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Abstract: CoPt alloys with Pt contents from 15 to 90% were prepared using low-cost electrochemical
deposition. Different samples were synthesized from electrochemical baths at pH = 2.5 and 5.5 in a
solution with and without saccharin as an additive. The morphology, composition and crystalline
structure of the as-prepared samples were investigated by High Resolution—Scanning Electron Mi-
croscopy (HR-SEM), Atomic Force Microscopy (AFM), Ultra-high Resolution—Transmission Electron
Microscopy (UHR-TEM), Energy-Dispersive X-ray Spectroscopy (EDX), and X-ray Diffraction (XRD).
XRD investigations revealed that fcc crystalline structure transforms into hcp crystalline structure
when the pH of the electrochemical bath is increased from 2.5 to 5.5 as well as when saccharin is
added to the electrochemical bath. The catalytic performance of the CoPt alloys for the nitro to
amino phenol compounds conversion was investigated for all the prepared samples, and the results
show that the conversion degree increases (from 11.4 to 96.5%) even though the Pt content in the
samples decreases. From the samples prepared from the electrochemical bath with saccharin, a
study regarding the effect of contact time was performed. The results indicated that after only 5 min,
the CoPt sample prepared at pH = 5.5 in the presence of saccharin completely converted the nitro
compound to an amino compound.

Keywords: CoPt thin films; electrodeposition; catalysts; catalytic activity; 4-NP reduction

1. Introduction

Metallic materials in the form of thin films, nanoparticles, nanowires, nanorods, or nan-
otubes are employed in a variety of applications in catalysis, nanomedicine or electronics. The
physical characteristics of nanomaterials differ from those of the same materials in bulk or
single crystals and are heavily influenced by their size and geometry [1–5]. The change in
the properties is due to the increase in the surface-to-volume ratio, the special shape of the
nanostructured materials, the aspect ratio of the nanostructure or the synthesis conditions [6–8].

The CoPt alloys are one of the most studied materials due to their possible applications
in BPM (Bit Patterned Media) for high-density magnetic recording [9,10], microelectrome-
chanical systems (MEMS) for sensing and actuating devices [9,11], Magnetic Resonance
Imaging (MRI) contrast agents [1,12], or as catalysts [13–16].

In the field of catalysis, the CoPt alloy has been widely studied in the last years for
possible application as a catalyst for a Fisher–Tropsch reaction [17], imines synthesis [18],
carbon nanotubes and nanofibers preparation [19,20], Li-O2 batteries [21], hydrogen gener-
ation [22–25], Oxygen Reduction Reaction [26,27], Methanol Oxidation Reaction [28–31]
as well as for the catalytic reduction of 4-Nitrophenol [15,32]. The most used synthesis
route for CoPt alloy preparation is chemical reductions [33] and electrochemical deposi-
tion [11,31,34–36]. Electrochemical synthesis represents a good route to preparing metallic
alloys [37,38] because it is easily applied, does not require a high vacuum and the fact that
the growth speed and the chemical composition of the alloys can be controlled.

Water pollution with organic compounds continuously increases with the discharge of
large quantities of chemical, pharmaceutical or agrochemical products, which comprise a
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significant part of the total organic pollutants from industry. Organic pollutants, such as
surfactants, heterocyclic, phenolic or aromatic nitro-compounds, are dangerous to humans
or ecosystems and difficult to degrade by microorganisms. The nitroaromatic compounds
are important intermediates for several industries and are used to prepare fungicides,
pesticides, dyes and drugs.

One of the most common aromatic nitro-compounds pollutants is 4-Nitrophenol (4-NP),
which is widely used in the pharmaceutical and chemical industry as it is very carcinogenic
and tends to persist in water and soil. In addition, 4-NP can cause headaches, drowsiness,
nausea and cyanosis in the lips, ears, and fingernails [39]. One of the methods developed by
researchers for 4-NP removal from contaminated waters is a catalytic reduction—a simple
and fast approach that can be used for aromatic nitro-compounds removal, acting through the
conversion of nitro-group to amino-group. In fact, the chemical reduction of 4-Nitrophenol
(used to manufacture drugs—e.g., acetaminophen, fungicides, methyl and ethyl parathion
insecticides, or dyes) has not only the advantage of depolluting the wastewaters, but the
reaction product, 4-Aminaphenol (4-AP), is a useful compound working as an anticorrosion
lubricant, intermediate for drugs or photographic developer. In this context, developing a
new catalyzer able to reduce the 4-NP into 4-AP (a complete nontoxic compound) with better
performance becomes necessary. At the same time, the 4-NP reduction by the NaBH4 reaction
(presented in Scheme 1) is widely used by researchers as a test reaction to evaluate the catalytic
properties of various catalysts [40–43].
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Scheme 1. Schematic design of the 4-NP reduction with an aqueous solution of NaBH4, using the
CoPt catalyst.

According to the literature data, the conventional materials used as catalysts for nitro-
compounds hydrogenation are noble metals in general and Pt-group metals in particular,
in various forms such as wires [44], rods [45], prisms [46], plates [47], polyhedrons [48]
or branched nanostructures [49]. Noble metals-based catalysts, such as platinum, are
the most widely used in heterogeneous catalysis for their exceptional performance for H2
generation [50,51], but they are limited because of the huge price and low availability on the
market. In this context, replacing platinum with other metals (especially non-noble metals)
with comparable catalytic performances is a major challenge for the research community.
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The synthesis of new bimetallic catalysts by partially replacing the noble metal with a non-
noble metal can be a reliable solution to solve the noble metals shortage; studies published
in the literature show that the Pt can be successfully replaced by Cu [52], Ni [53], Fe [54]
or Co [55]. However, the catalytic properties of bimetallic catalysts strongly depend on
the alloy composition and arrangement of the two metal atoms on the particle’s surface;
consequently, they depend on the crystalline structure of the alloy [56].

Our work aims to prepare CoPt thin films with a low content of Pt but with optimum
catalytic properties for the chemical reduction of 4-Nitrophenol.

In this work, we will show that the CoPt alloy composition and crystalline structure can
be tuned by varying the electrodeposition parameters, such as electrodeposition potential
and electrochemical bath composition. The objective is to find the appropriate preparation
conditions that lead to synthesizing catalysts with optimum properties. More specifically,
we have prepared CoPt thin films using electrodeposition from an electrochemical bath
with different characteristics (such as pH value or presence of additives). The saccharin
is an additive known as a smoothening and a stress relieving agent drastically influences
the morphology, internal stress, hardness, microstructure and crystalline structure of the
materials prepared when added into the electrochemical bath [57–59]. The choice of
saccharin as an additive was made considering the previously presented literature to date,
but also our team’s results, where it was demonstrated that the use of saccharin as additives
during the electrodeposition of CoPt thin film leads to the preparation of hexagonal CoPt
thin layers without cracks [31,36]. A complete morphological, compositional and structural
characterization was conducted. Next, the catalytic performance of the as-prepared alloys
for the 4-NP reduction was investigated. Remarkably, the catalytic performance of CoPt
alloy increases despite the samples’ decrease in the Pt content. This behavior can be
attributed to the change in the crystalline structure as well as to the differences in the
surface roughness and crystallite size as a function of the electrochemical bath composition.

2. Materials and Methods

All reagents for synthesis and analysis were provided by Alfa Aesar and used without
further purification. A stable aqueous hexachloroplatinate CoPt-solution at pH 5.5 contain-
ing 0.4 M H3BO3 (99.8%), 0.3 M NH4Cl (99.5%), 0.1 M CoSO4 7H2O (98.0%), 0.00386 M
H2PtCl6 (99.9%), with 0.00389 M sodium saccharin (99.0%), was prepared according to the
recently published procedure [34]. The CoPt solution at pH 5.5 was prepared from the
solution at pH 2.5 with the addition of 0.1 M NaOH (97.0%). The pulse electrodeposition
was carried out by exposing the 1.0 cm2 sputtered Au seed layer on oxidized Si wafers with
a 5 nm Ta adhesion layer to the quiescent plating solution. The pulse electrodeposition
was performed in a 100 mL closed three-electrode cell with a platinum wire as a counter
electrode, an Au seed layer as a working electrode, and a saturated calomel electrode (SCE)
for reference. The applied potential was controlled with a Bipotentiostat/Galvanostat
HEKA PG 340. The CoPt alloys were prepared from CoPt quiescent solution with and
without saccharin additive.

Saccharin is used in order to facilitate the control of the crystalline structure of the CoPt
alloy. The electrodeposition was carried out by using a pulsed potential of −0.8 V/SCE
during 2.5 s time-on and the “rest” potential of −0.1 V/SCE during 1 s time-off. The time-
off is necessary for a good “recovery” of the diffusion layer after the time-on. A KLA Tencor
Alpha Step IQ profilometer was used to measure the as-deposited thin layers’ thicknesses.
A HR-SEM (High Resolution–Scanning Electron Microscopy), NEON40EsB CrossBeam
System from Carl Zeiss, was used to examine the microstructure of the as-prepared alloys.
The Energy-Dispersive X-ray Spectroscopy (EDX) measurements inside the same HR-SEM
machine were used to estimate the elemental composition. X-ray diffraction (XRD) was
used to investigate the crystalline structure of the electrodeposited materials with a Bruker
AXS D8-Advance X-Ray Diffractometer with parallel optical geometry and Cu K radiation
(=1.5406), while the surface roughness was analyzed by Atomic Force Microscopy (AFM),



Materials 2022, 15, 6250 4 of 18

using an AFM XE-100 from Park Systems. Ultra-high Resolution–Transmission Electron
Microscopy was performed using the LIBRA®200MC system from Carl Zeiss.

The catalytic performance test of the 4-NP using NaHB4 (98.00%) was performed
using a Perkin Elmer Lambda 35 UV/VIS spectrophotometer as follows: 2.5 mL of distilled
water were put in contact with each material and mixed with 40 µL of 4-NP (10 mM) and
0.5 mL of NaHB4 (freshly aqueous solution of 0.2 M). The yellow mixture generated was
intermittently stirred at room temperature for 120 min. The solution was analyzed using
the UV–VIS method in the 300–700 nm range. The purity of the 4-Nitrophenol used during
the experiments was 98.0%.

3. Results
3.1. Morphological and Compositional Characterization

The alloy morphology, roughness, composition and thickness are important param-
eters for analysis since the catalytic properties of the materials are influenced by them.
In this regard, very fine control of the synthesis parameters is necessary to obtain alloys
with reproducible properties. The schematic diagram of the fabrication and formation
of CoPt thin films is presented in Scheme 2. The electrodeposition is carried out in a
three-electrode electrochemical cell consisting of a Pt wires as a counter electrode (C.E.), a
Saturated Calomel Electrode—SCE as reference (R.E.) and an Au thin film as a working
electrode (W.E.).
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During this study, four different samples were prepared, with the catalytic activities of
these samples being evaluated. All the samples were prepared at −0.8 V/SCE, with two
of them from a solution at pH = 2.5 (one sample in the absence of saccharin–S1 and one
in the presence of saccharin–S2) and the others from a solution at pH = 5.5 (one sample
in the absence of saccharin–S3 and one in the presence of saccharin–S4). Since thin film
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properties are a function of its thickness, the CoPt thin layers with a thickness of 50 nm
were investigated to compare the catalytic properties of materials prepared under various
conditions. The synthesis time was calibrated for each electrochemical bath composition
prior to electrodeposition. For the present study, we used CoPt electrodeposited thin layers
having 50 nm thickness as measured by profilometry. Figure 1 presents the as-measured
thickness profile of the CoPt thin layer prepared at pH = 5.5 in the presence of saccharin (the
lines profiles for all the prepared samples are presented in the Supplementary Materials in
Figure S1).

Materials 2022, 15, x FOR PEER REVIEW 5 of 19 
 

 

During this study, four different samples were prepared, with the catalytic activities 

of these samples being evaluated. All the samples were prepared at −0.8 V /SCE, with two 

of them from a solution at pH = 2.5 (one sample in the absence of saccharin–S1 and one in 

the presence of saccharin–S2) and the others from a solution at pH = 5.5 (one sample in 

the absence of saccharin–S3 and one in the presence of saccharin–S4). Since thin film prop-

erties are a function of its thickness, the CoPt thin layers with a thickness of 50 nm were 

investigated to compare the catalytic properties of materials prepared under various con-

ditions. The synthesis time was calibrated for each electrochemical bath composition prior 

to electrodeposition. For the present study, we used CoPt electrodeposited thin layers 

having 50 nm thickness as measured by profilometry. Figure 1 presents the as-measured 

thickness profile of the CoPt thin layer prepared at pH = 5.5 in the presence of saccharin 

(the lines profiles for all the prepared samples are presented in the Supplementary Mate-

rials in Figure S1). 

 

Figure 1. Line profile of 50 nm CoPt thin film prepared at pH = 5.5 in the presence of saccharin. 

After electrodeposition, the CoPt electrodeposited surface was analyzed by HR-SEM 

and AFM, while EDX determined the composition. Figure 2 shows the HR-SEM images 

of the CoPt alloy electrodeposited from the electrochemical bath at pH = 2.5 without ad-

ditive (Figure 2a), pH = 2.5 with additive (Figure 2b), pH = 5.5 without additive (Figure 

2c) and pH = 5.5 with additive (Figure 2d), respectively. 

Figure 1. Line profile of 50 nm CoPt thin film prepared at pH = 5.5 in the presence of saccharin.

After electrodeposition, the CoPt electrodeposited surface was analyzed by HR-SEM
and AFM, while EDX determined the composition. Figure 2 shows the HR-SEM images of
the CoPt alloy electrodeposited from the electrochemical bath at pH = 2.5 without additive
(Figure 2a), pH = 2.5 with additive (Figure 2b), pH = 5.5 without additive (Figure 2c) and
pH = 5.5 with additive (Figure 2d), respectively.
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Figure 2. HR-SEM images of electrodeposited CoPt alloy for various electrodeposition solutions.
(a) pH = 2.5 solutions without saccharin addition, (b) pH = 2.5 solutions with saccharin addition,
(c) pH = 5.5 solutions without saccharin addition and (d) pH = 5.5 solutions with saccharin addition.
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The HR-SEM images clearly show that the electrodeposition bath composition influ-
ence the CoPt alloys’ thin film surfaces prepared at controlled potential (E = −0.8 V/SCE).
As mentioned previously, the saccharin was used in order to reduce the stress, to prepare
thin films without defects on the surface, as well as for good control of the crystalline struc-
ture of the as-deposited CoPt alloy. The SEM analysis of the samples prepared from the
electrochemical bath without saccharin shows the presence of small cracks on the surface
(Figure 2a,c). When the saccharin was added to the electrochemical bath, the surfaces of
the samples were free of cracks.

AFM images (presented in Figure 3) were used to study the root mean square (RMS)
roughness of thin films. The most generally reported measurement of surface roughness is
the root mean square roughness, which is defined as the standard deviation of the surface
height profile from the average height [60].
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Figure 3. AFM images of electrodeposited CoPt alloy for various electrodeposition solution: (a) pH = 2.5
solutions without saccharin addition, (b) pH = 2.5 solutions with saccharin addition, (c) pH = 5.5 solutions
without saccharin addition and (d) pH = 5.5 solutions with saccharin addition.

We determined that the above-mentioned thin films have extremely good homogeneity.
Based on the SEM and AFM surface analysis, we can conclude that the sample’s surface
is completely covered with the CoPt alloy film. The surface roughness and the grain size
(summarized in Table 1) are strongly influenced by the preparation conditions and less by
the roughness of the substrate (Ra = 1.09 nm; data presented in Supplementary Materials,
Figure S2). Thus, the roughness of the alloys prepared at pH = 2.5 (sample S1) from the
solutions without the saccharin addition is 7.5 nm and slightly increases to 9 nm when
saccharin is added to the electrochemical bath (sample S2), while the average grains size
decrease from 55 to 50 nm.

The same results (a slight increase of the surface roughness) are obtained by the in-
crease of the electrochemical bath pH from 2.5 to 5.5, the samples prepared in this synthesis
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conditions presenting a surface roughness of 9.2 nm (sample S3). The average grain size of
the sample prepared at pH = 5.5 in the absence of saccharin is 90 nm. The samples prepared
at pH = 5.5 and in the presence of saccharin (sample S4) present the highest roughness
value, respectively, 10.6 nm, while the average grain size is 75 nm. Table 1 summarizes the
physical and chemical properties of the as-prepared samples. It is clear that the sample’s
roughness and average grain size are strongly correlated with the electrodeposition condi-
tions and, respectively, with the alloy composition. Thus, the roughness value increase with
the increase of the Co content of the sample. A similar evolution of the surface roughness
as a function of the alloy composition for CoNi electrodeposited thin films was reported
previously by Tebbakn et al. [61].

Table 1. Physical and chemical parameters of the CoPt catalysts.

Sample Bath pH Saccharin
Addition

ED Time (s)
Surface

Roughness (nm)
Crystalline
Structure

Crystallite Size (nm) Alloy
Composition Conversion Degree

after 120 min, %
XRD AFM % Pt % Co

S1
2.5

NO 25 7.5 cfc 54 55 90 10 11.4

S2 YES 30 9 hcp 46 50 88 12 28.0

S3
5.5

NO 30 9.2 hcp 88 90 78 22 67.9

S4 YES 35 10.6 hcp 74 75 15 85 96.5

The compositional analysis of the catalysts was determined by EDX, with the obtained
data being presented in Table 1. The EDX spectrum (presented in Supplementary Materials,
Figure S3) of the as-prepared thin films indicates the presence of platinum and cobalt
in different proportions of the preparation conditions. Thus, the samples prepared at
pH = 2.5 from solution without saccharin (sample S1) contains 90 at.% Pt and 10 at.%
Co, while the saccharin additions (sample S2) lead to the preparation of alloys having
88 at.% Pt and 12 at.% Co. When the electrochemical bath pH is increased to 5.5 (sample
S3), alloys having 78 at.% Pt and 22 at.% Co is prepared, while the presence of saccharin
(sample S4) leads to the preparation of catalysts with 15 at.% Pt and 85 at.% Co. The EDX
results show that the CoPt alloy concentration is strongly dependent on the solution pH and
composition. The lower percentage of Co in the samples prepared at the lower pH values
(samples S1 and S2) is related to the fact that the metal hydroxides formation and ab-
sorption, as well as the dissolution of the freshly deposited metal atoms, influence the
electrodeposition process and are highly correlated to the pH value of the electrochemi-
cal bath. The same evolution of the Co percent vs. bath pH value has been reported by
Tian et al. [62] for electrodeposited CoNi thin films.

In their work, Tian et al. show that a lower pH value favors the dissolution of freshly
deposited metal and depresses the metal hydroxide formation and absorption. Thus, the
alloy composition can be tuned by changing the electrochemical bath characteristics (pH
and saccharin). The addition of saccharin during electrodeposition leads to a higher Co
content in the samples for both pH values. This behavior is attributed to the decreases
of the H+ concentration at the electrodeposition surface when saccharin is added into
the electrochemical bath at the same time as the increase of the concentration of the Co
hydroxide species and, consequently, to the increase of Co ions available for the reduction
to metal. The same behavior was observed earlier in the electrodeposition of CoPt at the
controlled potential in quiescent solutions [31]. The voltammetry studies presented in our
previous papers (see refs. [31,35]) show that the addition of saccharin to a CoPt solution
changes the position and height of the peaks, leading to a decrease in the hydrogen partial
current densities. This result shows that the concentration of the electroactive H+ species
at the electrode surface is smaller when saccharin is added to the electrochemical bath,
leading to the local increase of the pH value and to the preparation of CoPt deposits with
higher Co content.

The homogeneity of the samples’ composition has been determined by EDX (by
performing analysis at different points of the surface sample, the results being presented
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in Tables S1–S4 in Supplementary Materials) and also by elemental mapping. Figure 4
presents the results of the elemental mapping of the sample prepared at pH = 5.5 in the
presence of saccharin. It can be observed from Figure 4 the Pt and Co elements are uniformly
distributed on the sample surface, showing a good sample homogeneity.
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3.2. XRD Analysis of the CoPt Alloys

The XRD data in Figure 5 show that the alloys prepared from the solution without
additives at pH = 2.5 present fcc structure. In contrast, the addition of saccharin and the
increase of the pH, lead to the formation of hcp structure. The XRD diffraction peaks at
2θ = 48.2 and 53.7 of the samples prepared at pH = 2.5 in the absence of saccharin can be
assigned to the (200) and (210) fcc reflections, respectively. For the samples prepared at
pH 5.5 or in the presence of saccharin, the diffraction peaks at 2θ = 48.2 and 53.7 disappear,
and a new peak, characteristic of the hcp structure, appears at 2θ = 43.5, 44.5, 58.8. This
reflection can be assigned to (002), (101) and (102) hcp structures as found by Cortes
et al. [63]. The samples prepared at pH = 2.5 in the presence of saccharin also present the
(002), (101) and (102) hcp reflections.
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The average crystallite size of the as-prepared CoPt alloys was calculated based on
the Scherrer equation, the results being well correlated with those obtained by using AFM
measurement. The average crystallite size determined by using the Scherrer formula is
only a few nanometers higher than the average grain size measured by the AFM, with the
difference coming from the tip radius (during the measurements, tip radius of 2 nm was
used). Our data clearly show that a single crystal forms each grain. The results (presented
in Table 1) obtained by this method show that the crystallite size slightly decreases for the
samples prepared at the same pH, when saccharin is added into the electrochemical bath.
The increase of the pH value from 2.5 to 5.5 lead to an increase in the crystallite size from
54 nm (sample S1) to 88 nm (sample S3). This variation of the crystallite size is due to the
increase of the Co content in the alloy. In order to clarify the alloy crystalline structure as
a function of the synthesis conditions, we studied the cross-section of the CoPt thin films
prepared at pH = 5.5 by means of HR-TEM; the results are presented in Figure 6. The
HR-TEM images’ analysis shows that both samples are polycrystalline, presenting the hcp
structure in accord with the XRD measurements. For both of the analyzed samples, the
measured d-spacing of 2.10 Å and 2.01 Å, match the (002) and (101) Co-hcp orientation.
A small number of amorphous compounds (presumably oxide/hydroxide) were also
observed at the grains interface. These compounds are not visible on the XRD patterns due
to the fact that they are present in a very small amount. Moreover, an important conclusion
of the HR-TEM study is that when saccharin is added to the electrochemical bath, the
obtained thin film exhibits columnar growth.
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3.3. Reduction of 4-NP to 4-AP Using Synthesized Materials

The 4-nitrophenol (4-NP) was reduced to 4-aminophenol (4-AP) in the presence of
NaBH4 in order to establish the potential catalytic performance of all four synthesized
materials, Figure 7.
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Figure 7. Absorption spectra of the conversion of 4-Nitrophanolate anion by the CoPt materials.

From Figure 7, it can be observed that the catalytic performance of the investigated
materials differs. The peak intensity at 400 nm did not decrease significantly even after
120 min of contact time of the CoPt samples prepared from an electrochemical bath without
saccharin regardless of the electrochemical bath pH value (samples S1 and S3).

In the case of the CoPt sample prepared at pH = 2.5 in saccharin (sample S2), the
absorbance at 400 nm decreased to approximately 0.5 after 120 min of contact time. The
peak at 400 nm disappeared when catalyst CoPt prepared at pH = 5.5 in the presence
of saccharin (sample S4) is used, showing the complete conversion of the nitro to the
amino group.

Based on the obtained results, it can be concluded that the catalytic performance in
the reduction of 4-NP to 4-AP (highlighted by UV-VIS measurements of the conversion
of 4-Nitrophanolate anion to the 4-aminobenzoate anion) of the samples prepared with
saccharin is higher than the catalytic performance of the samples prepared from the elec-
trochemical bath without saccharin. This observation can be explained by the differences
in the crystalline structure, crystallite size, and surface characteristics (such as surface
roughness) of the catalyst.

Table 1 summarizes the data concerning the conversion degree of the nitro to amino
compounds after 120 min of contact time for all four prepared samples. The conversion
degree has been calculated by reporting each sample’s absorbance peak intensity to the
blank sample’s peak intensity and considering the blank sample’s conversion degree as 0%.

From Table 1, it can be noted that the electrodeposition (ED) bath characteristics (pH
value and addition of saccharin) strongly influence the catalytic properties of the samples.
Thus, the sample prepared at pH = 2.5 in the absence of saccharin (sample S1) manifests
the lowest conversion degree for the 4-nitrophenol transformation reaction, even though
the sample prepared in this condition has the highest Pt content. When saccharin is added
to the electrochemical bath (sample S2), the conversion degree of the 4-nitrophenol is
increased from 11.4% to 28.0%, an increase of 2.45 times. This behavior is related to the
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decrease of the crystallites, the increase of the surface roughness (leading to the increase of
the sample surface) size as well as the change of the crystalline structure from cfc (structure
obtained in the absence of saccharin, sample S1) in hcp (structure obtained when saccharin
is added to the electrochemical bath, sample S2). Further, the conversion degree of the
4-nitrophenol is increasing to 67.9% (representing an increase of 5.95 times, compared with
the sample prepared at pH = 2.5 whiteout saccharin, when the bath pH increased to 5.5
(sample S3) and respectively to 96.5% (representing an increase of 8.46 time, compared
with the sample prepared at pH = 2.5 whiteout saccharin) when saccharin is added into the
electrochemical bath (sample S4), despite the decrease of the Pt content in the alloy. This
behavior is strongly related to the crystalline structure of the alloy and the orientation of
the crystallites as was previously demonstrated by our team [64]: in the case of the sample
prepared at pH = 5.5 (electrochemical bath with and without saccharin), the variation
in crystallite orientation results in an increase in Pt content nearer the sample surface,
contributing to an increase in the sample’s catalytic efficiency. The increase of the surface
roughness also contributes to the increase of the sample catalytic surface, leading to an
increase in the conversion degree.

Moreover, the effect of contact time was explored to more clearly explain the ad-
vantages of the CoPt alloy prepared at pH = 2.5 in the presence of saccharin and CoPt
alloy prepared at pH = 5.5, also in the presence of saccharin samples. The results of the
absorbance vs. time are illustrated in Figure 8.
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Figure 8. Absorption spectra of the conversion of 4-Nitrophanolate anion over time by: (a) CoPt
pH 2.5 + sacch (sample S2) and (c) CoPt pH 5.5 + sacch samples measured for 120 min contact time;
(sample S4); (b) Optical view of the color of the solution mixture for CoPt pH 2.5 + sacch (sample S2);
(d) Optical view of the color of the solution mixture for CoPt pH 5.5 + sacch (sample 4).

After reviewing the data, it can be highlighted that: (i) in the case of CoPt prepared at
pH = 2.5 in the presence of saccharin (sample S2), with increasing contact time, the color
of the mixture progressively diminished; (ii) in the case of CoPt prepared at pH = 5.5 in
the presence of saccharin (sample S4), the absorption peak at 400 nm\disappeared after
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approximately 5 min of contact time, indicating that the 4-NP had been reduced and this
type of material can be considered effective for 4-NP reduction.

The findings of this study were compared to those reported in the literature in Table 2.

Table 2. Comparison of the catalytic activity with available literature for catalytic reduction of 4-NP.

Material Reaction Time for the
Reduction of 4-NP References

g-C3N4/CuS composite 50 min [65]
Ag/g-C3N4/V2O5 60 min [66]
ACMNP (10 mg) 18 min [67]
ACMNP (15 mg) 14 min [67]
ACMNP (20 mg) 9 min [67]
ACMNP (25 mg) 6 min [67]

CoFe2O4/ZrMCM-41 25% nanocomposite 6 min [68]
Nickel-coated hyperporous polymer foam (Ni-HPF) 24 min [69]

Cu NPs-Fe3O4-SAlg ~4 min [70]
Fe3O4/CS-Me@Pd microcapsules ~2.5–5 min [71]

CoPt, rGO/CoPt, and rGO/CoPt/Ag catalysts 8, 4, 1 min [15]
Co25Pt75, Co50Pt50 and Co75Pt25 alloy nanoparticles 3, 4, and 2 min [32]

GO 60 min [72]
Pd/rGO-H 2 min [72]

Bi2Te3−MoS2 layered heterostructures 35 min [73]
CoPt pH = 5.5 + sacch ~5 min Present study

Ayodhya and Veerabhadram investigated the catalytic activity of g-C3N4/CuS com-
posite to reduce 4-NP to 4-AP. The experiments were performed as follows: a volume of
40 µL of 4-NP solution, 1.26× 10−2 mol/L, was added into 2.5 mL of double distilled water
and then mixed with 0.5 mL of freshly prepared aqueous NaBH4 solution, 0.5 M. Then,
the catalyst was added to the yellow-colored solution. Their results demonstrated that a
reaction time of 50 min is sufficient for 4-NP reduction [65].

In the case of material synthesized by EL-Sheshtawy and co-workers, namely Ag/g-
C3N4/V2O5, the contact time needed to reduce 4-NP to 4-AP is 60 min [66]. The study
was carried out under the following conditions: 2.8 mL deionized water and 40 µL NP
(0.01 M) were mixed. The solution was stirred for one hour of contact time, and then a
volume of 80 µL freshly prepared NaBH4 solution (0.5 M) was added. In the last step,
10 µL of catalyst (5 mg/mL) was added to the mixed solution.

Saxena and Saxena demonstrated that the performance of ACMNPs materials differs
in function of working parameters. The authors performed the work by adding 0.2 mL
of 10 mM NaBH4 to 5 mL of 0.1 mM 4-NP solution. For example, as the catalyst amount
increased from 10 to 15 mg, the catalytic reduction was achieved in 18 and 14 min. On
the other hand, a reaction time of 9 and 6 min is necessary if a catalyst amount of 20 and
25 mg is used, respectively. The authors showed that the temperature has an impact on
the catalytic reduction as well: when an amount of 20 mg of catalyst is used, and the
temperature is raised from 25 to 55 ◦C, the rate of catalysis increases while the time required
for catalysis decreases from 9 to 4 min [67].

The CoFe2O4/ZrMCM-41, 25% nanocomposite, shows a good catalytic activity (100%)
for the reduction of 4-NP (6 min) using the following conditions: 2 mL of a 4-NP aqueous
solution having a concentration of 0.2 mM were mixed with 0.5 mL of fresh NaBH4 solution,
20 mM [68].

The catalytic reduction of 4-AP using the material proposed by Yang and co-workers
promises (24 min of reaction time) [69]. The catalytic activity of Ni-HPF was established
based on the following work plan: 50 mg of Ni-HPF were mixed with an aqueous solution
containing 5 mL of 4-NP, 0.1 mM and 0.5 mL of NaBH4, 0.5 M.

Recently, Kalantary and co-workers published a study that demonstrated that when
Cu NPs-Fe3O4-SAlg is used, the reduction time of 4-NP is achieved in approximately 4 min.
Also, they compared their results with the available literature [70]. The experiments were
performed using 4-NP solution of 2.5 × 10−3 mol/L, and 2.5 × 10−3 mol/L of NaBH4. The
amount of catalyst used was 10 mg.
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The Fe3O4/CS-Me@Pd microcapsules show catalytic ability in reducing this type of
pollutant (150–300 s) [71]. The reduction reaction was carried out with NaBH4 at room
temperature. The freshly prepared NaBH4 solution (1 mg/mL) was added to 5 mL of 4-NP
solution, 1 mg/mL, and the reaction started with the addition of the catalyst (6.0, 8.0, 10.0,
12.0 mg).

CoPt, rGO/CoPt, and rGO/CoPt/Ag catalysts showed a reduction time of 8, 4, and
1 min [15]. A volume of 0.1 mL of 4-NP, 0.005 mol/L and 2 mL of deionized water was
added to the quartz cuvette. An amount of 1 mL of NaBH4 (0.2 mol/L) was also added.
The reaction started after adding 60 µL of catalyst aqueous dispersion (2 mg/mL).

Co25Pt75, Co50Pt50 and Co75Pt25 alloy nanoparticles exhibited a catalytic performance
for the reduction of 4-NP to 4-AP: 3 min, 4 min, and 2 min, respectively [32]. The authors
proposed the following working conditions: 1 mL NaBH4, 0.2 M/L solution and 2 mL
4-NP, 0.005 M/L solution were taken to 100 µL Co25Pt75, Co50Pt50 and Co75Pt25 alloy NPs
aqueous dispersion (2 mg, 2 mg/mL) was introduced.

GO, and Pd/rGO-H materials presented a reaction time of 60 min, while for Pd/GO-P
material, a reaction time of 2 min was found to be sufficient [72]. The test was run in this
manner: 4-NP solution (0.145 mM, 2.5 mL) was added to the cuvette, and 50 µL of the
as-synthesized catalyst was added. Finally, 50 µL freshly prepared sodium borohydride
solution, 1 M, was added.

The Bi2Te3−MoS2 layered heterostructures displayed a good catalytic performance
(35 min) [73]. An amount of 10 mg of the catalyst was stirred into 100 mL of water
to obtain dispersion. After that, 256 mg of 4-NP (18.4 mmol) was dissolved into the
aqueous dispersion of the catalyst, followed by adding 1.51 g of NaBH4 (400 mmol) with
constant stirring.

From Table 2, it can be observed that CoPt prepared at pH = 5.5 in the presence of
saccharine shows a good catalytic activity, and it can be recommended as an alternative
material in 4-NP reduction.

4. Conclusions

CoPt thin films with a thickness of 50 nm were prepared by electrodeposition by
applying a potential of −0.8V/SCE for 2.5 s followed by −0.1 V/SCE for 1 s. The synthesis
was carried out from stable hexachloroplatinate solutions at two different pH values (2.5
and 5.5, respectively), with or without adding saccharin as an organic additive. The
catalytic properties of the as-prepared samples were tested for the conversion of the 4-
Nitrophenol into the 4-Aminophenol. The microstructures of the samples were analyzed
by different techniques (SEM, TEM and AFM). The measurements showed that the sample
surface is completely covered with a continuous CoPt alloy thin film. EDX performed
the compositional analysis of the samples, showing that the Pt concentration of the alloy
thin films can be tuned from 15 to 90%, strongly dependent on the electrochemical bath
characteristics. Thus, increasing the pH of the electrodeposition coating solution from
2.5 to 5.5 decreases the Pt content in the electrodeposited alloy. The addition of saccharin
results in higher Co content and, respectively, lower Pt content in CoPt films produced
by this method, regardless of the electrodeposition bath pH value. Saccharin also has
important effects on the microstructure and crystal structure of the prepared CoPt thin
films, thus influencing the grain size and the surface roughness. Consequently, these
different properties of the samples strongly influence the catalytic properties of the thin
films for the reduction of the 4-NP.

The order of reaction completion followed the order: CoPt pH = 5.5 + sacch > CoPt
pH = 2.5 + sacch > CoPt pH = 5.5 > CoPt pH = 2.5. This fact highlighted that the CoPt
prepared at pH = 5.5 in the presence of the saccharin sample is the most promising catalyst.
This good catalytic performance can be attributed to its crystalline structure.

This study will be extended by investigating other parameters (such as the applied
potential or solution pH) that influence the physical properties of the CoPt alloy and that
impact the catalytic properties of the CoPt thin film.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma15186250/s1, Figure S1: Lines profile of the electrodeposited CoPt
alloy for various electrodeposition solutions; Figure S2: AFM images of the Au support tougetter with
the corresponding surface statistics; Figure S3: EDX spectra of the electrodeposited CoPt alloy for
various electrodeposition solution; Table S1: EDX analysis of the electrodeposited CoPt thin film from
electrochemical bath at pH = 2.5, in absence of saccharin; Table S2: EDX analysis of the electrodeposited
CoPt thin film from electrochemical bath at pH = 2.5, in presence of saccharin; Table S3: EDX analysis
of the electrodeposited CoPt thin film from electrochemical bath at pH = 5.5, in absence of saccharin;
Table S4: EDX analysis of the electrodeposited CoPt thin film from electrochemical bath at pH = 5.5, in
presence of saccharin.
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