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Abstract: An unexpected promoting effect of KBr, used as a diluting salt, on the degradation of
picric acid (PA) was observed during in situ diffuse reflectance infrared Fourier-transform (DRIFT)
spectroscopy experiments performed here under accelerated ageing conditions—at 80 ◦C and under
an inert or oxidative atmosphere. While the formation of potassium picrate was excluded, this
promoting effect—which is undesired as it masks the possible effects of test conditions on the ageing
process of the material—was assumed to favor a first step of the decomposition mechanism of PA,
which involves the inter- or intramolecular transfer of hydrogen to the nitro group, and possibly
proceeds up to the formation of an amino group. An alternative diluting salt, ZnSe, which is much less
commonly used in infrared spectroscopy than KBr, was then proposed in order to avoid misleading
interpretation of the results. ZnSe was found to act as a truly inert diluting salt, preventing the
promoting effect of KBr. The much more chemically inert nature (towards PA) of ZnSe compared
to KBr was also confirmed, at much higher temperatures than DRIFT experiments, by dynamic
differential scanning calorimetry (DSC) runs carried out on pure PA (i.e., PA without salt) and PA/salt
(ZnSe or KBr) solid mixtures.

Keywords: in situ DRIFT spectroscopy; energetic materials; aromatic nitro compounds; picric acid;
decomposition; diluting salt; KBr; ZnSe

1. Introduction

From a thermodynamic point of view, energetic materials are unstable substances.
Their decomposition can occur slowly even at room temperature, although degradation
phenomena for energetic materials with an activation energy of decomposition higher than
170 kJ mol−1—such as aromatic and aliphatic nitro compounds and aliphatic nitramines—are
supposed to be detectable only after thousands of years if correctly stored [1].

Nitroarenes decompose according to different modes depending on temperature: high
temperatures promote the rupture of the C-NO2 bond requiring the highest energy, whereas
at lower temperatures, processes with lower activation energy and lower exothermicity
occur [2,3]. The decomposition of most aromatic nitro compounds takes place according to
autocatalytic kinetics, due to catalysis by reaction products [2]. In this study, picric acid
(PA) was chosen as a representative of this class of substances.

In order to determine the effects of long-term storage and predict their shelf life,
energetic materials are subjected to accelerated ageing tests at temperatures typically
ranging from 40 ◦C to 80 ◦C, so as to reproduce conditions that simulate a degradation
process lasting several years in a much shorter time period [4]. In addition to being affected
by temperature, PA is also known to react with metals to form metallic picrates, which have
caused serious explosive accidents [5]. Moreover, the removal of nitro groups from some
organic explosives—such as PA, trinitrotoluene, and nitroglycerine—can be induced by
thermal decomposition or, alternatively, by contact with a potassium or sodium hydroxide
solution at room temperature [6].
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Thermal analysis technologies—especially differential thermal analysis (DTA), differ-
ential scanning calorimetry (DSC), and thermogravimetric analysis (TG)—have been widely
used to investigate the decomposition of energetic materials, sometimes in combination
with Fourier-transform infrared (FTIR) spectroscopy or mass spectrometry (MS) for the
identification of degradation products [7–9]. In contrast, in situ diffuse reflectance infrared
Fourier-transform (DRIFT) spectroscopy has not yet been used to characterize the degra-
dation process of these systems, although it allows the heating of samples under different
atmospheres, and represents a powerful technique for studying thermal phenomena also
affected by the reactive nature of contacting gases.

Standard IR analysis of PA is performed through the traditional potassium bromide
(KBr) pellet method, which involves the preliminary grinding of the sample with KBr
powder before pressing the resulting solid mixture [10,11]. However, two further methods
of sample preparation have been used in IR experiments on energetic materials other than
PA, consisting of evaporating the solvent after dispersing a solution of the sample onto an
alkali salt substrate [12], or gently spreading the sample in a thin layer on a substrate with
the flat end of a spatula [13]. In all cases, spectra were recorded at room temperature. KBr
does not contain bands in the mid-IR region of the spectrum and, consequently, does not
mask the bands of the IR spectrum of the investigated sample [14]. Likewise, the DRIFT
technique also involves grinding the sample with KBr powder, although no subsequent
pressing into a disk is performed.

As mentioned above, in in situ DRIFT experiments, heating of the sample and/or
its exposure to reactive conditions (e.g., oxidative and/or wet atmosphere) is allowed.
However, the possible interaction between PA and KBr under specific test conditions must
be carefully analyzed and, if it occurs to an extent that masks the effect of the test conditions
themselves, alternative solutions to KBr must be identified in order to avoid a misleading
interpretation of results.

The possible degradation of PA under accelerated ageing conditions—at 80 ◦C and
under an inert or oxidative atmosphere—was investigated here through in situ DRIFT.
This study provides insight into the undesired effect of KBr as a diluting salt, causing
a limited but detectable transformation of PA not assignable to the conditions selected
to perform the accelerated ageing tests, and proposes the use of a truly inert diluting
salt—zinc selenide (ZnSe)—as an alternative to KBr. A joint DSC study shows the different
thermal behavior of PA/KBr and PA/ZnSe solid mixtures at much higher temperatures
than DRIFT experiments.

2. Materials and Methods

Picric acid (PA) (purity ≥ 99%) was purchased from Sigma-Aldrich (St. Louis, MO,
USA). For safety reasons, this material was supplied moistened with water. The weight
percentage of water was ≥ 35%. Dry material, hereafter referred to as “fresh” PA, was
prepared by subjecting the moistened material to vacuum-drying at room temperature. PA
(always purchased from Sigma-Aldrich, and with purity ≥ 99%) stored as dry powder for
more than 10 years at ambient conditions in the Calorimetry Laboratory of CNR-STEMS
was also available. This “naturally aged” PA was selected as a reference aged material.

In situ DRIFT experiments were performed with a PerkinElmer Spectrum GX spec-
trometer (Beaconsfield, United Kingdom) at 4 cm−1 resolution, averaging each spectrum
over 64 scans. In order to collect the spectrum of fresh PA, fresh material was diluted in KBr
(IR-grade potassium bromide purchased from Sigma-Aldrich), which is the most commonly
used diluting and background material in IR spectroscopy. Then, 2 wt.% PA/KBr was
placed in a PIKE DRIFT accessory (Fitchburg, WI, USA) equipped with a heat chamber
and a ZnSe window. The PA/KBr solid mixture was treated at 30 ◦C for 1 h under an inert
flow (Ar, 20 cc min−1), and then a DRIFT spectrum was recorded and ratioed against the
spectrum of pure KBr. In another DRIFT experiment, 2 wt.% (fresh) PA was diluted in ZnSe
(optical-grade zinc selenide purchased from Sigma-Aldrich), which was also used to record
the background spectrum in this case. The same pretreatment as the PA/KBr mixture was
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carried out on the PA/ZnSe mixture. Spectra were also recorded during experiments under
“accelerated ageing” conditions, as detailed in Table 1.

Table 1. Accelerated ageing: conditions of in situ DRIFT experiments.

Solid Mixture Temperature, ◦C Time of Exposure, h Atmosphere

2 wt.% PA/KBr 80 (up to) 48 Ar flow
2 wt.% PA/KBr 80 (up to) 24 5 vol.% O2/Ar flow

2 wt.% PA/ZnSe 80 (up to) 24 5 vol.% O2/Ar flow

The temperature of 80 ◦C was chosen as being sufficiently lower than the melting
point of PA (about 120 ◦C) to prevent liquefaction. In these cases, spectra were ratioed
against the spectrum of the pure diluent (KBr or ZnSe) recorded at 80 ◦C.

Further DRIFT spectra were recorded for naturally aged PA, PA thermally treated (i.e.,
artificially aged) as pure powder (i.e., without diluting salt) ex situ (in a closed glass tube)
at 80 ◦C for 24 h in air using a dry bath heater (THERMOBLOCK TD 200 P2+ by FALC
Instruments, Treviglio, Italy), and potassium picrate (KP). In these experiments, 2 wt.%
PA or KP was diluted in KBr, and spectra were collected at 30 ◦C under an Ar flow (as
described for fresh PA). KP was prepared starting from an aqueous solution of PA and
slowly adding K2CO3 up to a pH value of 7.5 [15]. The precipitate was filtered, washed
with double-distilled water and, finally, dried at room temperature. Spectra were also
collected at increasing times of exposure (up to 6 h) of 2 wt.% KP/KBr to 80 ◦C under
an Ar flow.

DSC analysis was carried out with a PerkinElmer DSC 8000 instrument (Shelton, CT, USA)
equipped with an Intracooler II cooling system. For each test, a few milligrams (0.5–2.0 mg)
of material were loaded into a 30 µL stainless steel pan operating at a maximum working
pressure of 150 bar and in the −170–400 ◦C temperature range. Dynamic DSC experiments
were performed at a heating rate of 20 ◦C min−1 (exploring the 50–450 ◦C temperature
range) on fresh and naturally aged PA, pure KBr, pure ZnSe, and PA/salt (KBr or ZnSe)
solid mixtures with 50 wt.% PA. This much higher weight percentage of PA compared
to the DRIFT experiments was related to the very small amount of sample that could be
loaded into the pans used for the DSC experiments. Using 2 wt.% PA in the solid mixtures,
as in the DRIFT experiments, would have represented too low an absolute amount of PA to
be weighed without too large an experimental error.

3. Results and Discussion
3.1. Fresh Picric Acid (PA)

In Figure 1, the typical signals of fresh PA can be observed in the spectrum of 2 wt.%
PA/KBr collected at 30 ◦C under an inert Ar flow, with the appearance and sometimes
overlapping of many bands that are not unambiguously attributed. The bands at 1550 cm−1

and 1350 cm−1 are associated with the asymmetric and symmetric stretching of NO2,
respectively [10,16]. As expected, these bands are shifted towards lower wavenumbers
compared to nitroalkanes because they are attached to the aromatic ring. The bands at
1530 cm−1 and 1435 cm−1 are associated with stretching vibrations of aromatics [10], while
the signal at 1310 cm−1, partially superimposed on the band at 1350 cm−1, is associated
with the C-N bond [17]. On the other hand, the sharp band at 3104 cm−1 is assigned to the
stretching of O-H [11] or C-H [17], whereas the small peak at 3250 cm−1 is unambiguously
attributable to hydroxyl groups, likely together with that at 3300 cm−1. The broad band
in the 3650–3000 cm−1 region is a combination of hydroxyls of PA and adsorbed water.
The bands at 1275 cm−1 and 1150 cm−1 are assigned to the C-O bond [11,17], although
1277 cm−1 is also the frequency assigned to the stretching [10,17] and rocking [17] of C-N.
The band at 1630 cm−1 is attributed to stretching vibrations of aromatic C=C, whereas the
band at 1090 cm−1 is attributed to C-H out-of-plane bending [10].
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Figure 1. DRIFT spectrum of fresh PA diluted in KBr (2 wt.% PA/KBr) recorded at 30 ◦C under an Ar
flow. The main typical signals of PA are labelled.

3.2. Thermally Treated PA
3.2.1. Diluting Salt: KBr

In Figure 2, the spectrum from Figure 1 is shown along with the spectra of the same
system treated at 80 ◦C for up to 48 h under an inert flow. Specifically, Figure 2a shows
the spectra in the 3500–2500 cm−1 region, whereas Figure 2b shows the spectra in the
1800–1000 cm−1 region. Although these spectra appear very similar, some differences
can be observed, which could be tentatively attributed to a partial modification of PA
accelerated by the high temperature. The most remarkable difference induced by the
thermal treatment is the appearance of a new band centered at 1485 cm−1, whose intensity
increases with the time of exposure to 80 ◦C. Nevertheless, other less evident differences
can be noticed—a slight shift of the sharp band at 3104 cm−1 towards lower frequen-
cies (Figure 2a), along with the shift of asymmetric and symmetric N-O stretching from
1550 cm−1 to higher frequencies and from 1350 cm−1 to lower frequencies, respectively
(Figure 2b). Other bands present in the spectrum of fresh PA, such as the double peak at
3300–3250 cm−1, are better defined with increasing time of exposure to high temperature,
likely due to the loss in intensity of the large broad band of the hydroxyl of adsorbed
water which, in the case of the more hydrated fresh sample, partially masks these bands
(Figure 2a). However, the attribution of both the new band at 1485 cm−1 and the shift of
other pre-existing bands is not trivial.

At temperatures over which the thermal stability of nitroarenes is normally studied,
three modes of decomposition are postulated, whose relative dominance changes with
temperature [2,3]: (a) homolysis of the C-NO2 bond—this is a high-energy event (requiring
about 300 kJ mol−1) and, therefore, can occur only at high temperatures; (b) intermolec-
ular (from another nitroarene) or intramolecular (from another group on the same arene
ring) transfer of hydrogen to the nitro group, resulting in the loss of HONO—this transfer
requires about half the energy of the homolysis; and (c) nitro/nitrite isomerization. Ac-
cording to these possible events, some mechanisms could be assumed to be responsible
for the changes observed in the DRIFT spectra of artificially aged (i.e., thermally treated)
PA (Figure 2). Since the -NO2 bands (i.e., asymmetric and symmetric N-O stretching)
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shift slightly but do not disappear, the homolysis of the C-NO2 bond is hardly feasible.
Other transformations of PA should be hypothesized, such as the inter- or intramolecular
transfer of hydrogen to the nitro group. This transfer, which requires less energy, and can be
assumed to occur even at low temperatures (e.g., 80 ◦C), could be responsible for possible
subsequent molecular changes. In the case of PA, the intramolecular transfer of hydrogen
can obviously only take place on one of the two ortho-nitro groups [18].
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Figure 2. DRIFT spectra of 2 wt.% PA/KBr in (a) the 3500–2500 cm−1 region and (b) the
1800–1000 cm−1 region. The black curve represents the fresh sample, whereas the colored curves
represent the sample artificially aged at 80 ◦C for up to 48 h under an Ar flow.

When the nitro group interacts with the hydrogen of a hydroxyl group, the bands
of asymmetric and symmetric stretching shift towards higher and lower frequencies, re-
spectively [16]. The opposite shifts of asymmetric and symmetric N-O stretching shown
in Figure 2b can therefore account for an interaction of the nitro group with the hydrogen
of the hydroxyl group of the same molecule or of another molecule of PA. If the sharp
band at 3104 cm−1 is attributed to the hydroxyl of PA, the shift observed for this band
can actually be assigned to the transfer of hydrogen, although the extent of this shift is
quite low. Indeed, much higher shifts are expected for an interaction of OH with the nitro
group [19]. As a consequence, the occurrence of the transfer of hydrogen to the nitro group
is supported only by the shift of the -NO2 bands. On the other hand, if the band of the
hydroxyl of PA is included in the large broad band observed in the 3650–3000 cm−1 region,
its possible shift is hardly detectable.

The explanations given so far do not justify the formation of a completely new
band—namely, the band at 1485 cm−1. This signal is typically assigned to the C=C stretch-
ing of substituted aromatics (such as toluene, diethylbenezene, etc.), and could suggest that
some modification of the aromatic ring occurs due to the different nature of the functional
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groups, as in the case of the amino group [20]. The associated great increase in the sharp
band at 1370 cm−1—present as a barely detectable signal in the case of fresh PA, and typi-
cally assigned to secondary or tertiary amino group bound to an aromatic ring [20]—could
confirm this hypothesis. On the other hand, the formation of an amino group from a nitro
group through the initial transfer of hydrogen has been reported for trinitrotoluene [3], and
can easily be assumed for PA as well.

In conclusion, although not unambiguously defined, a limited but detectable modifica-
tion of PA—possibly related to the intra- or intermolecular transfer of hydrogen to the nitro
group, and to the formation of an amino group—takes place when keeping the PA/KBr
sample at 80 ◦C only for a few hours under an inert atmosphere. This is undoubtedly
an unexpected result for a highly stable compound such as PA (see, e.g., Ref. [1]).

When comparing the spectra of Figure 2 with those of Figure 3, it appears that the
formation and shift of bands are accelerated by the presence of O2. Specifically, bands at
1485 cm−1 with almost the same intensity appear after a 48 h treatment under an Ar flow
(Figure 2b) and a 4 h treatment under an O2/Ar flow (Figure 3b).
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Figure 3. DRIFT spectra of 2 wt.% PA/KBr in (a) the 3500–2500 cm−1 region and (b) the
1800–1000 cm−1 region. The black curve represents the fresh sample, whereas the colored curves
represent the sample artificially aged at 80 ◦C for up to 24 h under a 5 vol.% O2/Ar flow.

Similar effects can also be observed in the case of naturally aged PA, i.e., PA stored
for more than 10 years at ambient conditions in the Calorimetry Laboratory of CNR-
STEMS (Figure 4). A band at 1485 cm−1 is also present in this case (in addition to
a band at 1565 cm−1) (Figure 4b), whereas the possible dominance of a double band
at 3300–3250 cm−1 is likely masked by the stronger hydration of aged PA, resulting in
a larger broad band in the region of hydroxyl stretching (Figure 4a).

The results presented above were crosschecked by comparing the spectrum of fresh
PA with that of PA aged, as pure powder (i.e., without KBr), ex situ at 80 ◦C for 24 h in air
(Figure 5). No significant differences can be observed between the two spectra. Notably, the
band at 1485 cm−1 was not formed when the ageing treatment was performed ex situ on
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pure PA. A combined effect of high temperature and the presence of KBr is therefore likely
responsible for the modification of signals observed in Figures 2 and 3, whereas the ex situ
ageing treatment of pure PA at 80 ◦C for 24 h in air (i.e., under about 20 vol.% O2 rather
than 5 vol.% O2 as in the in situ DRIFT experiments shown in Figure 3) is not sufficient to
modify the molecular structure of the substance under examination. In this regard, Figure 6
highlights the high thermal stability of PA, showing the comparison between the DSC
peaks of fresh and naturally aged material collected during dynamic runs. The effect of
more than 10 years of storage at ambient conditions is rather limited. It can be detected in
the temperature range of 270–300 ◦C, where the small shoulder of the peak of naturally
aged PA suggests that, during the storage, the material undergoes a transformation that
initiates the decomposition of a small fraction of the sample at slightly lower temperatures
than fresh PA.
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1800–1000 cm−1 region. The black curve represents the fresh sample, whereas the red curve repre-
sents the naturally aged sample (i.e., PA stored for more than 10 years at ambient conditions in the
Calorimetry Laboratory of CNR-STEMS). Like the spectrum of fresh PA, the spectrum of naturally
aged PA was also recorded at 30 ◦C under an Ar flow.

In conclusion, KBr does not behave as an inert diluting salt, but rather affects the
simulated ageing of PA which, therefore, cannot be unambiguously attributed to the test
conditions. Due to the large amount of KBr in the PA/KBr solid mixture, a close contact
between KBr and PA is established. On the basis of this close contact, a promoting effect
of KBr on the degradation of PA, as also reported for the decomposition of potassium
picrate [15], or even the formation of potassium picrate via a solid/solid reaction, as
warned by Coates [20], can be assumed, with both events being possibly favored at 80 ◦C.
The stability of metal picrates with respect to PA is debated. Ju et al. [17] reported that
potassium picrate is more prone to decomposition than PA. Some C-C bonds in potassium
picrate are very weak, suggesting that they could be ruptured simultaneously with the
C-N bond in the initial decomposition process. This could support the hypothesis of
the formation of potassium picrate in the DRIFT cell, followed by an easier degradation
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of the new compound, although no signals attributable to the rupture of the C-NO2
bond can be observed in Figures 2 and 3. In contrast, as shown by the DSC results
reported by Matsukawa et al. [5], the decomposition of alkali metal picrates begins at
higher temperatures than that of PA, suggesting a higher thermal stability of the salts.
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1800–1000 cm−1 region. The black curve represents the fresh sample, whereas the blue curve repre-
sents the sample artificially aged ex situ at 80 ◦C for 24 h in air. Like the spectrum of fresh PA, the
spectrum of ex situ aged PA was also recorded at 30 ◦C under an Ar flow.
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Figure 6. Specific (i.e., referring to the mass of sample) heat power curves (exothermal events)
collected during dynamic DSC runs (heating rate of 20 ◦C min−1) carried out on fresh PA and
naturally aged PA (i.e., PA stored for more than 10 years at ambient conditions in the Calorimetry
Laboratory of CNR-STEMS).
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In order to understand whether, at 80 ◦C, potassium picrate (KP) is formed, which
then degrades, or if KBr promotes the decomposition process of PA, KP was prepared as
described in Section 2, and a 2 wt.% KP/KBr mixture was loaded into the DRIFT cell. In
Figure 7, the DRIFT spectrum of fresh KP is shown along with that of fresh PA.
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Figure 7. DRIFT spectra of fresh PA and fresh KP diluted in KBr (2 wt.% PA/KBr and 2 wt.% KP/KBr,
respectively) recorded at 30 ◦C under an Ar flow.

As predicted by Ju et al. [17] using the density functional theory (DFT) method,
the spectrum of KP shows largely the same bands as that of PA, excluding the broad
band associated with the stretching mode of OH, which is obviously absent in the salt,
whilst the sharp band at 3104 cm−1 is preserved, although slightly shifted towards lower
wavenumbers. This can help to disambiguate the attribution of this signal to the stretching
of C-H or O-H. Indeed, the unmodified presence of the sharp band in the spectrum of KP
definitely indicates that this band is associated with the stretching of C-H in the aromatic
ring, with OH being absent in the potassium salt. Last but not least, the new band at 1485
cm−1 observed for thermally treated PA (Figures 2 and 3) is not detectable in the case of KP.
This rules out the in situ formation of KP, and suggests that the degradation process of PA
is favored at high temperatures by the presence of KBr. On the other hand, unlike PA, KP is
thermally stable, as confirmed by Figure 8, where the spectrum of fresh KP is shown along
with the spectra recorded at increasing times of exposure of this material to 80 ◦C.

The similarity of the spectra in Figure 8 provides two key results: KP is more stable
than PA, and the hydrogen of the hydroxyl group of PA is involved in the interaction with
the vicinal nitro group or a nitro group of another molecule of PA, promoting the first step
of the degradation mechanism of this nitroarene. In contrast, the hydroxyl group is absent
in the case of KP, which therefore exhibits higher stability.
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Figure 8. DRIFT spectra of 2 wt.% KP/KBr. The black curve represents the fresh sample (this
spectrum was recorded at 30 ◦C under an Ar flow), whereas the colored curves represent the sample
artificially aged at 80 ◦C for up to 6 h under an Ar flow.

3.2.2. Diluting Salt: ZnSe (Versus KBr)

KBr exerts a promoting effect on the degradation of PA and, therefore, is an unsuitable
diluting salt for investigating its accelerated ageing via in situ DRIFT experiments. In
an attempt to identify an effective alternative solution, DRIFT experiments were repeated
using ZnSe (instead of KBr) powder as the diluting salt. Recall that the window of the in
situ DRIFT cell used in this work was made of ZnSe, which is much more water-tolerant
and thermally resistant than KBr. The same concentration (2 wt.%) of (fresh) PA was diluted
in ZnSe powder. As with KBr, the spectra of PA diluted in ZnSe were ratioed against pure
ZnSe. Figure 9 shows the DRIFT spectra of 2 wt.% PA/ZnSe. The blue curve represents the
fresh sample, whereas the other curves represent the sample artificially aged at 80 ◦C for
up to 24 h under a 5 vol.% O2/Ar flow.

Even the spectrum of PA treated at 80 ◦C for 24 h under an oxidative atmosphere
does not show significant differences compared to the spectrum of fresh PA, indicating the
chemically inert behavior of ZnSe. This is clearer in Figure 10, which shows the spectra of
2 wt.% PA diluted in KBr or ZnSe after 24 h of treatment at 80 ◦C under a 5 vol.% O2/Ar
flow. The band centered at 1485 cm−1 is present in the case of PA/KBr, but totally absent in
the case of PA/ZnSe.

The much more chemically inert nature (towards PA) of ZnSe compared to KBr
was also confirmed, at much higher temperatures than in the DRIFT experiments, by
dynamic DSC runs carried out on pure PA (i.e., PA without salt) and PA/salt (ZnSe or
KBr) solid mixtures. For these runs, Figure 11 shows the specific heat power as a function
of temperature, whereas Table 2 gives the corresponding heat of reaction. It is worth
mentioning that dynamic DSC runs were also carried out on both pure KBr and pure ZnSe
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(for the sake of brevity, these results are not shown here), but no thermal events were
recorded over the temperature range shown in Figure 11.
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Figure 9. DRIFT spectra of 2 wt.% PA/ZnSe. The blue curve represents the fresh sample (this
spectrum was recorded at 30 ◦C under an Ar flow), whereas the other curves represent the sample
artificially aged at 80 ◦C for up to 24 h under a 5 vol.% O2/Ar flow.

The heat power curve collected for PA/ZnSe shows two relative maxima, with the
second one (at higher temperature) located very close to the maximum of pure PA. The
broadening of the peak as well as the presence of two local maxima can be attributed
to a thermal dilution effect of the salt (i.e., to the higher thermal inertia of the PA/ZnSe
system compared to pure PA). This is corroborated by the fact that, for PA/ZnSe, the heat
of reaction referring to the mass of PA is almost the same as that of pure PA. In contrast,
for PA/KBr, a simple thermal dilution effect cannot be invoked. In this case, the thermal
process also exhibits a multistep behavior, but the heat of reaction referring to the mass of
PA is much lower than that of pure PA.

In conclusion, unlike KBr, ZnSe does not promote the degradation of PA, acting as
a truly inert diluting salt. The use of ZnSe to dilute PA is thus strongly recommended in
order to avoid an incorrect interpretation of possibly detectable modifications in DRIFT
spectra recorded during accelerated ageing tests on this material. In principle, this rec-
ommendation can also be extended to all energetic materials containing polar functional
groups. When thermally stressed, such materials could more easily interact with KBr.



Materials 2022, 15, 6029 12 of 14Materials 2022, 15, x FOR PEER REVIEW 12 of 14 
 

 

 
Figure 10. DRIFT spectra of 2 wt.% PA/KBr and 2 wt.% PA/ZnSe, both treated at 80 °C for 24 h under 
a 5 vol.% O2/Ar flow. 

 
Figure 11. Specific (i.e., referring to the mass of sample) heat power curves (exothermal events) col-
lected during dynamic DSC runs (heating rate of 20 °C min−1) carried out on pure PA (i.e., PA with-
out salt) and PA mixed with KBr (50 wt.% PA/KBr) or ZnSe (50 wt.% PA/ZnSe). 

  

Wavenumber, cm-1

10001200140016001800

Tr
an

sm
itt

an
ce

, %

PA/ZnSe
PA/KBr 

Temperature, °C

200 225 250 275 300 325 350 375 400

q,
 W

 g
-1

0

5

10

15

20

25

30

PA

PA/KBr

PA/ZnSe

Figure 10. DRIFT spectra of 2 wt.% PA/KBr and 2 wt.% PA/ZnSe, both treated at 80 ◦C for 24 h
under a 5 vol.% O2/Ar flow.
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Figure 11. Specific (i.e., referring to the mass of sample) heat power curves (exothermal events)
collected during dynamic DSC runs (heating rate of 20 ◦C min−1) carried out on pure PA (i.e., PA
without salt) and PA mixed with KBr (50 wt.% PA/KBr) or ZnSe (50 wt.% PA/ZnSe).
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Table 2. Heat of reaction corresponding to the curves shown in Figure 11.

System ∆HR Referred to mTOT
1, J g−1 ∆HR Referred to mPA

2, J g−1

Pure PA −3382 −3382
50 wt.% PA/KBr −1011 −2022

50 wt.% PA/ZnSe −1791 −3582
1 mTOT is the total mass of (PA + KBr) or (PA + ZnSe). 2 mPA is the mass of PA.

4. Conclusions

The degradation of picric acid (PA) was investigated under accelerated ageing con-
ditions using in situ diffuse reflectance infrared Fourier-transform (DRIFT) spectroscopy.
The results show that even the most stressful conditions tested—80 ◦C and the presence of
O2 (5 vol.%)—do not cause a detectable degradation of PA within one day, provided that
the material is diluted in a suitable salt. KBr, which is the most commonly used diluting
salt in IR applications, exerts an undesired promoting effect on the degradation process of
PA, causing a “false” ageing that is not attributable to the test conditions. Specifically, it
favors a first step of the decomposition mechanism of PA, which involves the transfer of
hydrogen from the hydroxyl group to the vicinal nitro group (intramolecular transfer) or to
the nitro group of another molecule (intermolecular transfer), and possibly proceeds up
to the formation of an amino group. In contrast, ZnSe acts as a truly diluting salt towards
PA, exhibiting a much more chemically inert nature than KBr, as also confirmed—at much
higher temperatures than in the DRIFT experiments—by differential scanning calorimetry
(DSC) runs carried out on pure PA (i.e., PA without salt) and PA/salt (ZnSe or KBr) solid
mixtures. The use of ZnSe to dilute PA is thus strongly recommended in order to avoid
an incorrect attribution of possibly detectable modifications in DRIFT spectra recorded
during accelerated ageing tests on this material. Aromatic nitro compounds other than
PA, such as those not containing a hydroxyl group, could in principle not give the same
interaction with KBr. However, this must be carefully verified in order to provide a correct
interpretation of the phenomena observed via in situ DRIFT.
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