses great potential to be an efficient manufacturing
technique for a next-generation motion sensor that has not been reported before. In this
study, Ag NP coated cPI is exposed to UV pulsed laser to complete two different tasks:
ablation of cPI and sintering of Ag NP. The resultant is composed of underlying serpentine
structure and a crack-induced Ag NP layer. (Figure 4a) The serpentine structure ensures
a conformal contact of the sensor with the epidermis accompanied with high stability
towards the overall strain, while the cracked layer acts as a highly sensitive strain sensor
whose gauge factor can be as large as 2000 (Figure 4b) comparable to other crack-based
sensors [107]. Due to its high sensitivity and excellent conformality to the skin, the laser-
produced sensor captures previously undetectable signals, which can be decoded to classify
various human movements. In particular, the device successfully distinguishes five mo-
tions from each finger by attaching a single sensor at the wrist by the aid of a deep neural
network, potentiating that the number of sensors required to detect the human motion can
be reduced greatly by the simultaneous use of ultrasensitive sensor and machine learning
scheme (Figure 4c).

Along with the interests in human-attached sensors to obtain the motion of the wearer,
the acquisition of physiological sensor is gaining rapid attention as well due to the rise in
the importance of remote healthcare devices for an upcoming aging society. Similar to the
discussion above, a change in certain physiological data can be monitored once the physical
properties of the sensor are known in advance, but the sensitivity of the sensor is often a
problem: a very subtle changes, e.g., temperature variation from exhalation and inhalation
of human breathing [108], are often undetectable due to the limited sensitivity. In this regard,
Shin et al. proposed an interesting approach to create an ultrasensitive temperature sensor
on a flexible substrate monolithically based on the reductive laser sintering scheme [109].
In a typical reductive sintering process, metal oxide nanoparticle is transformed into a
continuous metallic layer by scanning the focused laser line by line at a fixed hatch distance.
In their study, several scanning lines are skipped intentionally to leave a thin native oxide
layer (Figure 4d). The remaining oxide layer, which is NiO in their study, acts as a transition
metal oxide channel that shows the characteristics of negative temperature coefficient (NTC)
thermistor within the resultant Ni-NiO-Ni heterostructure. Interestingly, the TCR of the
resultant temperature sensor is measured to be −9.2%/◦C, which yields an extremely high
B-value of 8162 K (Figure 4e). It is suggested that such high sensitivity is closely related to
various vacancies introduced by the confined photothermal heating.

A touch screen panel is another sensing element that has drawn great attention since
the last decade due to rapid increase in the use of portable devices that requires a human–
machine interface including mobile phones and tablet PCs. A transparent conductor is
a crucial component for the creation of the touch screen panel either for a resistive [30]
or a capacitive [111] type, and laser sintering of metal nanoparticle provides an efficient
substitute to the conventional ITO-based transparent conductor by forming a regular [30]
or a quasi-random [112] metallic grid that is practically invisible to bare human eye. From
such simple replacement, huge advancement has been achieved by the recent work by
Kim et al. [110]. In their study, the researchers focus on the spontaneous balling effect
created upon the laser sintering process, which is often regarded as a metallurgical defect
that should be avoided. At a certain laser condition, it is confirmed that regular corru-
gated structure can be formed (Figure 4f) once the speed of the laser-induced circulating
Marangoni flow matches the solidification rate, denoted as a dimensionless number called
the surface shaping number. By having well-defined, multiscale metallic structure, the
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contact area and therefore the electrical pathway changes upon the application of pressure
(Figure 4g), which is analyzed to enable the acquisition of pressure information while
reading the lateral position as well (Figure 4h).
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Figure 4. (a) Laser-induced crack based skin sensor. (b) Strain-dependent resistance of the sensors
created at different laser power. (c) 2D PCA illustration obtained from the encoding network, showing
that finger motions can be identified correctly. Reprinted with permission from Ref. [106]. (d) Process
illustration for monolithic laser reductive sintering. (m-LRS) (e) (Left) Temperature-dependent
electrical resistance change of the Ni-NiO-Ni structure and (Right) B-value fitting. Reprinted with
permission from Ref [109]; 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany;
(f) Surface profile of the regular wavy structure and irregular balling created at different surface
shaping number. (S) (g) Resistance responses of flat and wavy structure according to the applied
pressure. (h) 3D G-clef drawn on the transparent 3D touch device. Reprinted with permission
from Ref. [110].

4.3. Heaters

A heater based on the resistive Joule heating is a component that typically operates
under a harsh condition. As a consequence, the robustness of the heater including the
stability of the heating electrode at high current and its adhesion to the substrate becomes
more important compared to other applications. The laser-sintered metallic layer has been
studied extensively especially in the form of a transparent heater [51,112], and special
attention has been made to the ones based on a laser-sintered Ni electrode [113] due to its
superior thermal stability compared to other non-noble metals. In particular, Nam et al.
creates a transparent Ni-based heater on cPI substrate to realize a flexible and transparent
heater that aims for high temperature applications. Owing to the outstanding thermal sta-
bilities of both electrode (Ni) and substrate (cPI), the resultant heater operates constantly up
to 310 ◦C while exhibiting rapid heating and cooling characteristics together with excellent
mechanical properties. (Figure 5a) As the heaters based on the laser-sintered electrodes
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become more reliable, they are increasingly applied to proof-of-concept devices such as
the recent mechano-thermo-chromic (MTC) device [114] that requires rapid prototyping
(Figure 5b).
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Figure 5. (a) Heating characteristics of laser-sintered Ni heater that operates stably at ~300 ◦C.
Reprinted with permission from Ref. [113]. 2021 American Chemical Society, Washington, DC, USA;
(b) Cyclic operation of the MTC device, showing the durability of the laser-sintered heater. Reprinted
with permission from Ref. [114]. (c) SEM images of the ZnO NW array hydrothermally synthesized
on the laser-sintered Ag NP. (d) UV sensor composed of two ZnO NW arrays in contact. Reprinted
with permission from Ref. [115]; 2018 Elsevier, Amsterdam, The Netherlands; (e) ZnO NW array
synthesized on Ag NW connected to the laser-sintered electrical pads. Reprinted with permission
from Ref. [116]. 2017 American Chemical Society, Washington, DC, USA.

A more common demonstration coupled to the laser-sintered heater is defrosting or
defogging [112], yet the resultant laser-sintered heaters can withstand direct contact to the
liquid surrounding. In this regard, the heater based on the laser-sintered electrode has been
further applied as the heating source to induce hydrothermal growth at the corresponding
electrode to create heterogeneous nanostructure, especially aimed for the synthesis of
functional metal-oxide NWs. These attempts can be classified into two categories: in
the first, NWs are directly synthesized hydrothermally on the laser-sintered electrode
acting as a heating source [115]. It is demonstrated that dense Zinc Oxide (ZnO) NW can
be synthesized locally on the laser-sintered electrodes by utilizing them as microscopic
heaters (Figure 5c). These NWs expand the functionality of the electrode as shown in the
demonstration of a UV sensor composed of two adjacent laser-sintered electrodes which
are connected by the hydrothermally synthesized ZnO NW arrays (Figure 5d). On the
other hand, laser sintering can be employed to capture another conductive NW, e.g., Ag
NW, since the entire sintering process can be easily monitored and controlled at high
precision. The captured Ag NW then acts as the template for secondary growth by the aid
of electrothermal [117] or photothermal [116] heating (Figure 5e). Through this scheme, the
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area subject to the NW growth can be reduced down to sub-diffraction regime to enable
nanoscale devices.

5. Conclusions and Perspective

Selective laser sintering of functional nanoparticles, which has been actively studied
in the last two decades, has opened a new route towards facile creation of functional layers.
As summarized in this review, major advances have been achieved in every aspect. Starting
from noble metals, wide ranges of materials including non-noble metals, metal-oxides and
even alloys are now compatible with the laser sintering scheme, enabling the creation of
not only simple electrical connections but also active components in ambient condition for
more sophisticated, smart devices. The minimum feature size can be reduced even beyond
the diffraction limit, whereas continuous efforts are made to increase the overall production
throughput by scrutinizing diverse optical schemes, assisted by rapid development in high
power laser sources. The laser sintering scheme was first started as a facile substitution for
other conventional fabrication techniques, but a number of recent studies reveal that unique
morphological and physical characteristics of the resultant often enable rather unexpected
breakthroughs to the existing concepts as representatively shown in the examples of the 3D
touch screen sensor and the ultrasensitive temperature sensor.

Along with active use of the laser sintering scheme, we predict several future devel-
opment directions regarding the relevant emerging applications. First, a selective laser
process is actively investigated for efficient utilization of other nanomaterials as well, in-
cluding NWs and 2D materials in particular [118]. A laser is proven to be a useful tool
for direct and facile processing of these materials, and a wide range of techniques have
been developed, e.g., positioning [119,120], ablation [111], nano-welding [121], pyroly-
sis [122], modification [123], thinning [124], etc. As a result, the materials which are in
the spotlight for next-generation applications are largely compatible with laser processes.
Recent studies on the laser process of PI and PDMS, which are common substrates for
flexible/stretchable electronics and healthcare devices, further confirm that high-quality mi-
cromachining [7,125] as well as adhesive-free bonding [126] between these two substrates
are realizable through the laser-induced photothermal reaction. These developmental as-
pects suggest that laser processes can be among the core fabrication technique for emerging
applications, heading towards all-laser fabrication of a device [127,128] up to a system level.
We also expect that the laser process will become more valuable as the global semiconductor
shortage continues.

Selective laser sintering of nanoparticles can be regarded as a laser additive manufactur-
ing technique, an area that has seen major advancements over the past few years [129–131]. As
a consequence, the research trends as well as scientific challenges and issues are analogous.
Major advantages of additive manufacturing are flexible design and rapid prototyping, and
as a result, mechanical metamaterials such as auxetic structures with a negative Poisson
ratio [132–141] can be readily produced and tested by the corresponding technique. Laser-
assisted sintering is a highly non-equilibrium process that incorporates a very complicated
multiphysics problem with various feedbacks. As a result, in-situ sensing and monitoring
of the laser-assisted process [142] are currently subjects of active study, especially to rec-
ognize different types of defects in real time. Data-driven optimization of selective laser
sintering, e.g., the deep learning approach for tool paths [143], is also becoming popular,
and we expect that similar approaches will be investigated for the industrialization of laser
sintering processes for nanoparticles.
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