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Abstract: The global energy situation requires the efficient use of resources and the development
of new materials and processes for meeting current energy demand. Traditional materials have
been explored to large extent for use in energy saving and storage devices. Graphene, being a
path-breaking discovery of the present era, has become one of the most-researched materials due to
its fascinating properties, such as high tensile strength, half-integer quantum Hall effect and excellent
electrical/thermal conductivity. This paper presents an in-depth review on the exploration of deploy-
ing diverse derivatives and morphologies of graphene in various energy-saving and environmentally
friendly applications. Use of graphene in lubricants has resulted in improvements to anti-wear
characteristics and reduced frictional losses. This comprehensive survey facilitates the researchers in
selecting the appropriate graphene derivative(s) and their compatibility with various materials to
fabricate high-performance composites for usage in solar cells, fuel cells, supercapacitor applications,
rechargeable batteries and automotive sectors.

Keywords: graphene; renewable energy; solar cells; batteries; fuel cells; nanolubricants; supercapaci-
tors; sustainability

1. Introduction

Industrialization, globalization, urbanization and population explosion have put
extensive pressure on global energy, and in order to meet demand and supply the required
energy, there is a need to explore sustainable and renewable forms of energy [1,2]. Focus
has to be placed on the development of materials, mechanisms, methods and, above all,
a positive mind-set of human beings toward energy conservation. Researchers across the
globe have come out with innovative materials which are capable of transforming the vast
energy sector, and one such material, graphene (GR), has been at the forefront of industry
and academic research since 2010, when the Nobel Prize was bestowed upon physicists
for ground-breaking experiments on this super material. There has been enormous work
on patents, research publications, industry projects and applications in different domains
with graphene as the center theme. Although, extensive research is being conducted
on the multifarious uses of GR, energy conservation and storage are the most critical
for the global sustainable economy. There are a variety of materials which can be put
to use for energy storage, but choice is limited when cost and energy-to-weight ratio
are taken into consideration [3,4]. Carbon, with its property of high surface area, is the
lightest material which can be used for energy storage [5]. Being a non-metal, carbon
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(C) is an environmentally friendly and inexpensive material having an atomic number
6 configuration of 1s22s22p2. Carbon is available in diverse allotropic forms, and graphite
is considered as one of the most important forms. It is in the form of a three-dimensional
allotrope, in which layers are parallel stacked with carbon atoms, hybridizing sp2. Strong
bonding exists between carbon atoms in an individual layer, but layers are held to one
another by weak Van der Waals force [6]. One individual layer is termed as graphene.
An analogy can be made by considering graphite as a complete book and GR layers as
pages of that book. No conventional material possesses such properties or can replace
graphene in multifarious applications [7]. Since the inception and synthesis of GR by
the ‘Scotch tape method’, new doors in this active field of research have opened [8,9].
This lightweight, flexible and resistant material was born out of the GR Flagship research
program in Europe, and it was possible to see GR with the naked eye because of its ability
of absorbing 2.3% light [10]. Table 1 summarizes the properties of the thinnest yet strongest
material—‘graphene’.

Table 1. Properties of single-layered graphene [11–13].

Property Value Property Value

Bond type sp2 Crystal structure Hexagonal

Dimension 2D Surface area 2630 m2/g

Melting point ~3852 ◦C C-C bond length 0.142 nm

Mobility (typical) ~200,000 cm2V−1s−1 Mobility (intrinsic) 108 A cm−2

Real density 2.25 g/cm3 Mass (bulk) density ~0.3 g/cm3

Relaxation length ~15,000 cm2V−1s−1 Thickness ~1–2 nm

Thermal conductivity ~5000 W/m-K Electrical
conductivity ~20,000 S/cm

Elasticity modulus ~1 TPa Intrinsic strength ~130 GPa

Fracture toughness ~4 MPa-m0.5 Breaking strength 42 Nm−1

Electron mobility ~2.5 × 105 cm2/(V·s) Electron density 2 × 1011 cm−2

High temp. resistivity −75 + 200 ◦C
between not changing Optical transmittance 97.7%

Interplanar spacing
b/w Gr sheets 0.335 nm Spin R 1.5–2 µm

Fermi velocity 300–500 nm Phase coherence
length 3–5 µm

Current density c/300 = 1,000,000
ms−1 Sheet resistance 1.3 × 10−4–5.1 ×

10−4 Ω/sq

GR, with a harder structure than diamond and nearly 300 times stronger than steel, is
also an excellent heat conductor which surpasses diamond. GR is capable of being coated
on different materials and can be stretched with ease. Such extraordinary properties can be
utilized in the diverse fields as energy storage, the electrical and electronics sectors, solar
cells, the aerospace and automotive sectors, telecommunication, and the medical field [14].
Figure 1 summarizes the interrelationship between GR properties and their usage in
different energy devices. Moreover, in solar air heaters, graphene has also been widely used
as a coating material on absorber plates to increase their performance [15,16]. Graphene
oxide (GRO)-based adsorbents functions effectively in removing water pollutants [17,18].
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grouped in the category of semi-metals with nano/microstructure, and is of extensive use 
in industry [26,27]. 
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2. Graphene Synthesis

There has been ample interest in the development of nanotubes, fullerenes, and
graphite oxide/graphitic oxide, also termed “graphitic acid”, since long ago. Extensive
efforts and research have been carried out to produce GR, which should be of excellent
quality and have the capability to be used in different applications, on a large scale [19]. In
1859, graphite was treated with a solution consisting of fuming nitric acid and potassium
chlorate by the chemist Brodie from Oxford in order to prepare graphitic acid [20]. About
four decades after this invention, Staudenmaier [21] carried out an improvement in the
oxidation technique by adding KClO3 in restricted quantity along with concentrated
sulphuric acid instead of addition in a single step. This improved technique led to achieving
the same ratio of carbon and oxygen (2:1) as in Bordie’s experiments, but with the advantage
of avoiding repeated multiple oxidations. It is evident from the literature that P.R. Wallace
had predicted the presence of electronic properties in single-layered graphite (nowadays
termed as GR) in the year 1940, and this has now been confirmed. In 1975, Lang et al. [22]
attempted the synthesis of monolayer graphite and demonstrated the building of multi-
as well as mono-layered graphite using platinum substrates and thermally decomposing
carbon over these. There was inconsistency in the properties of these sheets, and so the
process was not studied in detail and the benefits of this product were not explored at that
time. In 1999, scattered attempts were made to produce GR [23,24], and, in 2004, Novoselov
et al. [7,25] was credited for the invention of GR. They showed repeatable synthesis of GR
for the first time through exfoliation, and this material came under the class of specialized
nanomaterials. GR, with a zero-band gap, has normally been grouped in the category of
semi-metals with nano/microstructure, and is of extensive use in industry [26,27].

Small samples of GR can be made by a simple and economical method, termed
the ‘adhesive tape method’, during which micromechanical peeling of highly ordered
pyrolytic graphite (HOPG) occurs [8,28,29]. These processes, quite analogous to skin
exfoliators, are useful for obtaining pristine graphene flakes, which can be useful for
research purpose. However, such a technique is time consuming and inappropriate for
large-scale production, and the flake size achieved in the micrometer range [8,30]. Work
has been done on bulk production of GR by epitaxially growing thin graphitic films on
silicon carbide in the temperature range of 1250–1450 ◦C [31,32]. Although this approach
results in high quality graphene film on SiC, it requires high-cost substrate materials and
the presence of an ultrahigh vacuum environment [33,34]. Other synthesis approaches
include the unzipping of carbon nanotubes; solvothermal synthesis (pyrolysis of alcohol
and alkali metal for producing GR sheets [35,36]; electron beam irradiation of poly-methyl
methacrylate nanofibres, chemical vapour decomposition [CVD], organic synthesis and
thermal annealing of GRO etc. [37,38]. Among the various synthesis methods, the CVD
technique, exfoliation methods (liquid phase and electrochemical) and chemical reduction
of GRO are capable of increasing the production of GR [39–42]. GR produced by the CVD
method has been of transparent nature and has a minimum value of sheet resistance. The
synergistic effect of GR composites and chemical modification of GR are capable of solving
various problems related to storage, processing, handling and large-scale production.
Coleman et al. [43] presented a comprehensive review on GR synthesis techniques and
their interrelation with its properties. However, the defects in GR increase the resistance
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and electrochemical and hydrogen storage ability of GR sheets, and it is really a challenge
to manufacture a monolayered GR device using a solution-based method [44].

3. Supercapacitors

Effective utilization of renewable energy is only possible with the development of
high performing, economical and eco-friendly energy storage and conversion systems.
Supercapacitors, also called ultracapacitors, have paved the way to one of the latest and
most important sustainable energy paradigms, and their performance is directly connected
to the properties of their materials. Supercapacitors can be classified in two categories—
electric double layer capacitors (EDLCs) and pseudo-capacitors—which are based on
the mechanism of charge storage. The former stores the charge electro-statistically and
follows the process of reversible adsorption–desorption cycles of electrolyte ions on the
active electrode materials. Electrochemical stability is the prime requirement of the active
materials, and in addition to this, they should have a higher surface area and no Faradaic
reaction should take place in the EDLC electrode. This type of mechanism has its relevance
in carbon-based electrodes. Another type of supercapacitor which under-goes reversible
Faradaic reactions is the pseudo-capacitor, which utilizes reversible and fast surface or near-
surface reactions for charge storage. The range of specific capacity for GR in EDLCs varies
from 62.6 F/g to 215 F/g [45]. Although energy density is higher for EDLC, the stability of
the charge/discharge cycle is comparatively lower in the case of pseudo-capacitors. As the
time taken is higher for the movement of electrons during redox reactions, the response
time is more than that of EDLCs. Energy density, E, is governed by the following equation
and can be optimized by working on cell voltage (V) or/and specific capacitance (C):

E =
1
2

CV2

3.1. Performance of Supercapacitor

The performance of a supercapacitor is dependent on various parameters, namely,
the thickness of the separator, the electrolyte and the electrode characteristics, which in-
cludes mechanical stability, porosity, resistance and volume. GR has been emerging as
latest material for supercapacitor applications because it has better features than traditional
carbon-based materials. More recently, there has been focus on the use of GR as a superca-
pacitor due to its large value of electrical double-layer capacitance (around 100–200 F/g
using aqueous and organic electrolytes). The value of capacitance can be further enhanced
in the range of 200 to 550 F/g through a combination of GR with different pseudocapacitive
materials, e.g., manganese oxide, ruthenium oxide and polyaniline. The Ragone plot in
Figure 2 depicts the energy loss owing to internal dissipation and leakage losses for suffi-
ciently high and low power [46]. An energy density and specific capacitance of 31.9 Wh/kg
and 75 F/g, respectively, were observed with ionic liquid electrolytes for GR based superca-
pacitors [47], while specific capacitances of 99 F/g and 135 F/g were observed in organic
and aqueous electrolytes, respectively [48]. Wang et al. [49] developed supercapacitors with
the use of GR materials and observed that energy and power density were 28.5 Wh/kg
and 10 kW/kg, respectively, with specific capacitance of 205 F/g. Zhao et al. [50] used
mathematical modeling to simulate the approximate capacitance value for a virtual su-
percapacitor cell, which contained carbon nanosheets comprised of 1–7 GR layers as the
electrode material, and found capacitance to be 1.49 × 104 F. Different materials, such as
metallic hydroxides, transition metallic oxides and electronic conductive polymer materials,
have been explored thoroughly for probable asymmetric supercapacitors uses [51]. Among
these, Ni(OH)2, with a high specific capacitance (2082 F/g), can be optimistically used for
supercapacitor applications [52]. Liu et al. [53] presented a supercapacitor with GR-based
electrodes having a specific energy density of 85.6 Wh/kg and 136 Wh/kg at ambient
temperatures and 80 ◦C, respectively. Such an energy density range was close to Ni metal
hydride battery, but the supercapacitor had the quality of being charged or discharged in
seconds or a few minutes. Recently, an asymmetric supercapacitor with GR/RuO2 and
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GR/Ni(OH)2 as its negative and positive electrodes, respectively, was developed, and it
had a specific capacitance of 153 F/g and an energy density of 48 Wh/kg at 1.5 voltage in
an aqueous solution of 1 M KOH [54]. Yan et al. [55] reported an asymmetric supercapacitor
in which porous GR was the cathode and Ni(OH)2 was the anode. Optimization of this
asymmetric supercapacitor could be achieved by cyclically reversing in the voltage range
of 0–1.6 V, and it displayed a fascinating energy density of 77.8 Wh/kg and a maximum
specific capacitance of 218.4 F/g. Choi et al. [56] demonstrated a high-performance super-
capacitor which was built using chemically modified GR in which embossed-chemically
modified GR films were used as 3D macroporous electrodes. Fast ionic transport was facili-
tated within the electrode because of porosity in the GR structure and the large surface area
along with the preservation of good electronic conductivity. Pan et al. [57] used GR–SnO2
and GR–ZnO composite materials for supercapacitor uses. GR–ZnO composites displayed
superior capacitance of 61 F/g and energy density of 4.8 Wh/kg, and this was better
than GR–SnO2 materials. Mini et al. [58] developed and characterized high-performance
supercapacitor electrodes, which were fabricated by electrophoretic deposition of GR, on
which electro polymerization of the poly(pyrrole)-layer (PPy) was carried out. The specific
capacitance of the electrode was observed to be 1510 F/g with area and volume capaci-
tances of 151 mF/cm2 and 151 F/cm3, respectively, at 10 mV/s. Alvi et al. [59] synthesized
GR-poly-ethylene-di-oxthiophene (PEDOT) nanocomposites as electrode material by the
chemical oxidative polymerization process. Investigation into the charging and discharging
properties of GR-PEDOT nanocomposites were done in various electrolytic media, and a
specific discharge capacitance of 374 F/g was observed, which proved the viability of this
material for supercapacitor applications.
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3.2. Electrically Conductive Polymers

Electrically conductive polymers (ECPs) due to their high pseudo-capacitance, are of
tremendous use in supercapacitors. Accordingly, polyaniline (PANI) [48,60], polypyrrole
(PPY) [61] polythiophene (PTH), and their derivatives [62] are various materials which
are used for supercapacitor electrodes. PANI, with its high capacitive features, ease of
operation and low cost, is deemed to be the most-favorable material [63], but its practical
usage is severely restricted due to its poor cycling life and stability issues. Carbon-based
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materials such as mesoporous carbon (MC), activated carbon (AC), and carbon nanotubes
(CNTs) are normally more stable, but they have lower capacitance because of the lower
active surface in the materials [64]. This led to composite materials consisting of conducting
polymers such as PANIs and carbon-based materials such as CNTs being investigated
as supercapacitor electrodes. The synergistic effect of the high pseudo-capacitance of
the PANIs and the excellent mechanical and conducting properties of CNTs enabled the
achievement of high capacitances and improved stability [65]. Zhang et al. [66] fabricated
uniform composites with chemically modified GR and PANI through in situ polymerization
and observed the comparatively lower value of electric double-layer capacitance up to
80 F/g. Investigation has been done to develop synergistic materials consisting of GR
and ECPs with a high pseudocapacitive energy storage, fast ion/electron conductivity
and easily accessible surface area. Wang et al. [67] developed a composite consisting of
GR and PANI which had a specific capacitance from 147 F/g (pure Graphene) to 233 F/g
and with a reasonable stability. Xu et al. [68] worked on a simple technique of preparing
PANI nanowire arrays which were vertically aligned on GRO nanosheets. The specific
capacitance of hierarchical PANI–GRO at a discharge current of 0.2 A/g was 555 F/g
and 227 F/g at 2 A/g. It was worth noting that, even after 2000 consecutive cycles,
hierarchical PANI–GRO and pristine PANI had retained 92% and 74% of their initial
capacitance, respectively. Ramaprabhu et al. [69] also worked on GR decoration with
various metallic oxides (RuO2, TiO2, and Fe3O4) and PANI through a chemical technique.
Cyclic voltammetry at different sweep rates in 1 m H2SO4 showed that RuO2/GR composite
materials possessed a high value of specific capacitance of 220 F/g at 10 A/g in comparison
to composites of other metal oxides, namely TiO2 and Fe3O4. This can be explained by better
electrical conductivity and the reversible nature of Faradic reactions of RuO2. Wu et al. [70]
developed hydrous ruthenium oxide (RuO2)/GR sheet composites (ROGSCs) with various
loadings of Ru by combining sol-gel and low-temperature annealing processes. Such
proposed composite-based supercapacitors exhibited high electrochemical stability (∼97.9%
retention after 1000 cycles), increased rate capability, specific capacitance (∼570 F/g) for
38.3 wt% Ru loading and excellent energy density (20.1 Wh/kg) at low operation rates
(100 mA/g). Yan et al. [71] investigated a supercapacitor made up of composite consisting
of Fe3O4 and reduced graphene oxide (r-GRO) and had specific capacitance of 480 F/g at
a discharge current density of 5 A/g; the corresponding power and energy density were
5.5 kW/kg and 67 Wh/kg respectively. Qu et al. [72] prepared two-dimensional sandwich-
like sheets in which iron oxide was grown on a GR surface as high energy anode material
for supercapacitors from the direct growth of FeOOH nanorods on a GR surface, which
was further converted from FeOOH to Fe3O4. Such composites exhibited high capacitance
(326 F/g), excellent energy density (85 Wh/kg), high-power, and good cycling performance
in 1 mol/L LiOH solution. Li et al. [73] found that CeO2-GR nanosheet composites, had
higher specific capacitance of 208 F/g. This can be explained because of synergistic effect
which contributed to the improved electronic conductivity of CeO2 and also to the better
utilization of GR. Yoo et al. [74] fabricated the electrode and designed a 2D plane utilizing
the high surface area of GR. Synthesis of r-GRO CVD film was done, which was tested in
solid electrolyte, polymer-gel (PVA-H3PO4). This electrode had excellent cycle stability
up to 3000 charge/discharge cycles and presented specific capacitance around 250 F/g.
A nitrogen plasma treatment process was used to prepare nitrogen-doped graphene (N-
graphene), which had better capability as an electrode than pure GR. Jeong et al. [75] used
the nitrogen plasma process for doping nitrogen into the GR basal planes. The electrode
reported a specific capacitance of 282 F/g, which was nearly four times the capacitance of
pristine graphene (68 F/g). Basal plane of GR was modified by replacing carbon atoms with
nitrogen atoms, and this N-graphene-based super capacitor was capable of working up to
100,000 cycles with 99.8% of capacitance. Energy and power densities have been achieved
up to ~48 Wh/kg and ~8 × 102 kW/kg, respectively, in 1 M tetra ethyl ammonium tetra
fluoroborate (TEA BF4). Qiu et al. [76] reduced the GRO with hydrazine, and subsequently
annealing was performed in ammonia atmosphere to produce N-graphene. A maximum



Materials 2022, 15, 6241 7 of 50

capacitance value of 144.9 F/g at a current density of 0.5 A/g was noticed for N-graphene
in traditional organic solvent-based electrolyte. Lee et al. [77] prepared N-doped GR via
exfoliated graphite oxide which was found to exhibit significantly high oxygen reduction
activity. High electrical conductivity and surface area, a large number of edge sites and
a pyridinic N site in rGS contributed to oxygen reduction reaction activity. Sun et al. [78]
synthesized N-doped GR sheets with nitrogen levels as high as 10.13 atom% via a simple
hydrothermal reaction of GRO and urea for high performance supercapacitors. Such sheets
exhibited high capacitive behaviors (326 F/g, 0.2 A/g), excellent cycling stability and
coulombic efficiency (99.58%) after 2000 cycles. Wen et al. [79] developed a reliable route
for preparing highly crumpled N-doped GR nanosheets with ultrahigh pore volume. These
nanosheets were found to act as a promising electrode material for supercapacitors with
excellent rate capability and high capacity with long-term stability.

Given the electrochemically instable nature of GRO, composites consisting of GRO-
PANI are unable to advance beyond the maximum potential of GRO, which is suitable for
applications in supercapacitor electrodes. Only a limited quantity of GRO-PANI insulation
has been utilized in these composites, because an excess amount of GRO will decrease
electrode conductivity [67]. Thus, graphene nanosheets (GNS) have been found to be
more favorable than GRO for doping into PANI composites. Zhang et al. [66] fabricated
nanofiber composites consisting of GR and PANI through an in situ polymerization in the
presence of GRO under acidic conditions, and then hydrazine was used for reducing GRO
to graphene. Further, reoxidation and reprotonation were carried out for producing GR-
PANI composites. The highest specific capacitance, 480 F/g, was observed for composites
containing 80 wt% of GRO at a current density of 0.1 A/g. Even with a current density
of 1 A/g, a value of specific capacitance above 200 F/g was achieved. Despite the good
cycling stability of the GR-PANI composite, the performance in terms of capacitance was
not satisfactory. Thus, Wang et al. [80] innovated a new three-step synthesis technique
based on in situ polymerization followed by a reduction–dedoping and then redoping
process for preparing a GR-PANI-based electrode for supercapacitors. It had been observed
that the rGR sheets were completely and effectively covered by nanostructured PANI
granules. It was found that perfect coverage of PANI on GR takes full advantage of the
large specific area of GR and could be advantageous for enhancing the electrochemical
properties. Such supercapacitors provided specific capacitance of 1126 F/g with a retention
life of 84 percent after 1000 cycles. A change to GR from GRO lead to improvement in the
mechanical characteristics and caused a higher retention life for GR-PANI composites and
higher power and energy density values of 136 kW/kg and 34.8 W h/kg were achieved.
Further, Yan et al. [81] carried out synthesis of a GR-PANI composite by providing active
sites for the nucleation of PANI and for excellent electron transfer. Synergy of PANI and
GR was achieved, as GR sheets provided highly conductive support materials and their
larger surface area was well suited for the deposition of nanoscale PANI particles. This
resulted in an increase in the maximum specific capacitance of 1046 F/g at a scan rate of
1 mV/s for GNS–PANI composite.

3.3. Portable Electronic Devices

Various portable electronic devices deploy flexible supercapacitors for multifarious
applications. Wang et al. [82] attempted to develop a GR–PANI composite paper as a
flexible electrode by blending the merits of PANI conducting polymer (large capacitance)
and of GR paper (mechanical strength, high conductivity and flexibility). There were
several important features of this flexible graphene–PANI composite electrode, such as
uniform ion accessibility, better electrical conductivity in PANI because of GR paper, and
the presence of a triple super-capacitive storage mechanism. Due to these factors, a high
tensile strength of 12.6 MPa and a large, stable electrochemical capacitance of 135 F/cm3

and 233 F/g for volumetric and gravimetric capacitances, respectively, was shown by
GR-PANI electrode. Wang et al. [80] synthesized a flexible GR/PANI hybrid material as
a supercapacitor electrode through an in situ polymerization–reduction and dedoping–
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redoping process. This product was first prepared in an (CH2OH)2 medium, then treated
with hot NaOH solution to obtain the reduced GRO oxide/PANI hybrid material. The
characterized results proved better electrochemical properties in comparison to the pure
individual components with a specific capacitance of 1126 F/g and a retention life of 84%
after 1000 cycles.

3.4. Hybrid Supercapacitors

Lithium-ion hybrid supercapacitors (LiHSs), or alternatively named Li-ion capacitors
(LICs), are made with a capacitor-type electrode and a lithium-ion-battery-type electrode by
using a Li-salt-containing electrolyte [83]. The most commonly used electrode materials in
LIHS systems include metal oxides, carbonaceous materials, hydroxides, and intercalation
compounds. The real issue in the fabrication of high-performance LIHSs is providing the
proper combination of negative and positive electrode materials in the devices. In various
aqueous LIHS systems, activated carbon (AC) has been used as a negative electrode with
different metal oxides electrodes, such as MnO2 [84], NiO [85], Fe3O4 [86] and V2O5 [87].
Out of these, MnO2 has been studied by various researchers due to its several advantages
of low cost, high specific capacity (1370 F/g), non-toxicity, natural abundance and ease of
preparation [88]. Yuan et al. [84] manufactured nano needles (20–100 nm) of a MnO2/carbon
composite through a process of solid-state grinding. These composites were used as
positive-electrode material and this hybrid supercapacitor (Figure 3) reported the highest
energy density of 50 Wh/kg for an aqueous system. However, an energy density of
15–30 Wh/kg was found for other metal oxide-based hybrid supercapacitor aqueous
systems. Yu et al. [89] utilized a conductive wrapping technique that substantially increased
the supercapacitor performance of GR/MnO2 nanostructures with carbon nanotubes or
conducting polymer by ∼20% and ∼45%, respectively, and a high specific capacitance
of ∼380 F/g was achieved. However, these values for supercapacitors were less than
those of lithium-ion batteries, which restricted their use to high-power applications such as
portable power tools and hybrid vehicles. There a new supercapacitor has been developed
at Nanotek Instruments, and it has been claimed that it is capable of storing as much
energy per unit mass as nickel metal hydride batteries and can be recharged in seconds [90].
The GR-based super capacitor has been fabricated by mixing GR with an acetylene black
called Super P. It is claimed that the battery has an energy density of 85.6 Wh/kg and
136 Wh/kg at room temperature and at 80 ◦C, respectively, and is close to Ni-metal hydride
batteries. GR has shown fantastic electric properties for use as a supercapacitor, and further,
the synergistic effect of GR with materials such as conducting polymer, metal oxide and
activated carbon can be explored for fabricating supercapacitors and different green energy
devices [91]. The need of the hour is optimum utilization of the intrinsic properties of GR,
such as its excellent conductivity, large surface area and synergy with different materials
for developing energy storage devices. Table 2 shows the use of GR-based materials for
capacitor applications.
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Table 2. Summary of GR based materials for capacitor applications.

Materials Process/Electrolyte Power Density
(kW kg−1)

Energy Density
(W h kg−1)

Specific
Capacitance

(Fg−1)
Ref.

r-GRO Reduced GR and convection
dry 9.8 85.6 250 [53]

PPy-GR Electric deposition on GRO 3 5.7 1510 [58]
PANI-GR In situ polymerization 0.14 37.9 1126 [80]
PEDOT-GR Oxidative polymerization 0.038 12 304 [59]
MnO2-exfolitated
graphite Dip and dry deposition 110 12.5 315 [89]

RuO2-GR Sol-gel treatment with RuO2
and GRO 0.05 20.1 570 [70]

Fe3O4-GR Crystallization of metal oxide
with r-GRO 2.4 85 326 [72]

N-doped GR N2 plasma 800 48 282 [75]
N-doped GR Et4NBF4/PC (2 at% N) 1 76.7 138.1 [77]
N-doped GR KOH (10.1 at% N) 7.98 25 326 [78]
N-doped GR Bu4NBF4 (10 wt% N) - - 248.4 [79]

PANI-GR
in situ
polymerization/reduction–
dedoping/redoping

136 34.8 1126 [80]

4. Batteries

Researchers have attempted to develop electrode materials and transparent conductors
for rechargeable lithium-ion batteries by combining GR and CNTs [93,94]. The presence of
CNTs is capable of bridging the defects of electron transfer and also increases basal spacing
between GR sheets, which causes substantial property enhancement. Ragone plot clearly
shows the dilemma in the selection of power and energy density as depicted in Figure 4.
Supercapacitors having high power density are capable of releasing energy in short interval
of time but have low energy density. While batteries are proficient in storing high quantities
of energy, quick release of energy is impossible due to lower power density, and this is
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the major challenge for current batteries. There is a dire need of batteries which have high
energy and power densities for use in modern smart devices and hybrid vehicles. GR is one
of the rare materials which is capable of providing a blend of battery and supercapacitor
properties [95].
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4.1. Li-ion Battery

Lithium-ion-based batteries (LIB) were presented to the market by Sony in 1991 due to
research conducted by Mizushima et al. [96], and this has been the most widespread battery
technology. Such batteries are the core element of all hand-held devices because of their
clean and renewable nature [97]. Generally, graphite is used as the anode material in Li-ion
batteries due to its better capacity, higher energy density and increased durability [37]. It is
an established fact that graphitic carbon can make LiC6 structures, and the low density of
lithium in graphite causes relatively low specific capacity in graphite (372 mAh/g) [98].
This can be increased to 744 mAh/g by storing Li on both sides of the GR sheet, which
creates LiC3 structures [99]. Graphite-based electrodes face disadvantages due to the large
lateral size of graphite and due to the long diffusion pathways of lithium into the material.
This problem can be reduced by minimizing the lateral (x–y axes) dimension, so that Li+

can diffuse into the interlayer space with ease and higher reversibility [100]. The high
chemical diffusivity of Li, which is in the range of ∼10−7–10−6 cm2/s, on a GR plane is
useful in high-power applications.

4.1.1. Optimization

In addition to the optimization of battery structure and package materials, there is
a need to develop high energy density cathodes and anodes. A GR-based anode has
come out as a favourable alternative among carbonaceous materials in Li-ion batteries
due to higher surface area and better electrical conductivity and chemical tolerance than
graphitic carbon [42,101]. Different materials like Sn, Si and transition metal oxides, etc.,
have been explored as anode materials, and it was found that Si and Li ions can form Li4.4Si.
This compound has a charge capacity value up to 4200 mAh/g with a small discharge
voltage, but the charge volume effect is its main limitation. Silicon and lithium form
Li3.75Si during the discharge process, which results in 270% increase in Si volume, but
also in poor circulation stability [102]. The high capacity of Si anodes in the range of
1 × 103 to 4× 103 mAh/g makes them quite an attractive proposition [103], but their actual
performance is much lower than expected due to fast capacity fading even at low current
rates. Likewise, Sn and its oxides, such as SnO2, have been studied as anode materials for
lithium-ion battery by different researchers. Paek et al. [104] formulated GR nanosheets,
which were decked with SnO2 nanoparticles by dispersion of reduced GR nanosheets in
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the ethylene glycol and were reassembled in the presence of SnO2 nanoparticles. GR/SnO2
had a reversible capacity of 810 mAh/g, and there was significant improvement in the
cycling performance in comparison to bare SnO2 nanoparticle. However, its real-time use
is constrained by a defect, as chemical reduction causes electronic barriers to Li+ repulsion,
and there are high-volume changes due to lithiation and delithiation reactions [105]. Zhang
et al. [106] prepared a three-dimensional composite material consisting of GR and SnO2
which had comparatively higher loading of SnO2 (89.51 wt%). This composite had high
cycling stability with a good reversible specific capacity. There was 97% and 95% capacity
retention of 1096 mA h/g and 1073 mAh/g after 150 and 500 cycles, respectively, at a
current density of 1 A/g.

4.1.2. Capacity

Despite having a high theoretical capacity of Co3O4 which is nearly 890 mAh/g,
substantial volume expansion is caused by charging and discharging. GR can be used to
improve the Co3O4 electrochemical properties [107,108]. Mn3O4 with a 936 mAh/g theoret-
ical capacity has the disadvantage of lower electrical conductivity (about 10−7–10−8 S/cm),
and this causes the doping with Co to reach up to a maximum value of 400 mAh/g [109].
CuO has higher catalytic activity and low band gap energy, but in applications as an anode
material, it has lower conductive performance and a substantial volume expansion effect.
Such limitations can be overcome by developing CuOGR composites [110]. Fe3O4/GR
composites were found to have superb high-rate performance, but not when fabricated
by the gas–liquid interface method [111]. Guo et al. [112] introduced a flexible integrated
electrode based on layer-by-layer packed GR sheets entrapped by SnO2-Co3O4 nanocubes.
The obtained electrode showed excellent reversible capacity of 1665 mA h/g after 100 cy-
cles at 100 mA/g. Wang et al. [113] developed an Fe2O3/GR composite material using a
hydrothermal method, in which inclusion of GR hindered Fe2O3 from aggregation and
also buffered material’s volume expansion. TiO2 with GR has the benefit that the oxygen-
containing groups on the GR sheets can be reduced after heat treatment [114]. Wang
et al. [115] demonstrated a self-assembled TiO2-GR hybrid nanostructure for enhancing the
high-rate performance of electro-chemically active materials. Liu et al. [116] developed a
cathode by embedding the GR sheet approximately 4 ≈ 10 layers thick within vanadium
pentoxide. This material exhibited excellent electrochemical performance with higher ca-
pacity and longer cycling life. He et al. [117] prepared 3D hierarchically structured aerogels
constructed with ultrathin layered nano MoS2/GR sheets using a one-pot hydrothermal
method for highly efficient lightweight LIBs. The obtained 3D MoS2/GR aerogel anode
exhibited a capacity of ∼870 mAh/g at 1 A/g after 200 cycles. Ren et al. [118] fabricated
an SnS2 nanoflake-anchored 3D-GR foam as a flexible Li-ion battery anode using a single-
mode microwave hydrothermal method. This exhibited a high reversible specific capacity
of 1386.7 mAh/g at 0.1 A/g and a long cycling life with a high capacity of 818.4 mAh/g
after 500 cycles at 1 A/g. Chen and Wang [119] fabricated nano GR sheets-wrapped SnCo
alloy nanoparticles as an anode material for Li-ion batteries using a chemical reduction
approach in an ice water bath. It demonstrated a distinguished higher-than-theoretical
capacity of 1117 mAh/g at 72 mA/g, higher than bare nano GR sheets (727 mAh/g) or
Sn-Co particles (599 mAh/g). Improvement in cycling performance was achieved due to
the complimentary effect of these elements.

4.1.3. Terminals

In comparison to high energy density anodes, cathodes normally have lower energy
densities because of their reduced capacity and low voltage plateaus, for example, LiFePO4
cathodes. However, recently, GR has been used as an electron-conducting supplement
for LIB cathode materials, which is an innovation in energy storage applications [120].
Until now, the use of LIB was limited to different electronic products, but now their use
is extended to the domain of electric vehicles. However, there is still a question mark in
regard to using this technology to meet customers’ expectations, as a lot of improvement is
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required in the areas of rate capability, charge capacity and cyclability of LIBs. Kucinskis
et al. [120] examined the scope of implementation of GR into lithium-ion battery cathodes
for fulfilling such requirements. LiCoO2, LiMn2O4 and LiFePO4 have normally been the
electrode materials used in LIBs. Li3V2(PO4) is another material which can be explored for
use in cathodes, and all of these materials weaken the cathode rate capability. Their electro-
chemical properties can be improved by the addition of electron-conducting additives. Cu
and Li [121] fabricated nano GR sheets and carbon nanotube co-modified Li3V2(PO4)/C
composites using a hydrothermal-assisted sol-gel technique. This composite exhibited
longer cycle stability and higher rate capability, which had a primary discharge capacity of
147.5 mA h/g at 20 C in the voltage range of 3 to 4.8 volts with 82.7% capacity retention
after 2000 cycles. Further, Jeong et al. [122] presented a Li4Ti5O12/N-doped r-GRO compos-
ite using dual functional N-doping source for improving the performance rate of Li-ion
batteries. The Li4Ti5O12/N-doped r-GRO composite demonstrated good electrochemical
performance, cycle stability and specific capacity with a low resistance of 48.4 Ω.

4.1.4. Advancements

Presently, no published studies are available on LiCoO2/GR composites. LiFePO4,
a material having an olivine-type structure with superior cyclability and low manufac-
turing cost, can be considered an upcoming commercial cathode material [123,124]. This
has already been implemented in certain batteries which are used in the automobile sec-
tor. [125]. The conductivity of lithium ions as well as electrons is low in LiFePO4, and
efforts are being made for the improvement of its rate capability through the addition of
electrically conductive materials and the modification of grain size and shape [126,127].
Yang et al. [128] fabricated a 3D porous self-assembled LiFePO4/GR composite with the use
of a simple template-free sol-gel technique. Electrical conductivity was highly increased
by the incorporation of GR nanosheets in a porous hierarchical network and efficient
use of the LiFePO4. The obtained composite has a reversible capacity of 146 mAh/g
at 17 mA/g after 100 cycles, which is more than 1.4 times higher than that of porous
LiFePO4 (104 mAh/g). Dhindsa et al. [129] also synthesized LiFePO4/GR in the presence
of dispersed GRO mixed with LiFePO4 precursors and found a six-times increase in the
electrical conductivity of the composite as compared to pure LiFePO4 synthesized follow-
ing otherwise the same procedure without the addition of GR. Moreover, LiFePO4/GR
composite exhibited high-rate capability up to 27 C and superb charge–discharge cycle
stability for 500 stable cycles as compared to pure. Tao et al. [130] synthesized a new olivine
LiFePO4/r-GRO nanocomposite using a solvothermal method. The experimental findings
of LiFePO4/r-GRO showed their outstanding electrochemical performance with higher
rate capability and better cyclability in contrast to traditional LiFePO4/C nanocomposites.
There was a negligible drop in capacity after 200 cycles at a current of 10 C, and a discharge
capacity of 119 mAh/g could be delivered at 20 C, pointing out that the electronic con-
ductivity of electrode particles also contributed to achieve a high-rate performance. Zhou
et al. [131] also used the same process coupled with subsequent calcination to synthesise a
3D porous composite microsphere of LiFePO4 and N-doped GR. Excellent values of cycle
stability, specific charge capacity and rate capability were the basis for the selection of this
material in Li-ion batteries. Du et al. [132] developed a LiFePO4/GR nano composite using
a one-pot in situ hydrothermal method. Measurements showed the discharge capacity of
115 mA/g at 10 C. Phosphate-based Li3V2(PO4)3 material is also being studied for using
as a cathode in Li- ion batteries. In contrast to LiFePO4, this material has a monoclinic
structure and has high rate capability with a higher operating voltage, both of which are
beneficial when using it as a cathode material [133]. LiMn2O4 forms a spinel structure,
with lithium placed at tetrahedral sites and manganese occupying octahedral sites [134].
Production cost is comparatively on the lower side, but it has less charge capacity in com-
parison to commonly used cathode materials [135]. Dissolution of Mn2+ into electrolyte can
create problem, so electrochemical performance can be improved by the addition of other
transition metals (most often Ni, Fe and Co) to LiMn2O4. Jiang et al. [136] used nano GR
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sheets as a planar conductive additive in spinel LiMn2O4-based electrodes for increasing
the electronic conductivity of LiMn2O4. The specific capacity and cycling performance of
LiMn2O4 were increased when nano GR sheets and acetylene black were present together
at an appropriate weight ratio in the LiMn2O4-based electrode. Moreover, in contrast, when
nano GR sheets were present in large quantity, there was no improvement or decrease to the
rate performance and conductivity of LiMn2O4. Bak et al. [137] developed a LiMn2O4/GR
(27 wt%) cathode material which was nanocrystalline and had superb discharge capacity
and high rate capability. Moreover, it had a 90% and 96% discharge capacity at 1 C and
10 C, respectively, for 100 cycles. It was claimed that the material had superb electrochem-
ical properties to be connected with a good dispersion of the reduced GRO nano sheet
template. Pyun and Park [138] fabricated the composites of LiMn2O4 nanoparticles in a
GR matrix to compensate for the low electronic conductivity of the LiMn2O4 cathode. The
GR/LiMn2O4 electrode showed increased discharge capacity and rate capability over a
pristine LiMn2O4 electrode. This may be attributed to the higher surface area of LiMn2O4
nanoparticles and superior electronic conductivity with the presence of GR. The composites
of LiMn2O4 nanoparticles with GR were also effective in stabilizing the cyclic performance
of the LiMn2O4 nanoparticle cathode. Wang et al. [139] prepared LiMn1-xFexPO4 nanorods
on reduced GRO sheets, finding that LiMn0.75Fe0.25PO4 (x = 0.25) had good discharge
capacity even at a higher discharge of 100 C. It was demonstrated in experiments that
slightly oxidized GR sheets showed a unique substrate for the growth of nanocrystals into
well-defined morphologies. It has been found that the blend of nanoparticles, doping and
improved GRO preparation have provided excellent rate capability, which is difficult to
achieve with other techniques [140,141], and a discharge rate of 65 mAh/g was obtained at
100 C. Zhu et al. [142] fabricated and tested 3D macroporous GR-based Li2FeSiO4 compos-
ites as the cathode materials for Li-ion batteries. Their performance was compared with
the performances of 2D nano GR sheet-based Li2FeSiO4 composites and Li2FeSiO4 com-
posites without GR. When compared with the 2D-Li2FeSiO4 composites, 3D macroporous
GR-based Li2FeSiO4 composites exhibited better performances, with discharge capacities
reaching 313 mAh/g at 0.1 C and 108 mAh/g at 20 C. Three-dimensional macroporous
GR provided higher surface area than 2D GR sheets for Li2FeSiO4 and also allowed the
electrolyte ions to diffuse inside and through the structure of the cathode material.

The application of GR as an electrode material is still in the nascent stage, and further
research must be carried out in order to understand the electrochemical processes of GR-
based electrodes, and their application aspect in Li-ion batteries must be explored. Table 3
depicts a summary of GR-based cathode and anode materials in LIBs.
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Table 3. Application of GR based electrode materials for LIBs.

Material Type Capacity
(mAh/g)

Cycling
Condition Ref.

3D GR integrated
LiFePO4

Cathode 146 17 mA/g [128]

LiFePO4/3D GR
Composite Cathode 160 C/3 [129]

LiFePO4@C/r-GRO Cathode 119 20 C [130]
Free-standing 3D
GR/LiFePO4

Cathode 115 10 C [132]

N-doped GR/LiFePO4 Cathode 78 100 C [131]
GR/LiMn2O4 Cathode 113 0.5 C [136]
GR/LiMn2O4
Nanoparticles Cathode 140 70 mA/g [138]

3D macroporous
GR-based Li2FeSiO4

Cathode 313 0.1 C [142]

GR and carbon
nanotube co-modified
Li3V2(PO4)3/C

Cathode 147.5 20 C [121]

GR@Si@GR 3D
sandwich structure Anode 2515 0.4 C [116]

3D GR/SnO2 Anode 1096 1 A/g [106]
Li4Ti5O12/N-reduced
graphene oxide Anode 117.8 30 C [122]

Graphene/SnO2-Co3O4
Nanocubes Anode 1665 100 mA/g [112]

MoS2/graphene Anode 870 1 A/g [117]
3D graphene/SnS2 Anode 1386.7 100 mA/g [118]
3D graphene/SnCo
Nanoparticles Anode 1117 72 mA/g [119]

4.2. Sodium and Calcium Ion Battery

Rechargeable LIBs are the backbone of portable electronic devices and are also com-
monly used in small vehicles and different power devices. These batteries exhibit excellent
performance and have higher energy density in comparison to other rechargeable batter-
ies [143]. The main concern is that lithium is a rare element among light metals, and its
concentration is approximately 35 ppm in the upper continental crust [144]. For this reason,
available resources of Li on Earth cannot fulfil the ever-growing demand of LIBs, and other
alternatives have to be explored. This has led to research on sodium-ion batteries (NIBs)
and calcium-ion batteries (CIBs) [145,146]. Recent density functional theory (DFT) studies
anticipated that the presence of defects would increase Li adsorption on GR, which would
yield higher gravimetric capacity [147]. The influence of defects in GR on the adsorption
of Na and Ca still needs to be investigated. Datta et al. [148] worked in this direction and
performed first-principles calculations based on DFT for investigating the Na and Ca ad-
sorption on GR with different percentages of Stone-Wales (SW) and divacancy defects. The
reported merits of NIBs and CIBs included natural abundance, economical, low reduction
potential, chemical safety and lower mass-to-charge ratio. Moreover, nature does not store
energy with Li ions, but rather with Na and Ca ions [149]. Table 4 shows the quantum of
the charge transfer for different positions.

Table 4. Charge transfer for Na/Ca to graphene [148].

Ion Divacancy Pristine Stone-Wales

Na+ 0.8848 e 0.6617 e 0.8073 e
Ca2+ 1.3727 e 0.8208 e 1.1189 e
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4.2.1. Background

One newly founded company named ‘Aquion energy’, based in Pennsylvania in
2014, had commercially available NIBs (using a manganese oxide–spinel structure host as
the cathode and NaTi2 (PO4)3/activated carbon as the anode) with a cost/kWh capacity
comparable to that of Ni-Fe batteries which could be used as a backup power source in
electricity micro-grids and which operate independently of the centralized grid. Another
UK-based company, ‘Faradion’, claimed that they had already developed different NIB
materials with greater energy densities than the common Li-ion material (i.e., LiFePO4),
and this dispelled the doubt that sodium-ion materials are not able to attain high energy
densities. OXIS energy, based on the Culham Science Centre (Abingdon, UK) in Oxfordshire,
offered a good energy density of 300 Wh/kg of NIBs in 2014. Yabuuchi et al. [150] presented
a comprehensive review on the energy density of NIBs. Ding et al. [151] carefully designed
a 3D macroporous network of carbon nanosheets with a very broad GR interfloor distance
(0.388 nm) which was able to facilitate high-quality Na intercalation even below 0.2 V vs.
Na/Na+. Wang et al. [152] showed that a dual-GR rechargeable Na battery manufactured
with the use of exfoliated GR as both the negative and positive electrodes provides the
maximum operating voltage among all Na ion full cells reported to date, along with the
highest energy density at 250 Wh/kg. Wu et al. [153] disclosed that GR coated with
antimony sulphide, which was manufactured using a solution-based synthesis method,
can be used as an anode material for NIBs. Excellent cycle performance and a superb
rate capacity of 730 mAh/g was achieved by this technique. Excellent performance was
achieved due to fast diffusion of Na ions from the nanoparticles and electrical transport
from the close contact between the active material and GR.

Phosphorous element (P) is perceived as an excellent anode material for NIBs because
of its exceptionally high theoretical capacity of 2596 mAh/g. However, the low conductivity
of phosphorous and fast structural degradation, which is caused by extraordinary volume
expansion (>490%) during cycling, are the major drawbacks. Zhang et al. [154] developed
a new design for anode structure with a new technique to manufacture flexible paper
composed of nitrogen-doped GR and amorphous phosphorus, which was capable of
resolving this problem. Doborta et al. [155] performed a DFT study on Na interaction
with doped GR, both in non-oxidized and oxidized forms. It has been suggested that the
oxidation level of doped graphene-based materials should be carefully controlled during
its use as sodium battery electrode material, as the optimal oxidation level depends on
the dopant type. GR-based electrodes, because of their highly anisotropic morphology,
develop a compact uniaxially oriented stacked structure. Yun et al. [156] demonstrated that
the self-standing electrodes formed of crumpled GR nanosheets are capable of substantially
increasing the power capability of GR-based anodes in NIBs. Such electrodes are capable
of delivering a power density of nearly 20,000 W kg−1, which is higher than the Li storage
capacity of conventional GR paper electrodes. A phosphorene-GR hybrid material to be
used as a high-capacity anode for Na-ion batteries had been presented by Sun et al. [157]
which showed a specific capacity of 2440 mAh/g at a current density of 0.05 A/g and
an 83% capacity retention after 100 cycles. Xu et al. [158] fabricated three-dimensional
N-doped GR foams to act as an anode for substantially increasing the overall performance
of NIBs. It has been found that the prepared foams produced a large initial reversible
capacity of 852.6 mAh/g at a current density of 500 mA/g; however, after 150 cycles,
the foam was able to achieve a charge capacity of 594 mAh/g, retaining 69.7% of the
initial charge capacity, and this performance was better in comparison to that of other
carbonaceous materials. Xie et al. [159] conducted comparative analysis of SnO2/N-doped
GR nanohybrids and SnO2/GR as anode materials for NIBs. The findings manifested
that the N-doping caused improved electron transfer efficiency of SnO2/N-doped GR as
compared to SnO2/GR counterpart. Qu et al. [160] fabricated a SnS2-r-GRO composite
with superb electrochemical performance for anode of NIBs. Such electrode showed high
rate performance of 544 mAh/g at 2 A/g, a high charge-specific capacity of 630 mAh/g
at 0.2 A/g and a long cycle-life of 500 mAh/g at 1 A/g for 400 cycles. This may be due



Materials 2022, 15, 6241 16 of 50

to the fact that the higher interlayer spacing in the SnS2 layered structure is capable of
accommodating volume change in Na-Sn insertion and de-insertions.

4.2.2. Performance Characteristics

Performance characteristics of batteries, such as their specific capacity and operating
voltages, are highly dependent on the electrochemical properties of the electrode mate-
rials [146], and therefore, proper selection of the electrode materials for NIB and CIB
technologies is a major task. This can be accomplished by investigating the chemistry
and structure of electrode materials, which perform well for Li intercalation. Graphite
has been well-accepted as an anode material in LIBs, but the lower value of gravimetric
capacity even in NIB and CIB requires other materials to be thought of. Medeiros et al. [161]
and Stournara et al. [162] observed that materials like GR and graphene oxide can make
suitable replacements for graphite in LIBs. Liu et al. [163] noticed that poor binding of
magnesium and sodium on GR layers can be due to the comparative quantities of ionization
energy of the metal atoms and coupling between GR and the metal cations. Therefore, two
probable methods for the electrode design of NIBs and CIBs based on layers of carbona-
ceous materials are, first, to choose materials which bond strongly to metals and second,
to choose materials that have more inter-layer spacing than graphite. Niaei et al. [164]
addressed the issue of weak binding and applied density functional theory to demonstrate
the effectiveness of hydrogenation for both calcium and sodium ion batteries. It has been
observed that hydrogenated defective GR can be used as an anode material for improving
the performance of rechargeable batteries in comparison to GR, using metals that are lower
in cost than Li. Further, Niaei et al. [165] used computational methods to demonstrate that
GR nanoribbons bind Ca and Na with higher strength than GR sheets. Further increase
in binding strength was carried out by functionalizing the edge of the nanoribbon with
oxygen-containing groups. David et al. [166] examined the synthesis along with mechani-
cal and electrochemical performance of layered free-standing papers fabricated of r-GRO
flakes and acid-exfoliated few-layer MoS2 for using as electrode in NIBs. This electrode
indicated excellent Na cycling ability and charge capacity of 230 mAh/g. NIBs and CIBs
are capable of being explored as batteries for energy storage and hybrid vehicles, where
the prime requirements are excellent power and low-cost, respectively. If such batteries
have a high cycle life and are safe in operation, then both sodium and calcium ion batteries
occupy an important place in the rechargeable battery market share along with high-energy
lithium systems.

5. Fuel Cells

The design and development of proficient energy storage and conversion devices is
mandatory for exploring the use of renewable energy sources in an effective manner at all
levels. These systems need to be low cost, high performing and environmentally friendly,
and efforts are being made all across the globe to accomplish these goals [167,168]. Fuel
cells have been considered the most reliable energy storage and conversion electrochemical
system since their development way back in 1893. But major thrust was received in the
1980s, when importance was given to fuel cells for their applications in producing electricity
and heat without producing any toxic or pollutant by-products [169].

5.1. Design and Development

The basic design of fuel cell systems consists of hydrogen and oxygen, and these are
divided by proton exchange membrane. This proton conductor membrane in fuel cells
must exhibit excellent proton conductivity, hydrolytic and thermal stability, chemical and
electrochemical stability. In addition to this, it must be low in cost, should have excellent
mechanical strength, excellent water uptakes, low permeability to reactant species, good
chemical properties and must be suitable for wide variety of fuels. Basically, the membrane
performs two important functions in a fuel cell: first of all, it performs the function of
electrolyte between the anode and cathode for ionic conduction, and second, it works as
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a separator that keeps the two reactant gases apart [170]. Rapid progress in membrane
technology has a direct outcome on fuel cell performance. Advancement in material
technology has a direct linkage with membrane performance and innovation in excellent
energy storage and conversion devices. There are a few types of membranes available in
the market, such as Nafion (DuPont de Nemours, Wilmington, DE, USA), perflourinated
ionomer (PFI) membranes and Dow membranes (Dow Chemical, Midland, MI, USA).
Nafion is lower in cost than Dow membranes but is low performing [171]. Cao et al. [172]
presented a new approach for preparing polyethylene oxide (PEO)/GRO composite-based
membrane without any chemical modification for low temperature polymer electrolyte
membrane fuel cells. PEO/GRO composite membrane had a tensile strength of 52.22 MPa
and Young’s modulus 3.21 GPa. There was an increase in ionic conductivity from 0.086 to
0.134 S cm−1 with an increase in temperature from 25 ◦C to 60 ◦C for this membrane. Lee
et al. [173] obtained Pt nanoparticles via in situ Pt nanoparticle deposition onto GRO using
a microwave method, finally resulting in Pt-graphene (Pt-GR). There was a significant
increase in cell performance when membrane electrode assemblies were fabricated with
the Nafion/GRO. However, there was not sufficient enhancement in cell performance at
some values of relative humidity due to the low water retention ability of GR. Different
Nafion/xPt–G/ySiO2 composite membranes (x values: 0.5, 1.5 and 3.0 wt% and y values:
0, 1.5 and 3.0 wt%, respectively), were manufactured for which water uptake and proton
conductivity depicted the same behaviours [174]. It was found that for less than 1.5 wt%
in Pt-GR content, there was an increase in cell performance with SiO2 due to the good
retention ability of SiO2 for water produced from the Pt site on GR. However, there was
a decrease in cell performance upon increasing Pt-GR content above 1.5 wt%, which was
attributed to blocking the impact of proton conduction because of excessive inorganic
filler and electron loss through the Pt network. Yang et al. [175] successfully fabricated
various Nafion/xPt–TiO2/(1 − x) GRO composite membranes. Proton conductivity and
ion exchange capacity were found to be improved up to a certain content of GRO, and
excessive concentration caused blocking effect and reduced performance. The experimental
findings indicated that there was appreciable in-cell performance due to synergistic action
caused by the addition of certain amounts of Pt–TiO2 and GRO to Nafion. Lee et al. [176]
enhanced the moisture retention and proton conductivity by incorporating a combination
of constituent materials into SPEEK membranes in order to prepare new, self-humidifying
composite membranes (SHMs) for proton exchange membrane fuel cells. SHMs were
therefore prepared with the inclusion of carboxyl-functionalized graphene (G(c)) and
phosphotungstic acid (PWA) with varying proportions into the SPEEK film. The results
confirmed improvement of the self-humidifying properties at temperatures above 60 ◦C by
collective inclusion of G(c) and PWA within SPEEK and the new SHMs have potential for
use in medium-temperature DMFCs.

5.2. Properties Based Applications

Various carbon materials due to their stability, availability in abundance and envi-
ronmentally friendly nature have excellent scope in energy devices. This scope is further
widened due to the superb thermal stability of these materials in different acidities and
media over a wide temperature range [177]. Earlier, fuel cells deployed CNTs as, these
performed the role of catalysts for improving their performance [178]. With the passage
of time, focus has shifted to two-dimensional carbon materials, i.e., GR for use in fuel
cells [179]. GR, because of its excellent physical properties, is considered as the most
serious contender to resolve the problems related to electrochemical applications of fuel
cells [180]. A comprehensive survey has been presented on the latest ground-breaking
advancements related to theoretical as well as experimental findings in chemical science
and engineering-related GR-based membranes. Aspects of design, manufacturing and
applications have been summarized along with the separation performance of GR-based
membranes [181].
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Recently, researchers have displayed the encouraging effects of incorporating GRO in
the proton exchange membrane due to its softness and amphiphilic nature [182]. Moreover,
it is possible to enhance proton conductivities with GRO-based membranes because of
interactions between the intermolecular H-H bond and the structure of membranes [183].
With the energy crisis and environment pollution becoming serious, polymer electrolyte
membrane fuel cells, as an environmentally friendly power source, are attracting much
attention. GRO nanosheets are designed to explore the utilization of GR as a prospective
filler in order to obtain the required improvements in the polymer electrolyte membrane.
Polymer electrolyte membrane fuel cells (PEMFCs) normally operate with Nafion mem-
branes because of their excellent ionic conductivity, superb chemical stability and high
mechanical strength, although it is quite expensive. Over last few years, there have been
efforts to modify Nafion with the different forms of GR materials. According to Figure 5,
GRO is compatible with the majority of the polymers and solvents used to create composite
membranes for fuel cell applications.
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Ansari et al. [184] inculcated GRO in a polymer matrix for the modification of Nafion
and noticed encouraging alteration in ionic domains. A composite membrane developed
by Wang et al. [185] included customized GRO in Nafion resin for fuel cell applications.
The performance of such a fuel cell having a 3 wt% GRO/Nafion composite membrane
was the same as that of the pristine Nafion membrane; however, the composite membrane
had better mechanical characteristics than Nafion. Peng et al. [186] carried out modification
of Nafion chains by preparing a nano hybrid membrane of Nafion and GRO. First, they
obtained nano hybrids of Nafion and GRO, and then they characterized them with Raman
spectroscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray photo-electron
spectroscopy (XPS) over atom transfer radical addition (ATRA) reaction amid the C=C
group of GRO and the C-F group of Nafion. Inclusion of GRO with Nafion chains improved
the interfacial compatibility among them. With this, the proton conductivity of GRO-
included membrane was increased by 1.6 times in comparison to recast Nafion membrane.
Kumar et al. [187] prepared GRO/Nafion composite membranes for PEMFCs. The proton
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conductivities of Nafion recast membranes, GRO (4 wt%)/Nafion composite and Nafion
212 and at 30 ◦C and 100% humidity were 0.043, 0.078 and 0.068 S cm−1, respectively.
Kim et al. [188] demonstrated that the phosphotungstic acid (PW)-mixed GRO–Nafion
(Nafion/PW-mGRO) membrane had higher proton conductivity in comparison to pure
and recast Nafion membranes. The power density of this hybrid membrane was 841 mW
cm−2, and pure Nafion membrane had a power density of 210 mW cm−2 at 80 ◦C under
20% RH. Choi et al. [189] reported an advanced chemical mechanism for developing of
polymer electrolytes. Such composite membranes had lower methanol crossover and higher
proton conductivity.

Further, Zarrin et al. [190] used functionalized GRO (f-GRO) for modifying Nafion
composite membranes for PEMFC. Hummers’ method was used for producing GRO and
modification of Nafion electrolyte with f-GRO. Functionalization of GRO had taken place
with mixture of toluene and 3-mercaptopropyl trimethoxysilane. The addition of 5 and
10 wt% of f-GRO into the Nafion polymer matrix caused an improved water uptake of
2% and 6% and IEC of 0.93 and 0.96 meq/g contrasted to recast Nafion membrane having
an IEC value of 0.91 meq/g. Moreover, there was a four-times increase in proton conduc-
tivity with f-GRO addition in comparison to simple recast Nafion membrane at 120 ◦C
and 30% RH. The sulfonated polyether ether ketone (SPEEK) has been recognized as a
widely used polymer for PEMFC. Modification of SPEEK has been done many times with
GR for optimizing membrane performance. Mishra et al. [191] studied the influence of
low- and high-degree GRO (HGRO) oxidation on SPEEK-Nafion/GRO nanocomposite
membranes. It was confirmed that the oxygen functionality in GRO and HGRO had a
concentration of 28.4% and 31.8%, respectively, and that GRO had a larger size than HGRO.
Further, polybenzimidazole (PBI) polymer also has good compatibility with GRO, in which
recent modification has been undergone with SiO2, TiO2, and zirconium phosphate (ZrP),
and it was found to be useful as a proton exchange membrane (PEM) in PEMFCs [192].
Feng et al. [193] successfully prepared a Nafion/GRO composite membrane for PEMFC,
which exhibited better proton conductivity as contrasted to the recast Nafion membrane,
specifically in lower humidity environments. There was an enormous rise in proton con-
ductivity due to rearranging of the microstructures of the Nafion matrix. Zarrin et al. [190]
replaced the proton exchange membrane by introducing an f-GRO Nafion nanocomposite (f-
GRO/Nafion) for high-temperature PEMFC applications. Nano GRO sheets were fabricated
from graphite flakes using the modified Hummer’s method, and substantial improvement
was exhibited for f-GRO/Nafion membranes (four times) over recast Nafion at 120 ◦C
and 25% humidity. Lim et al. [194] fabricated and characterized the sulfonated poly(ether
sulfones) which contained a combination of cis- and trans-mesonaphthobifluorene moiety.
The membranes were studied for water uptake, ion exchange capacity (IEC) and proton con-
ductivity. Yang et al. [195] introduced the triazole f-GRO and observed that the PBI/GRO
composite membrane had improved tensile strength and proton conductivity in compari-
son to pristine PBI membrane. It was found that f-GRO can be an excellent alternative for
preparing inorganic polymer electrolytes for PEMFCs. In addition to these well-known
polymers, GRO has been used for the modification of several other polymers which exhibit
the functionalization, flexibility, and substantial contribution of GRO. Xu et al. [183] pre-
pared two types of composite membranes, namely PBI/GRO and PBI/sulfonated GRO
for high-temperature PEMFCs. Phosphoric acid was loaded on membranes in order to
provide the required proton conductivity. Such membranes exhibited ionic conductivities
of 0.027 S cm−1 and 0.052 S cm−1. A power density of 600 mW cm−2 at 175 ◦C was achieved
with PBI/sulfonated GRO membrane. Sharma et al. [196] carried out modification of GRO
with silica and homogeneously mixed it into chitosan matrix and polyvinyl alcohol (PVA)
for PEMFCs at diverse concentrations of GRO. A substantial increase in the mechanical,
chemical and structural properties of the membrane was observed with the addition of
GRO; for example, proton conductivity increased from 6.77 × 10−2 to 11.2 × 10−2 S/cm
on addition of GRO in the PVA membrane. Further, there was improvement in the me-
chanical and thermal stability of PEM with the addition of GRO. Ye et al. [197] described a
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novel PEM using protic ionic liquids (PILs) with ionic liquid polymer-modified GR sheets
[PIL(NTFSI)-G]. Ionic conductivity was increased by 257.4% and tensile strength by 345%
on 0.5 wt% loading of GR in PIL (NTFSI). There was a 20% savings in cost with the addition
of GR in costly PIL. Sulfonated polyimide (SPI)/sulfonated propylsilane GRO (SPSGRO)
was also explored as an upcoming candidate for PEMs. Pandey et al. [198] fabricated this
composite membrane for the promotion of internal self-humidification, improvement of
water-retaining characteristics and the increase of proton conduction. In single-cell DMFC
tests, SPI/SPSGRO-8 indicated 75.06 mW-cm–2 maximum power density, which was more
than the value exhibited by Nafion membrane (62.40 mW-cm2).

5.3. Hybrid Fuel Cells

The direct methanol fuel cell (DMFC) is another class of PEMFC and is visualized
as the leading substitute for power-generating systems in coming times due to its simple
design and operation with high energy performance. Using an aqueous methanol solution
as fuel, Figure 6 depicts the fundamental design and operation of a DMFC [199].
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Yan et al. [200] placed a single layer GR between two thin films of Nafion in order
to fabricate a unique membrane for DMFCs. This was carried out to reduce methanol
permeability by retaining good selectivity. The process of adding the GR layer led to
the enhancement of proton permeability and the reduction of methanol permeability by
68.6% as compared to a pure Nafion membrane. Apart from Nafion, SPEEK is also a
remarkable GRO-compatible polymer for PEMs and has been employed many times with
functionalized GRO in DMFCs and delivered superb results in accordance with the desired
characteristics of PEM. Recently, Yin et al. [201] reused the SPEEK with GRO sheets for
preparing hybrid PEM for DMFCs. GRO sheets were functionalized by histidine molecules
and its effects on the fractional free volume, crystalline structure, thermal stability, cross
sectional morphology and polymer chain stiffness of the composite membrane were exam-
ined. There was an increase in proton conductivity by 30.2% and power density by 80.7%
for the hybrid membrane as compared to plain SPEEK. Jiang et al. [202] used sodium dode-
cylbenzene sulfonate (SDBS)-adsorbed GRO as a filler for the modification of SPEEK which
resulted in improving the water uptake, ion-exchange capacity and proton conductivity,
but it reduced the methanol permeability through the SPEEK membranes. Due to such
excellent features, composite membranes with optimized SDBS-GRO contents delivered
excellent performance in DMFCs in comparison to pure SPEEK or Nafion 112 membranes.

Further, inspired by the bio adhesion of mussels, He et al. [203] prepared a nanocom-
posite membrane using polydopamine-modified GRO (DGRO) sheets bearing –NH2 and
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–NH– groups. Such DGRO sheets were interlinked and homogeneously dispersed in a
SPEEK matrix, which makes peculiar rearrangement of the nanophase-separated structure
and chain packing of nanocomposite membrane. The maximum values of current density
and power density were increased by 47% and 38%, respectively. Chien et al. [204] demon-
strated that Nafion, with a low content of sulfonated graphene oxide (SGRO), displayed
a peculiar viscosity pattern and showed better SGRO dispersion within the Nafion. Such
a membrane showed less methanol and water uptake, a lower swelling ratio, increased
proton conductivity and very high methanol selectivity, all of which are useful for imple-
menting in DMFCs. Further, Heo et al. [205] prepared a new type of membrane consisting
of SPEEK and SGRO with different contents of SGRO for improving proton conductivity.
Such a membrane also improved the mechanical properties and obstructed the flow of
water and methanol molecules through it, in addition to enhancing proton conductivity.
Such characteristics were advantageous for the selection of SPEEK/SGRO membranes in
DMFCs. Beydaghi et al. [206] synthesized nano Fe3O4/SGRO sheets using a hydrothermal
method and blended with a SPEEK/PVA matrix at various concentrations of Fe3O4/SGRO
nanosheets, suggesting its potential application in DMFCs. This inclusion of Fe3O4/SGRO
was helpful in improving proton conductivity, mechanical stability and methanol barrier
properties. It was found that 5 wt% content of Fe3O4/SGRO gave optimal results for tensile
strength, proton conductivity, power density and low methanol permeability. Kumar
et al. [207] used a flow-directed assembly of GRO solution to make free-standing GRO pa-
per of approximately 100 µm thickness. Electrochemical characterization of such membrane
electrode assembly showed proton conductivity in the range of 0.041 S/cm–0.082 S/cm
at temperatures of 25–90 ◦C, with a peak power and current density of 8 mW/cm2 and
35 mA/cm2, respectively, at 60 ◦C for the DMFC. The development and performance of
DMFC is severely affected by crossover of methanol through the PEM from the anode to
cathode. Yuan et al. [208] highlighted the scope of using GRO as a methanol-blocking thin
film made with a layer-by-layer assembly of poly(diallyldimethylammonium chloride) on
the surface of Nafion membrane in the DMFC. The results demonstrated that such com-
posite membranes reduced the permeability of methanol as compared to pure membrane.
Choi et al. [209] exploited the use of Nafion/GRO membrane as electrolyte material for
DMFC. The performance of DMFC with this composite membrane significantly improved
in severe conditions as compared to using Nafion 112 membrane. Lin and Lu [210] pre-
sented GRO-laminated Nafion 115 as a PEM for a DMFC and found this membrane to give
better results as compared to GRO-dispersed polymer composite membrane. The methanol
permeability of the GRO-laminated membrane exhibited 70% lower methanol permeability
as compared to Nafion 115 with 22% decrease in proton conductivity.

Microbial Fuel Cell

Presence of biodegradable substrates in wastewater can be utilized for bioelectricity
generation by microbial fuel cell (MFC) [211,212]. Khilari et al. [213] developed the GR-
modified polyvinyl alcohol silicotungstic acid (PVA-STA) membrane for MVCs by solution
casting. Modified Hummer’s method was deployed for synthesizing GRO and included
a PVA-STA solution for obtaining a membrane of 100 µm thickness. It was confirmed
by electron impedance spectroscopy (EIS) that the conductivity of the PVA-STA-GRO
membrane has been improved to 0.065 S/cm by the addition of GR; it was approximately
0.046 S/cm of pure PVA-STA membrane and 0.062 S/cm of Nafion 117 membrane. There
was an improvement in tensile strength with the addition of GRO, and values of 31.3,
39.1 and 37 MPa were observed for Nafion 117, PVA-STA-GRO and PVA-STA membranes,
respectively. Further, GRO-filled membrane had a superb power density of 1.19 W/m3

as compared to the 0.88 W/m3 of Nafion 117. Alkaline fuel cells (AFCs) have also been
considered in past years for applications in the Apollo space program and space shuttle
program. Ye et al. [214] developed a GR-modified polyvinyl alcohol (PVA/GRO) composite
membrane as an electrolyte for AFCs. The presence of GR had been found to improve
the ionic transport, as it formed well-connected and uninterrupted ionic channels in the
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membrane structure. Moreover, there was an increase in the ionic conductivity of GRO-
filled membranes by approximately 126% and methanol permeability was reduced by
nearly 55% with 0.7 wt% of GR. The addition of GRO also caused a substantial increase in
tensile strength and power density of 73% and 148%, respectively. Researchers have been
working to improve the performance of MFCs by exploring new materials for electrodes.
One such method is the modification of anode materials using GR-based materials with
or without bridging binders. Binders can be different biological or polymeric materials
or metals and metallic oxides. Zhang et al. [215] observed improved electrochemical
performance of a MFC by deploying a GR-modified anode, while Huang et al. [216]
demonstrated that GRO nanoribbons could increase the extracellular electron shuttling
in bio-electrochemical systems. These results demonstrated the ability to use GR in MFC
electrodes for performance enhancement. The productivity of MFCs had also been increased
by applying various hybrid materials on GR. Although Pt metal is most preferred as a
catalyst for the cathode due to its noble characteristics, due to its high cost, work is being
done on using Mn and Fe. These alternative metals gave comparable performances, but
further examination of their durability is still to be carried out [217]. In 2011, the first
attempt was made to integrate GR onto the cathode of a MFC with the use of Nafion as a
binder material. Further, in different studies, conductive polymers such as PANI and Nafion
were applied as binder materials for GR-based cathodes [218,219]. The average power
density of polymer GR-based cathodes was found to be is 742 mW/m2, which represented
an average increase of 39 times in comparison to the control cathode. Spectacular results
were achieved when Nafion was used with N-doped GR cathode, which yielded a power
density of 1350 mW/m2. Results were comparable to those achieved with Pt cathode. Leong
et al. [220] filled SPEEK with a single-layer GRO and performed tests on MFCs using Nafion
117 and GRO-SPEEK membranes. The MFC system with Nafion 117 membrane produced
the maximum power density (1013 mW/m2) followed by the MFCs with GRO-SPEEK
(902 mW/m2) and SPEEK (812 mW/m2) membranes.

5.4. Advancements

In particular, substantial effort has been made toward developing alkaline anion ex-
change membrane fuel cells (AEMFCs) because of their high energy conversion efficiency,
good power density and lower formation of pollutants. The anion exchange membrane
(AEM), which acts as an electrolyte to transport anions, is one of the key components of
AEMFCs. Wang et al. [221] successfully fabricated and characterized PBI/ionic liquid
f-GRO nanocomposite AEMs. The resulting membrane exhibited good alkaline and ther-
mal stability and superb mechanical properties along with high conductivity (more than
0.01 S/cm). Liu et al. [222] prepared different novel composite AEMFCs by incorporation
of quaternized GRs (QGRs) into the chloromethylated polysulfone (CMPSU) followed by
quaternization and alkalization. It was found that quaternized polysulfone (QPSU) with
0.5% QGRs exhibited four-times enhancement in bicarbonate conductivity as compared
to pure QPSU membrane at 80 ◦C, while there was a three-times improvement in tensile
strength and Young’s modulus with the addition of 0.25% QGRs in QPSU. Bayer et al. [223]
presented a novel class of alkaline AEM as KOH-modified multilayer GRO paper. The max-
imum anion conductivity was found to be 6.1 mS/cm at 70 ◦C, and OH− was confirmed
to be the dominant charge carrier by utilizing anion- and proton-conducting blocking
layers. The value of the ion exchange capacity as measured by titration was found to be
6.1 mmol/g. Although extensive work has been focused on the synthesis of AEMs, just a
few studies have depicted enhanced ionic conductivity with simultaneous suppression of
unfavorable mass transport and increased thermal and mechanical properties.

Therefore, GR has delivered encouraging results in numerous fuel cell applications
and provided solutions to some key challenges and to other technical issues related to cell
membranes. Presently, extensive research is being done on the use of GR for diverse energy-
related applications, and it is expected that the remarkable features of this carbonaceous
material will help to achieve new heights in energy efficiency. Different properties of
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GR-based materials can be utilized for developing composite membranes which can be put
to use in fuel cells, and this has been summarized in Table 5.

Table 5. GR based membranes in fuel cells.

Polymers GR (Content) Solvent Contribution Ref.

Graphene based membranes in PEMFCs

Poly (ethylene oxide) (PEO) GRO (0.5 wt%) Distilled H2O Improvements to the Young’s modulus, electronic
resistance tensile strength and ionic conductivity [172]

Polybenzimidazole (PBI) Graphite oxide & Sulfonated
GRO (2 wt%)

N,N-dimethylacetamide
(DMAc) Enhancement of ionic and proton conductivities [183]

Sulfonated polyimide Ionic liquid polymer adapted
GR sheets (10 wt%) Dimethyl sulfoxide (DMSO) Increase in tensile strength, ionic conductivity and

other mechanical properties [197]

Nafion Rolled up graphene oxide
sheets

N,N-dimethylformamide
(DMF)

Enrichment of water retention ability, better proton
transport and conductivity, reduced activation
energy

[193]

Nafion f-GRO (5 and 10 wt%) Ethanol
Improvement to chemical and mechanical stability,
better water intake and IEC with higher proton
conductivity

[190]

Sulfonated poly(ether
sulfone)

Mesonaphth
o-bifluorenegraphene moiety Dimethyl sulfoxide (DMSO) Enhancement of thermal stability, better water intake

and IEC with increased proton conductivity [194]

Polybenzimidazole (PBI)

3-amino
propyl-triethoxysilane ionic
liquid f-graphite oxide (5
wt%)

N,N-dimethylacetamide
(DMAc) Better ionic and proton conductivities [181]

Nafion–SPEEK GRO (0.75 wt%) Ethanol/Water(75:25 V/V) Increase in proton conductivity which results in
increase in current and power densities [191]

SPEEK
Polydopamine-modified
GRO (DGRO) (2.5, 5, 7.5, and
10 wt%)

Dimethyl formamide (DMF) Improvement of the proton conductivity, power and
current densities [203]

Nafion Graphite oxide (4 wt%) N,N-dimethylacetamide
(DMAc)

Enhancement of proton conductivity and peak power
density [187]

Nafion Polyoxometalate coupled
GRO (1%) Deionized water Improvement of the proton conductivity and water

retention capacity, decrease in ohmic resistance [188]

Nafion GRO Pt-GR (0.5–4.5 wt%) Water and isopropyl alcohol
(IPA)

Increase in tensile strength, but the results obtained
with Pt-GR were not optimum [173]

Nafion Pt–GR/SiO2 (0.5–3 wt%) Deionized water and IPA
Improvement of cell performance up to 1.5 wt%
concentration of Pt-GR, increase in water uptake and
proton conductivity

[174]

Nafion GRO (2, 3 and 5 wt%) N,N-dimethylacetamide
(DMAc)

Increase in tensile strength, water uptake, proton and
electrical conductivities [185]

Nafion/Pt–TiO2 GRO (1 wt%) IPA-water mixture Enhancement of proton and electrical conductivities [175]

Graphene based membranes in DMFCs

Nafion SGRO (0.5 wt%) N,N-dimethyl formamide Improvement of proton conductivity, reduction in
activation energy and methanol crossover [204]

SPEEK SGRO (0–10 wt%) N,N-DMAc
Increase in proton conductivity, water retention
capacity and mechanical properties, decrease
methanol crossover

[205]

SPEEK/PVA SGRO/Fe3O4
(3–7 wt%) N,N-DMAc Decrease in methanol crossover and improvement in

proton conductivity and mechanical stability [206]

Nafion 115 GRO (0–2 wt%) Deionized water Decrease in methanol crossover and improvement in
proton conductivity [210]

Nafion GRO (0.1–2%) Dimethyl formamide (DMF)
Retention of ionic conductivity, increase in thermal
and mechanical properties, reduction of methanol
crossover

[209]

Nafion PDDA/GRO - Improvement of power density and lowering of
methanol crossover [208]

Sulfonated Polyimide (SPI) Sulfonated propyl-9 Silane
GRO N,N-DMAc

Enhancement of thermal, mechanical, and chemical
stabilities, increase in proton conductivity and water
retention characteristics

[198]

SPEEK
Carboxyl-functionalized
graphene (G(c)) (0.1–0.25
wt%)

DMF
Increase in proton conductivity and reduction in
methanol crossover, improvement in water retention
capacity and self-humidifying characteristics

[176]

SPEEK
Sodium dodecylbenzene
sulfonate (SDBS) adsorbed
GRO (5 wt%)

DMF
Improvement of methanol permeability, water
retention capacity, proton and electrical
conductivities

[202]

Nafion SGRO (0.05–0.5 wt%) N,N-DMAc
Reduction in methanol uptake and swelling ratio,
increase in proton conductivity and water retention
capacity

[189]

SPEEK GRO (1–6 wt%) DMF Improvement of proton conductivity, selectivity and
reduction in methanol crossover [201]

Self-supporting membrane GRO laminates (3 mg/l) Deionized water
Better power density in comparison to Nafion
membrane without any decrease in open circuit
potential

[207]

Others

SPEEK in Microbial FC Single layer GRO (0.25 wt%) N-Methyl−2-pyrrolidone
(NMP)

Increase in water retention capability, selectivity,
proton conductivity and oxygen diffusion coefficient [220]
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Table 5. Cont.

Polymers GR (Content) Solvent Contribution Ref.

Polybenzimidazole (PBI) in
Alkaline Anion Exchange
Membrane FCs

Ionic Liquid-GRO (ILGRO) DMSO Increase in water uptake, thermal stability, tensile
strength, swelling ratio and conductivities [221]

PVA in Direct Methanol
Alkaline FC GR nanosheets (0.1–1.4 wt%) Deionized water Decrease in methanol crossover, improvement in

tensile strength and ionic conductivity [214]

Chloromethylated
polysulfone (CMPSU) in
alkaline FC

Quaternized graphenes (QGs)
(0.25–1 wt%) DMF Enhancement of mechanical properties and

bicarbonate conductivity [222]

KOH in alkaline FC GRO (5 mg/mL) - Reduction in hydrogen permeability, improvement in
ionic conductivity and peak power density [223]

6. Solar Cells

With the advent of industrialization, lot of technological and economical activities are
being pursued to meet the needs of the increased population, and these create pressure and
higher energy demands. This has culminated in the burning of conventional fossil fuels,
which has created various environmental concerns such as air pollution, global warming,
acid rain and, most importantly, the climate change. Focus has shifted to producing
electricity from renewable sources and the utilization of solar energy through use of
photovoltaic panels is being seen as a promising alternative [4]. The conversion efficiency
of various solar photovoltaic technologies is shown in Figure 7. It is noteworthy that the
n/p-type of semiconductor, because of its larger carrier mobilities and direct energy gaps,
results in multijunction solar panels with the best efficiency and superior stability when
compared to those on the market [224].
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6.1. Design and Development

New developments are occurring at a fast pace across the globe in the use of pho-
tovoltaic (PV) solar energy for meeting energy requirements. Developments are related
to use of new materials, design aspects of devices, latest production technologies and
improving the efficiency of solar cells. GR, due to its characteristics of extraordinary high
carrier mobility and superb electron transfer, is a suitable candidate for use in low-cost
and efficient PV devices [10,225]. Among these PV devices, GR/Si Schottky-barrier solar
cells are highly attractive because of their simple structure, high-efficiency capabilities
and low cost [226]. For Schottky-barrier solar cells, the Schottky barrier height (SBH) is a
crucial factor which determines the device performance, and efficient charge separation
requires a larger value of SBH. GR is chemically doped for increasing SBH, as chemical
doping of GR is the most widely prevalent approach for increasing SBH, determined by
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taking the difference between the electron affinity of Si and the work function of GR [227].
Li et al. [226] combined highly conductive semi-transparent GR sheets with an n-type
silicon (n-Si) wafer for fabricating solar cells with PCE ≤ 1.5% and an illumination inten-
sity of 100 mW/cm2. Jiao et al. [228] improved the efficiency of GR/silicon solar cells by
more than 100% by deploying an interface tailoring approach for inserting a thin GRO
layer. Systematic research was done for checking the influence of the GRO interfacial layer
by varying the thickness of the GRO layer and changing the annealing temperature. Li
et al. [229] developed Schottky junction solar cells by depositing semi-transparent and
highly conductive GR films on n-type Si wafers. It had been observed that GR also acts as
a transparent electrode in addition to its contribution to charge separation and transport.
However, higher power conversion efficiency was not achieved with this cell because of
the weak junction and contact between the interfaces. Further, Zhang et al. [230] and Ye at
al. [231] extended the basic idea of Schottky junction solar cells by utilizing semiconducting
substrates such as CdSe and CdS instead of Si. In addition, Miao et al. [227] introduced
more functional layers, such as trifluoromethane-sulfonyl-amide, as the p-dopant and
enhanced the conversion efficiencies. Only limited improvement was obtained for these
devices, and further performance enhancement of this solar cell based on GR would lead
to a better understanding of this simple concept of Schottky junctions. Transparent GR
conducting films were satisfactorily included in thin-film CdTe solar cells as the front
electrode [232]. A four-layer GR film was reposed by an ambient pressure CVD method,
and it possessed a carrier mobility of 550 cm2/V-s and an optical transparency of 90.5%.
SOCl2 and HNO3 are used as the p-type dopants in graphitic materials [233] and the holes
were impacted at the surface of this carbon structure. The power conversion efficiency
for GR-Si cells is lower than that of using nanotube with Si, and a value of only 10% is
achieved. Shi et al. [234] increased the efficiency of GR-Si solar cell by 14.5% under standard
illumination with the provision of colloidal antireflection coating. A simple spin-coating
process was used for providing antireflection treatment, and there was a 90% increase
in incident photon-to-electron conversion efficiency across the board and a substantial
increase in short-circuit current density was also observed. Jiao et al. [235] explored the
scope of MoS2 films by varying their thickness and temperature as an effective interfacial
layer in Si/GR solar cells. Experiments showed an increase in PCE from 2.3% to nearly 4.4%
with 80 ◦C annealed MoS2 film, while it dropped to nearly 0.6% at 200 ◦C. Tung et al. [93]
synthesized a surfactant-free nanocomposite comprised of chemically converted GR and
CNTs, and this method delivered 240 Ω/sq at 86% transmittance. This technology was
reported to be inexpensive, massively scalable and overcome the various limitations of
indium tin oxide (ITO) with PCE of 0.85%.

The environmental stability of silicon-based and organic bulk heterojunction (BHJ)
solar cells for longer duration is of paramount importance [236]. The solar cell components
are continuously vulnerable to air and other chemicals present in atmosphere, which causes
change in power conversion efficiency of organic materials as well as in physical properties,
namely, carrier mobility, resistance and optical transparency. Currently, GR-based solar cells
exhibit PCE efficiencies from 10% to 15%, which is dependent on the selection of materials
and solar cell configuration. Xie et al. [237] observed a power conversion efficiency of
10.56% for a five-layered GR/P3HT/CH3-Si organic solar cell (OSCs) having a device area
of 4 sq. mm. Li et al. [238] experimentally noted a power conversion efficiency of 15.5%
with an Al2O3-coated n-GaAs/GR solar cell and theoretically estimated a PCE of 25.8% for
n-GaAs/GR hybrid solar cells. It has been reported that the electrode of polymer solar cells
(PSCs) should be of high conductivity and thickness. So, the dominant electrode material
applied in PSCs was ITO, a doped n-type semiconductor consisting of ∼10% SnO2 and
nearly 90% In2O3 [239,240]. Now ITO is available on the market with 80% transmittance
and a low film resistance of 60–300 Ω/sq on polyethylene terephthalate (PET) and 10 Ω/sq
on glass. Yin et al. [241] transferred r-GRO onto PET which was further used as conductive
and transparent electrodes for flexible organic photovoltaic (OPV) devices. It was observed
that when the optical transmittance remains higher than 65%, the output of the OPV
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devices relies predominantly on the charge transport efficiency through r-GRO electrodes.
However, ITO had severe drawbacks: high cost due to the scarcity of indium, difficulties
in patterning, complex processing requirements and problem of sensitivity to both basic
and acidic environments. Yusoff et al. [242], instead of using ITO, experimented with
Au-doped single-layered GR nanoribbons as an electrode in tandem solar structure and
achieved a PCE of 8.48%, which was the maximum efficiency for ITO-free tandem OSCs.
Zhang et al. [243] demonstrated a TiO2-Al composite for modifying mono-layered GR as
an effective cathode for OSCs. The results indicated that the modified GR cathode-based
composite had increased the PCE from 1.27% to 2.58%.

6.2. Perovskite Solar Cells

Perovskite solar cells (PSCs) have been progressing as the latest photovoltaic technol-
ogy in the current global energy scenario, and researchers are striving to develop stable
and efficient perovskite-based devices [244]. Although a lot of progress has been made
toward enhancing PCE, the stability of PSCs is still a concern (Figure 8) [245]. The thermal
stability and e-poor air (H2O and O2) adsorption are a major hindrance to the commercial
exploitation of PSCs [246,247]. The chemical stability of PSCs is influenced by exposure
to water and oxygen, and there is degradation of the perovskite layer, and its hydroly-
sis takes place, which causes a change in colour from dark brown to yellow. Hence, a
blend of perovskite and GR can be considered for increasing the stability and performance
of solar cell devices. Girtan and Rusu [248] found that one explanation for the decline
in BHJ OSCs is that the interface between the hole extracting interfacial layer poly-3,4-
ethylenedioxy-thiophene:poly(styrene sulfonate) (PEDOT:PSS) and the ITO anode causes
the failure of solar cells. PEDOT:PSS mixture has been utilized as a hole transport layer
(HTL) in organic solar cells, but due to its excessively acidic nature, it exhibits higher
chemical reactivity due to the presence of H2O molecules in the atmosphere, which causes
corrosion of the ITO electrode and reduces the efficiency polymer solar cells [249,250].
Wang et al. [251] disclosed the effect of a TiO2/GR layer in PSCs and a maximum PCE
of 15.6% was achieved. Feng et al. [252] deposited a monolayer GR film on Cu foil by
CVD process, and a Schottky junction solar cell has been made by transferring the pre-
pared layer onto a silicon-pillar-array (SPA) substrate. Such GR/SPA solar cells obtained
maximum energy conversion efficiency of 2.90% with a junction area of 0.09 cm2. Park
et al. [253] fabricated GR electrodes based OPV devices for observing the effect of HTL, GR
morphology and counter electrodes. It has been found that the morphology of the HTL
wettability and the GR electrode on the GR surface play an imperative role in the effective
amalgamation of GR films onto OPV devices. Tong et al. [254] demonstrated the application
of CVD grown MoO3-modified GR intermediate layer in both parallel and series tandem
solar cells. It has been concluded that the PCE of the solar cell may be improved by work
function modification of the GR by coating it with metal oxide. Tung et al. [255] found
that synergistic GRO/PEDOT:PSS aqueous dispersions results in greatly increased solution
viscosity, which can yield an adhesive composite with a significantly higher electrical con-
ductivity. The sticky GRO/PEDOT interconnect layer greatly enables the construction of
solution-processed tandem solar cells through direct adhesive lamination, which aids in the
eradication of the constraint imposed by orthogonal solubility during solution processing.
Wang et al. [256] established an interface engineering technique for deploying GR film
as the positively charged electrode in poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl C61
butyric acid methyl ester (P3HT:PCBM)-based polymer solar cells. With a variation in
interface amid the photoactive layer (with PEDOT: PSS and MoO3) and GR anode, the cell
power conversion efficiency attains nearly 83.3% that of control devices that use an ITO
anode. Further, Li et al. [257] used GRO films as the electron-blocking layer and HTL in
OPVs, and significant enhancement in OPV efficiency was observed which was almost the
same as that which was achieved with devices fabricated with PEDOT:PSS as the HTL. Liu
et al. [258] utilized thermally reduced GRO as a hole transport layer for manufacturing BHJ
solar cell devices, and it was found that the conjugated structure of GR is influenced by
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annealing temperature, and it affects the electrical conductivity of GRO. Solar cell devices
having 130 ◦C reduced GRO, as the HTL showed lower fill factor than devices having
230 ◦C r-GRO as the layer. Yin et al. [259] deposited monocrystalline ZnO nanorods on
highly conductive r-GRO films on quartz. Feasibility study showed that the obtained ZnO
nanorods on r-GRO were used for fabricating organic–inorganic hybrid solar cells with
a layered configuration of ZnO nanorods/r-GRO/quartz/P3HT/PEDOT:PSS/Au. The
observed PCE ≈ 0.31% was noticed to be more than that which was observed with earlier
solar cells in which GR films were used as electrodes.
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6.3. Properties Based Applications

Despite GRO not being a good electrical conductor, the conjugated network can be
put to reduction in hydrazine vapour or by high heat after deposition [260]. However, both
of the reduction approaches exhibit their own demerits, as flexible substrates such as PET
are not suitable at higher temperatures, and hydrazine vapors are capable of accessing and
reducing only the outer surface of deposited films. Efforts were made to blend chemically
converted GR and CNTs into a single layer, but the resultant film thickness was higher
and not suitable for optical applications. To overcome this issue, Tung et al. [93] dispersed
CNTs in anhydrous hydrazine for the first time and yielded the manufacturing of a nano
composite consisting of CNTs and chemically reduced GR which delivered a 240 Ω/sq
film resistance at 86% transmittance. They demonstrated a PCE of 0.85% in the feasibility
study of a polymer solar cell. Wang et al. [261] employed GR-based films which were
obtained by thermal reaction of synthetic nano GR molecules of giant polycyclic aromatic
hydrocarbons (PAHs) as a window electrode in OSCs. The developed GR film showed
increased interactions with the substrate in comparison to GRO-induced film. The 4 nm-
thick film had 90% transparency at a wavelength of 500 nm. Apart from the feature of
acting as a transparent conductive electrode, GR is also useful in PV devices due to other
promising features. GR has been used in conjugated polymers for improving the charge
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transportation and exciton dissociation features of the materials [262]. Yong et al. [263]
theoretically computed the expected efficiency of nanosized GR-based PV devices and
found an efficiency of more than 12% for single-cell and approximately 24% in case of
tandem structure.

Solar cells are economical, stable and efficient energy sources, which are of paramount
importance during this period of energy crisis. The dye-sensitized solar cell (DSSC) is
considered as the most encouraging substitute for conventional inorganic semiconductor
photovoltaic devices. Yan et al. [264] deployed GR quantum dots (QDs) as a solute sensitizer
for DSSCs. SCC and OCV of 200 µA/cm2 and 0.48 V, respectively, were reported with a
fill factor of 0.58. These values of fill factor and open-circuit voltage were approximately
the same as those found in cells sensitized by ruthenium complexes. Guo et al. [265]
used a chemically reduced thin GR layer which was electrodeposited on ITO-coated glass
for immobilizing CdS QDs for QDs sensitized solar cells. It has been demonstrated that
GR/CdS QDSC exhibits an incident PCE of 5%, which is much superior to that of single-
walled CNTs/CdS (0.45%)-based devices. Further, it has been reported that the utilization
of chemically reduced GR is helpful in promoting a homogeneous dispersion of CdS QDs
on the electrode for decreased contact resistance and higher absorption of light. Wang
et al. [266] demonstrated ultrathin, conducive and transparent GR films as a substitute for
the universally deployed metallic oxides electrodes for DSSCs. Such GR films exhibited
transparency and electrical conductivity of ≥ 70% and 550 S/cm, respectively, for sizes of
1000–3000 nm. Li et al. [267] developed vertically aligned CNTs (VACNTs) directly on a
free-standing GR paper. Electrodes made of this material delivered excellent performance
in LIB and DSSCs. This may be due to the excellent conductivity and mechanical properties
of GR paper, the beneficial carrier transportation capability of VACNTs and the firm
bonding between the free-standing paper and nanotubes. Yang et al. [268] incorporated
the chemically reduced GR into a TiO2 nanostructure photo anode as a two-dimensional
bridge for DSSCs. Such DSSCs yielded short-circuit current and incident PCE improvement
by 45% and 56%, respectively, achieving an increment of PCE from 5.01% to 6.97%. Roy-
Mayhew et al. [269] proposed a novel electrochemical impedance spectroscopy equivalent
circuit which confirms the experiential spectra characteristics to the suitable phenomenon
to understand the catalytic action of fGR sheets toward the reduction of triiodide. It was
demonstrated that such f-GR sheet-based ink can be used as an excellent electrode material.
Kavan et al. [270] accumulated GR nanoplatelets by the way of thin semi-transparent film
on F-doped tin oxide (FTO) which showed higher electro catalytic activity for Co(6-(H-
pyrazol-1-yl)-2,2′-bipyridine)2. DSSCs with Y123 dye adsorbed on titanium oxide photo
anode delivered PCE in the range of 8–10% for both nanoplatelets as well as platinum-based
electrodes. However, better performance was achieved with a GR nanoplatelets cathode
than that with a Pt-FTO cathode. Song et al. [271] demonstrated a novel and facile technique
to improve the fill factor and photocurrent, and thus the overall PCE of an organic DSSC
by the incorporation of an r-GRO layer between the dye and TiO2, which was attributed to
the development of a TiO2-r-GRO Schottky junction in the proposed DSSC device.

GR and its related products are environmentally friendly and exhibit high charge
mobilities which can be utilized for the collection of charge in solar cells. However, such
useful characteristics have not been fully utilized in PV applications because of very low
solubility and inclination to aggregating into graphite. Yan et al. [264] demonstrated a
new solubilisation strategy for large GR nanostructures. They synthesized uniformly
sized, solution-processable, black GR-QDs by solution chemistry, and they have been
proved to be potential candidates for DSSCs. It is likely that other graphene-based OSCs
offer tremendous opportunities and potential for improving photovoltaic performance.
Besides increasing PCE, other important challenges to consider are cost-effectiveness,
environmental stability against chemicals and photo-oxidation, and eco-friendly, nontoxic
GR-based solar cells, which should be examined for large-scale commercial production and
applications. Previous photovoltaic devices which utilize GR or GR-based materials have
been compiled in Table 6.
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Table 6. Summary of GR and GR-based composites for solar cells.

GR Based Material Electrode/Function Sheet
Resistance

Transmittance
(%) Category and Configuration of Solar Cells Power Conversion

Efficiency Ref.

r-GRO TA 1.8 k Ω/sq 70 Solid-state DSSC: r-GRO/glass/dye/TiO2
spiro-OMeTAD/Au 0.26% [266]

r-GRO TA 3.2 k Ω/sq 65% OPV: r-GRO/PET/PEDOT:PSS
P3HT: TiO2/PCBM/Al 0.78% [241]

CVD-GR TA 0.25 k Ω/sq 95% OPV: GR/quartz/PEDOT:PSS/
CuPc: BCP/C60/Ag 0.85% [253]

r-GRO-CNT TA 0.6 k Ω/sq 87% OPV: r-GRO-CNT/glass/PEDOT:PSS
P3HT: Ca:Al/PCBM 0.85% [93]

CVD-GR TA 0.08 k Ω/sq 90% OPV: GR/quartz/MoO3
+

PEDOT:PSS/P3HT:PCBM/Al/LiF 2.5% [256]

Au-doped GR TA 0.293 k Ω/sq 90% OPV: Au-GR/PEDOT:PSS/
P3HT:PCBM/ITO/ZnO 3.04% [267]

r-GRO TC 0.42 k Ω/sq 61% Hybrid solar cell: r-GRO/quartz/ZnO/
P3HT/Au/PEDOT:PSS 0.31% [259]

CVD-GR TC 0.22 k Ω/sq 84 Thin film solar cell: GR/glass/CdTe/
CdS/graphite paste/ZnO 4.17% [232]

Al-TiO2 modified GR TC 1.2 k Ω/sq 96 OPV: GR/Al-TiO2/P3HT:PCBM/MoO3/Ag/Au 2.58% [243]

fr-GRO CCE - - Liquid DSSC: r-GRO/FTO/dye/I3
−/I1

−/TiO2/mediated
electrolyte 4.99% [269]

CNT-r-GRO paper CCE - - Liquid DSSC: CNT-r-GRO/TiO2/FTO/I3
−/I1

− mediated
electrolyte/dye/ 6.05% [267]

GR platelets CCE - - Liquid DSSC: GR/FTO/Co(III)/(II) mediated electrolyte
TiO2/dye 9.3% [270]

GR QDs Sensitizer of dye - - Liquid DSSC: GR QD/dye/FTO//I3−/I1– mediated
electrolyte/Pt/TiO2 <0.1% [264]

GR/n-Si SJL Schottky junction solar cell: Ag/GR/Ti/n-Si/Pb/Au 1.65% [226]

GR-TiO2 SJL Liquid DSSC: TiO2 -GR/FTO/Pt dye/I3−/I1- mediated
electrolyte 6.06% [271]

GRO HTL OPV: GRO/ITO/Al/P3HT:PCBM 3.5 [257]

MoO3-GR Interfacial layer Series tandem solar cell:
GR-MoO3/PEDOT:PSS/ITO/P3HT:PCBM/ZnPc:C60/Al/LiF 2.3% [254]

ZnO-GRO-PEDOT:PSS Interfacial layer Series tandem solar cell: ZnO-GRO-
PEDOT:PSS/PEDOT:PSS/ITO/P3HT:PCBM/Ca/P3HT:PCBM/Al 4.14% [255]

(a) TA—transparent anode (b) TC—transparent cathode (c) CCE—Catalytic counter electrode (d) SJL—Schottky junction layer.
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7. Nanolubricants

Wear and friction are the primary reasons for energy loss in moving components. It
has been reported that 33% of fuel energy is wasted because of frictional losses in different
components such as brakes, tires and transmission, etc., [13,272]. Lots of research and
development is going on for improving the characteristics of lubricants, but still, billions
of dollars are lost due to friction in the automobile sector and other industries. As seen in
Figure 9, since 1995, there has been a significant diversification of this field of study across
numerous disciplines [13].
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7.1. Design and Development

The need of the hour is to develop efficient lubricants which can effectively reduce
energy losses. A recent trend is to use nanoparticles in lubricants for performance en-
hancement [273]. It has been reported that the inclusion of nanoparticles in lubricants,
even at very small concentrations, substantially reduced the wear and friction coefficients.
Different types of nano-lubricant mechanisms have been shown in Figure 10 [274]. The
unique properties of economically friendly GR and CNTs have considerably attracted the
attention of researchers to study their effects as nano-additives to lubricants for improving
tribological characteristics. The blending of nanoparticles into different oils is a problematic
task, as their shape, characteristics, size, concentration and chemistry with base lubricant
have to be studied in detail. It has been shown that nanoparticles tend to get coagulated or
agglomerated because of their high surface energy in most of liquids, specifically when
there are temperature or pressure variations [275]. Despite having excellent electrical, opti-
cal and thermal characteristics, GR can also act as a lubricant in solid or colloidal form [276].
Numerous analytical and experimental investigations performed at both the microscale
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and nanoscale levels have revealed that GR can be used in solid form or as a nano-additive
for the substantial reduction of friction [277,278]. It has been observed that the use of
two-dimensional materials such as GR as a friction modifier is dependent on a number of
parameters such as morphology, thickness, manufacturing technique and surface chemistry.
GR has excellent tribological properties due to its chemically inert nature, high extreme
strength, and capability of easy shearing on its compactly packed and atomically smooth
surface. In 2009, Filleter et al. [279] used GR as a solid lubricant and established that wear
and friction coefficients were decreased due to a reduction in the thickness of commonly
used solid lubricants, graphite by many layers [280]. Guo and Zhang [281] added multi-
layered GR in polyalphaolefin-2 (PAO2) in various proportions for estimating the COF
with nano-lubricants for a steel–steel contact on a four ball tribotester. COF was found to
be decreased for all the nano-lubricants irrespective of GR concentration in comparison
to PAO2, and the best results were achieved with the smallest concentration (0.05 wt%) of
dispersed GR. Senatore et al. [282] analysed the performance of GRO-based mineral oil and
observed that the friction coefficient decreased by 30% because of tribofilm formation. The
addition of GR nano platelets on a calcium lubricant has also been reported to reduce the
friction coefficient [283]. Elomaa et al. [284] dispersed GRO in water and found that the
COF decreased by 57% in comparison to pure water on 1 wt% addition of GRO and upon
application of a 10 N load. Lin et al. [285] observed that, with the addition of just 0.075 wt%
of GR nano platelets, oil characteristics were enhanced, but such ultra-fine additives cause
problems of aggregation. Due to this behavior, the movement and entering of additives
in matching surfaces is restricted, which leads to unstable tribological characteristics. The
characterization results exhibited that the performance enhancement can be achieved be-
cause of the extremely thin laminated structure of GR, which easily makes entry between
contact surfaces. In another study, GR was dispersed in synthetic oil for making a stable
nano-lubricant, which was utilized for the reduction of wear in a bronze material having
textured dimples on its surface [286]. Four plates having textured areas in proportions of 0,
5, 10, and 20%, were tested for studying tribological characteristics. It has been inferred
that the nano-lubricant has an enormous potential to enhance the wear-resistant properties
of the plates with textured surfaces. COF was decreased by 78%, while the wear rate
was decreased by 90% with the use of nano-lubricant. Marchetto et al. [287] carried out
the comparative tribological analysis of steel–bronze and steel–iron with a ball on disc
tribotester by using blended GR flakes in ethanol suspension. It was observed that GR
flakes get bound to native iron in bronze–steel and form a layer in iron–steel interface. As a
steel ball with small a contact area develops a tribofilm, friction coefficient is reduced by
48% with the addition of GR flakes.
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7.2. Hybridization

It has been observed that the dispersion of particles gets improved with the addition of
molecular ligands, but they have the disadvantage of getting degraded under high speeds
and loads. It is always beneficial to use additives in which no surfactant is needed. For
this, GRO helps to ensure uniform dispersion without agglomerating in base lubricant.
However, there are certain functional groups (normally, -OH, epoxy and -COOH) which
improve particle dispersion in nonpolar solvents. Mungse and Khatri [289] blended GRO
nanoparticles in 10 W-40 oil and studied the tribological properties for steel–steel surfaces
and found reduction in wear and friction coefficients by 37.5 and 36.4%, respectively. Kiu
et al. [290] developed a vegetable oil-based nano-lubricant through the addition of GR
nanosheets in concentrations of 25, 50 and 100 ppm. Experimentation with a four-ball
tester showed the reduction in friction coefficient at 25 and 50 ppm, while COF increased
at 100 ppm concentration in comparison to base oil. Optimum results were achieved
with a concentration of 50 ppm. Eswaraiah et al. [291] dispersed 0.025 mg/mL of GR in
engine oil and reported 33, 40 and 80% improvement to anti-wear, extreme pressure and
frictional characteristics. These improvements were explained by the ball bearing effect of
GR particles between moving parts. Wu et al. [292] examined the tribological characteristics
of GRO nanoparticles blended with oil-in-water emulsion through experimentation using a
ball-on-ring tribotester and found that wear and friction coefficients were reduced by 21.8
and 27.9%, respectively. Cho et al. [293] noticed that the morphology of GR particles plays
a crucial role in the strength of GR adhesion on friction surfaces. The results obtained by
the use of crumpled GR balls in a poly-α-olefin (PAO) oil showed that wear and friction
characteristics were improved with the presence of GR balls [294]. Further, Cai et al. [295]
mixed GR nanoparticles in PAO4 oil and monitored the performance under the parameters
of textured/untextured surface for pure PAO4/GR-blended PAO4 lubricants. Materials
having a 10% textured area along with GR-based lubricant performed with the best anti-
wear characteristics. Azman et al. [296] examined the influences of GR nanoplatelets
as additives in palm-oil trimethylolpropane (TMP) ester blended in PAO. At 0.05 wt%
concentration of nanoplatelets, COF and wear rate were observed to be reduced by 5% and
15%, respectively,

7.3. Characterization Based Studies

Cheng and Qin [297] demonstrated that GR-based nano-lubricant brought reduction in
friction coefficient in the range of 40–60%, while the wear coefficient was also decreased by
more than 50%. Further, Kumar and Wani [298] found that GRO in ethanol and SAE20W-50
oil reduced the wear rate by 60–80%, and moreover GRO was recommended as an effective
lubricant nanoadditive due to its eco-friendly nature. Vidal and Avila [299] examined the
influence of blending nano graphite platelets in mineral-based oil, which revealed the
substantial increase in anti-friction and wear characteristics. Liang et al. [300] observed
the friction and wear characteristics of exfoliated GR-blended aqueous lubricants which
were prepared by the addition of Triton X-100 as a surfactant. Such aqueous solutions
outperformed GRO at the same concentration and reported a reduction in COF and wear
scar diameter by 81.3 and 61.8%. Zhang et al. [301] used oleic acid for surface modification
with liquid-phase exfoliated GR, which was added by 0.02 to 0.06 wt% concentration of
lubricant. There was a reduction in wear scar diameter and COF by 14% and 17%, respec-
tively. Meng et al. [302] observed that there was a reduction in wear and COF by 52.7%
and 27%, respectively, at 0.05 wt% of the Cu nanoparticle-decorated GRO composite in
liquid paraffins. It was suggested that Cu nanoparticles, due to their small anchoring on
the GRO nanosheets, improved lubrication characteristics. In another study, they dispersed
Ag nanoparticle-blended GR nanocomposite in multi-grade (10W40) engine oil [303]. It
was found that the interlamination gaps of GR sheets were increased due to the presence
of silver nanoparticles, and further, they prevented restacking of the GR sheets during
rubbing, which enhanced lubrication performance. Gupta et al. [304] produced r-GRO
nanosheets through the oxidation of graphite succeeded by hydrazine treatment for the
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reduction of the oxygen functionalities. The obtained nanosheets were functionalized with
poly (ethylene glycol) 200 (PEG200). When 0.03 mg/mL functionalized nanosheets were
dispersed in PEG200, the COF and wear rate were reduced by 38% and 55%, respectively. It
was also found that, at high r-GRO concentrations, the lubrication efficiency was reduced as
a consequence of GR–GR inter-sheet collisions, producing chemical defects and mechanical
energy at contact interfaces. Chen et al. [305] investigated the tribological characteristics for
few-layered GRO nanosheets, which were mixed in oil, by using a ball-on-disc tribotester at
373 K. There was a 10 to 20% decrease in COF at different loading conditions with a 0.5 wt%
concentration of GRO in base oil. Kinoshita et al. [306] found that with the addition of GRO
nanoparticles in water-based coolant, the friction coefficient was decreased to 0.05 and the
surface wear was almost eliminated with running of 60,000 cycles. Zhou et al. [307] demon-
strated the friction variation at the different concentrations of r-GRO/ZrO2 nanocomposite
in paraffin oil with time and found that there was a reduction in COF with nanolubricants.
However, it was also observed that when the concentration was increased by 0.2 wt%,
the friction coefficient also increased. Ou et al. [308] demonstrated that r-GRO exhibits
good anti-wear and anti-friction ability because of the intrinsic structure of GR and its
self-lubricating property. Fan and Wang [309] and Wu et al. [292] dispersed modified
GRO in multi-alkylated-cyclo-pentanes and water–oil emulsion, and the results exhibited
a reduction in COF by 27% and 18%, respectively. Wrinkled paper-like GRO sheets and
fluffy structured functionally r-GRO nano-sheets have been prepared to achieve oil sta-
bility [310]. Similarly, the characterization results revealed that for functionalized r-GRO,
there was a wide hump in place of sharp peaks at 19.9◦ caused by functionalization. Wu
et al. [311] synthesized and dispersed nanosized MoS2-decorated GR nanocomposite in
perfluoropolyether base oil. The results obtained by a ball-on-disc tribotester at ambient
temperature with vacuum conditions exhibited a maximum reduction of 57.1 and 97% in
COF and wear rate, respectively, at 1 wt% concentration. The researchers have suggested
that the MoS2–GR nanocomposite yielded significantly enhanced lubrication results as
compared to GR, MoS2 or a mixture of MoS2 and GR because of surface film formation.
Lee et al. [312] found that there is an increase in friction with the reduction of GR thickness,
and such behaviour was comparable with other nanomaterials such as HBN, NbSe2 and
MoS2. Kumar et al. [313] synthesised polyacrylamide-grafted f-GRO-based nanocompos-
ites through microwave-based surface-initiated redox polymerization of acrylamide using
f-GRO and Ce4+ as a redox couple in aqueous medium. The results showed a substantial
reduction of the COF by 46–55% and improvement in wear rate by 13–37%, thus quali-
fying this nanocomposite as an aqueous lubricating additive for tribological application.
Cheng et al. [314] synthesized zinc borate-decorated GRO nanocomposite using a liquid-
phase based ultrasonic-assisted stripping method and blended in 500 SN oil. The results
demonstrated a maximum reduction of 48.2 and 40% in COF and wear scar diameter upon
the addition of nanocomposite by 2.0 wt% concentration in lubricant. Anti-friction and
wear characteristics were manifested because of tribofilm formation at the surface. Zhang
et al. [315] investigated the tribological characteristics of GR and multi-walled CNTs in
different lubricating conditions and in a vacuum atmosphere. The presence of GR and
CNTs was found to generate excellent lubricating conditions due to the development of
nano-level tribological mechanisms. Miura and Ishikawa [316] used a grease comprised
of alternately arranged C60 monolayers and single GR sheets, and they reported that the
included C60 molecules were capable of rotating between GR sheets by using 13C-nuclear
magnetic resonance measurements. It has also been claimed that this innovative combi-
nation was capable of yielding the best results in comparison to all other nano-lubricants
explored so far. Although thermal reduction of GR is an excellent method, such GR always
has some defects, including obvious folding and wrinkling. Choudhary et al. [317] synthe-
sized alkylated GRs on a mass scale and then dispersed in organic solvents. The lubrication
characteristics of hexadecane containing Octadecylamine f-GRO were investigated for tribo-
logical properties. The outcomes indicated a reduction in the wear and friction by 9% and
26%, respectively, when 0.06 mg/mL of octadecylamine f-GRO was added in hexadecane.
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Zhao et al. [318] fabricated a novel synthesis method of thermally reduced graphite oxide in
H2SO4, which showed a lamellar structure without obvious folding and wrinkling. It also
exhibited outstanding tribological properties, and the wear rate and COF were found to be
decreased by 75% and 30%, respectively, even at a high load (1.86 GPa). Song et al. [319]
prepared the in-situ growth of Cu nanoparticles decorated on polydopamine (PDA) f-GRO
nanosheets. It was found that soybean oil with 0.1 wt% Cu-PDA-f-GRO nanocomposites
exhibited the lowest COF under all of the sliding conditions. However, the characterization
results showed that these composites have higher anti-wear capabilities than Cu nanopar-
ticles, GRO and Cu-GRO. Singh et al. [320] dispersed SiO2/GRO composite powders in
(CH2OH)2 keeping with the additive’s concentration constant (0.125 wt%). A composite
with 10 wt% of GRO in a SiO2 matrix showed reduction of COF in (CH2OH)2 by 38% and
reduction in wear by 31% as compared to pure (CH2OH)2.

7.4. Advancements

As the youngest graphene derivative, fluorinated GR (FGR) has drawn immense
research interest because of its superb performance [321]. FGR inherits excellent mechanical
properties of GR, even though fluorination disrupts the van der Waals forces between
the FGR sheets; therefore, FGR can be utilized to enhance the mechanical properties
of polymers. High hydrophobicity restricts the use of FGR in aqueous environments
despite having excellent characteristics. Ye et al. [322] attempted to overcome this by
preparing hydrophilic urea-modified FGR, and characterization results revealed that the
urea molecules can covalently functionalize the FGR. With 1 mg/mL concentration of
urea-modified FGR aqueous dispersion, the wear rate was reduced by 64.4% as contrasted
against pure water. Overall, it has been agreed unanimously that GR plays an excellent
role in improving anti-wear and anti-friction characteristics. GR and its derivatives can
be added to base lubricants in small concentrations, improving tribological characteristics.
However, certain factors such as the morphology, concentration and dispersion capability
of nanoparticles in addition to the characteristics of base lubricant need to be studied in
detail for use as a prospective lubricant [323]. Carbon nanomaterials as lubricant additives
are capable of improving the tribological characteristics of base lubricants, but the viscosity
of base lubricants is affected by their inclusion in varying concentrations. This aspect can
be explored by reducing the concentration of other additives in plastic lubricants, which is
beneficial from an environmental perspective [324]. The effect of GR-based materials on
the tribological performance has been summarized in Table 7.

Table 7. Summary of improvements in tribological characteristics using GR based nanolubricants.

Material Medium Composition Reduction in COF
(%)

Reduction in
Wear (%) Ref.

GR Synthetic oil 78 90 [286]
reduced f-GRO Oil 16 30 [310]
GRO 10W-40 oil 37.5 36.4 [289]

GRO Oil-in-water
emulsion 21.8 27.9 [292]

Exfoliated GR Oleic acid 0.02 to 0.06 wt% 17 14 [301]
GRO + Zinc borate 500 SN oil 2 wt% 48.2 40 [314]

GR Grease in
semi-solid state - 40 to 60 50 [297]

Thermally converted graphite
oxide H2SO4 30 75 [318]

GR Deionized H2O 23.8 to 110 µg/ml 81.3 61.8 [300]
GRO H2O 0.2 wt% 57 [284]
SiO2/GRO composite C2H6O2 0.125 wt% 38 31 [320]
GRO nanosheets SN150 0.1 wt% 30 - [282]
ZrO2 nanoparticles/r-GRO
nanosheets Paraffin oil 0.06 wt% 56 6.4 [307]



Materials 2022, 15, 6241 35 of 50

Table 7. Cont.

Material Medium Composition Reduction in COF
(%)

Reduction in
Wear (%) Ref.

Modified GO Multi alkylated
cyclo pentanes 27 74 [309]

GR nanosheets Grease 3 wt% 61 45 [283]
MoS2/GR nanocomposite PFPE 1 wt% 57.1 97 [311]
Multi-layered GR PAO2 0.05 wt% 78 16 [281]
Ag/GR nanocomposites 10W40 oil 0.06 to 0.10 wt% 30.4 27.4 [302]
GR nanosheet Vegetable based oil 50 ppm 13.5 9.7 [290]
Nanographite platelets Mineral oil 0.25 17 24.1 [299]
GR PAO4 0.04 wt% 78 90 [295]
Modified GR platelets 350 SN oil 0.075 wt% 37 [285]
Single layer GR C2H5OH 1 mg/mL 48 [287]

GRO C2H5OH +
SAE20W-50 oil - - 60 to 80 [298]

GR Engine oil 0.025 wt% ∼80 ∼33 [291]
Polyacrylamide-grafted-f-GRO Water 0.2 to 1.0 wt% 46 to 55 13 to 37 [313]
Octadecylamine fGR C16H34 0.06 wt% 26 9 [317]
r-GRO nanosheets PEG 200 0.03 mg/mL 38 55 [304]

GR nanoplatelets Palm-oil TMP ester
+ PAO 0.05 wt% 5 15 [296]

Urea-modified fluorinated GR Water 1 mg/mL 64.4 [322]
Cu nanoparticles/PDA f-GRO
nanosheets Soyabean oil 0.1 wt% 57 27 [319]

8. Automotive Sector

Industries and transport sector across the globe have been assigned the task of reducing
CO2 and other greenhouse emissions to halt the problems arising out of global warming
and so that it is safe to live on the planet. Concerted efforts are being made to reduce carbon
footprints and energy losses by moving to clean and sustainable energy sources [272,325].
Internal combustion engines are the heart of the automobile sector and are also used in
various machinery and equipment. Various types of frictional losses lower the efficiency
and raise fuel consumption. Figure 11 shows the new Ford Mach II’s 45% weight-saving
multi-material lightweight vehicle (MMLV) body design in white (BIW) [326].
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8.1. Applications

Traditional additives have been used in fuels and oils for many years, but in the
last decade, nanoparticles have been explored for use as potential additives to improve
anti-wear and anti-friction characteristics [327]. In automobiles, major frictional losses
occur in IC engines, transmission systems, tires and gearboxes. Lubricants with various
carbon-based allotropes have found applications in gearboxes, turbines, IC engines and
other mechanical and hydraulic systems. These engine oil-based applications constitute
50% of the total global market [328]. Sarafraz and Hormozi [329] dispersed nanofluids
consisting of MWCNTs inside a Chevron plate heat exchanger and investigated the pressure
drop and heat transfer characteristics. A higher friction factor and pressure drop were
observed with MWCNT/water nano-fluids as compared to the base fluid, but excellent
thermal performance was the plus point of using nanofluids. Srinivas et al. [330] analysed
the thermophysical and heat transfer characteristics of nanofluids using MWCNTs in
concentrations of 0.025, 0.05 and 0.1% with deionized water and sebacic acid. An air-
cooled heat exchanger, which worked similarly to an automotive radiator, was used for
studying the heat transfer performance of nanofluids. There was an 87.3% increase in the
overall heat transfer coefficient in comparison to base fluid. M’hamed et al. [331] found
that the MWCNT- C2H6O2/H2O nanofluids increased the average heat transfer by 196.3%
for 0.5 vol% nanoparticle concentration in comparison to base coolant in an automotive
radiator system. The findings also revealed that the thermal conductivity, aspect ratio and
specific surface area were increased, and that the thermal resistance was reduced with
MWCNT-based nanofluid in comparison to base fluid. In contrast to other carbon-based
materials, GR-based nanomaterials seem to have excellent potential for use as lubricant
additives due to their excellent properties, and it has become a remarkable research subject.

8.2. Innovations

Researchers have been continuously exploring the possibility of using GR as a nanopar-
ticle additive in automobile lubricants. Rasheed et al. [327] explored the performance of
GR-based engine oil nano-lubricant on a test rig equipped with a four-stroke engine. The
length and flake size of GR were found to have an effect on the thermal performance
of nano-lubricants. The researchers observed that a few-layered GR is instrumental in
reducing COF and improving engine performance. Ramón-Raygoza et al. [332] used
multi-layer graphene (MLG) for preparing nano-lubricants such as MLG-Cu and MLG-
PANI to be used in automobile engines. It has been observed that there was a substantial
decrease of 63% and 43% in the wear and friction coefficients, respectively, with MLG-Cu
dispersions in base oil. Selvam et al. [333] computed the thermo-hydraulic performance
of GR nanofluids/H2O-C2H6O2 (70:30) with 0.1–0.5%. volumetric concentrations. At
0.5% concentration, there was about a 39% and 104% increase in the pumping power and
overall heat transfer coefficient, respectively. Many other experimental studies have been
carried out checking the effect of nanofluid on automotive cooling systems, but some
conflicting results have been observed. Contreras et al. [334] computed the thermo hy-
draulic performance of nanofluids, containing Ag-GR nanoparticles with a binary mixture
having equal proportions of H2O and C2H6O2 as a base fluid in automotive radiators.
Silver-based nanofluids were observed to increase the heat transfer rate by 4.4%, but there
was a reduction in the thermo-hydraulic performance with GR-based samples in com-
parison to base fluid. Esquivel-Gaon [335] demonstrated that the use of r-GRO as nano
additives contributes to decreasing the environmental influence of the transport sector,
which was a positive step toward a more sustainable automobile sector. Izzaty et al. [336]
elaborated on the industrial perspectives on the implementation of graphene composites in
the automotive industry. They focused on three different aspects of innovation manage-
ment, namely PESTEL (political, economic, social, technological, environmental and legal)
analysis, business ecosystem and scenario planning. It has been inferred that a strategic
analysis based on PESTEL factors revealed two major concerns in the automotive industry:
the sustainability of supply chains and the quality of GR composites. Kojima et al. [337]



Materials 2022, 15, 6241 37 of 50

demonstrated a GR Hall sensor manufactured by use of conventional Si process technology
for automotive applications. It was reported that their sensor meets the demands for high
precision and good usability with a sensitivity of 0.1 V/VT, a thermal coefficient of sensi-
tivity of 2800 ppm/K and a mobility of about 2000 cm2/Vs. Toh et al. [338] examined the
thermal performance of H2O-based GR nanoplatelets (GRnP)-based nanofluid at varying
volumetric concentrations and temperatures in automotive radiators. The thermodynamic
performance of a flat tube radiator containing a GRnP base lubricant was simulated using
ANSYS Fluent software. It was inferred that the enhancement in average Nusselt number
of 74.18% at 0.5 vol%, could improve the efficiency of automobile cooling systems, and this
led to a smaller-sized radiator resulting in the improvement of fuel efficiency for the engine.
Sumanth et al. [339] studied the effect of the nanofluid carboxyl GR, which was added to
C2H6O2 (50:50 vol%)-distilled water at different concentrations, on the performance of an
automotive radiator. It was found that by adding carboxyl GR nanoplatelets, the Nusselt
number was increased, and radiator efficiency improved while there was no change in
friction factor. The effectiveness of radiator was observed to be increased by 27.38% for
40 ◦C inlet temperature. Ali et al. [340] used a GR-based nano-lubricant and studied the
mechanism of worn surfaces under a boundary lubrication regime and found energy saving
in automotive engines due to a self-healing effect of nano-lubricants. The experimental
findings indicate that GR nano-lubricant leads to a 17% decrease in the consumed cumula-
tive fuel mass; moreover, the exhaust emissions results showed a reduction of 2.79–5.42%
in CO2, HC and NOx gasses when the engine was lubricated by GR nano-lubricant. Selvam
et al. [341] analyzed the coefficient of convective heat transfer and pressure reduction of
GRnP dispersed in mixture of H2O-C2H6O2 which flows through an automotive radiator.
There was an increase in the coefficient of convective heat transfer of nanofluids on increase
in loading of GRnP, mass flow rate and nanofluid. Also, the enhancement of convective
heat transfer coefficient for the highest concentration (0.5 vol%), and the highest mass flow
rate (100 g/s) was found to be 20% and 51% at nanofluid inlet temperatures of 35 ◦C and
45 ◦C, respectively. Amiri et al. [342] developed a high-performance engine coolant by
dispersing the GR nanoplatelets in H2O-C2H6O2 media. The results revealed the negligible
increase in the pressure drop at various temperatures and concentrations, lack of corrosive
condition, low friction factor, and a performance index larger than 1. As there was no
momentous change in the pumping power in the presence of GRnP-WEG, it was concluded
that such a coolant can be used in place of conventional coolant in thermal equipment.

GR-based nano-lubricants have an enormous potential for increasing fuel efficiency
due to the reduction in frictional losses and adapting to the requirements of automotive
engines. Due to superb performance in boundary lubrication regime, GR nano sheets act as
solid lubricants on worn surfaces and increase the lifespan of engine parts and enhance
the durability of engines [343]. GR has the characteristic of weak van der Waals forces
and electrostatic interaction forces between the two-dimensional layers, which enhances
the stability of nano lubricants [344]. Further research efforts are paramount to perceive
the exact behavior of GR-based nano lubricants from a heat transfer point of view, so
that steps can be taken towards the commercialization of GR-based lubricants in the
automotive sector.

9. Conclusions

This paper gives an overview of different graphene-based materials in the areas of
energy sustainability and environmentally friendly applications.

(a) Graphene, due to its unique characteristics, has been put to multifarious uses by re-
searchers for developing and designing energy saving, conserving and storage devices.

(b) Various composite materials have been fabricated by using different derivatives of
graphene with PANI, PEDOT and numerous metallic oxides. These materials have
been deployed in supercapacitor applications, which resulted in improvement of
specific capacitance and power density. Initial research has shown that graphene
composite materials can be effectively utilized as electrode materials in Li-ion, Na-ion
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and Ca-ion batteries for improving the energy density, cyclability and capacity of
rechargeable batteries.

(c) Researchers have developed a diverse range of graphene-based fuel cell membranes,
and their use resulted in the improvement of mechanical properties, ionic conductivity,
chemical stability, power density and better water uptake.

(d) The development of solar cells by inculcating the fascinating properties of graphene
is an area which is rapidly catching the attention of researchers for improving the
photovoltaic performance of solar cells.

(e) Graphene, in different morphologies, has been blended with various oils/fluids,
which has resulted in improvements of tribological characteristics and increased
environmental friendliness.

(f) Use of graphene-based lubricants has been well established in boundary layer lubrica-
tion, which has resulted in the reduction of frictional losses and enhanced product life
by decreasing wear rate.

(g) The excellent heat transfer characteristics of graphene in different fluids has prompted
its use in the automotive sector for the rapid dissipation of heat which is generated
during the functioning of engine and transmission units.

This comprehensive survey will serve as a valuable guide for researchers in selecting a
specific form/morphology of graphene product and its synergy with various materials for
developing composites which can be used in fuel/solar cells, supercapacitor applications
and rechargeable batteries. Commercial usage of graphene is possible with economical pro-
duction of graphene in different forms. Experimental investigations of graphene composite
electrodes and membranes need to be carried out in order to check the long-term effects on
the performance of batteries and fuel cells. There is a need to explore use of graphene-based
nano lubricants in hydrodynamic lubrication regime. When these key points are answered,
graphene can be effectively utilized as a potential energy-saving material.
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