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Abstract: Antimony trisulfide (Sb2Se3), a non-toxic and accessible substance, has possibilities as a
material for use in solar cells. The current study numerically analyses Sb2Se3 solar cells through
the program Solar Cell Capacitance Simulator (SCAPS). A detailed simulation and analysis of
the influence of the Sb2Se3 layer’s thickness, defect density, band gap, energy level, and carrier
concentration on the devices’ performance are carried out. The results indicate that a good device
performance is guaranteed with the following values in the Sb2Se3 layer: an 800 optimal thickness for
the Sb2Se3 absorber; less than 1015 cm−3 for the absorber defect density; a 1.2 eV optimum band gap;
a 0.1 eV energy level (above the valence band); and a 1014 cm−3 carrier concentration. The highest
efficiency of 30% can be attained following optimization of diverse parameters. The simulation
outcomes offer beneficial insights and directions for designing and engineering Sb2Se3 solar cells.

Keywords: solar cells; antimony triselenide; career concentration; bandgap; SCAPS-1D

1. Introduction

Solar energy can be harnessed to fulfil expanding energy requirements. Increasing
solar energy utilization also demands innovative photovoltaic (PV) technologies with cheap
mass production costs and an excellent power conversion efficiency (PCE) [1]. Thin-film
photovoltaic (TFPV) technologies have drawn huge research focus due to the benefits
of lesser material consumption, greater power production, and scalable flexibility [2–4].
For the different types of thin-film solar cells, notable successes have been attained in the
representative cadmium telluride (CdTe) [5], copper indium gallium selenide (CIGS) [6,7],
and perovskites [8,9]. The paucity of indium (In) and toxicity of cadmium (Cd) restrict their
long-term use. Numerous low toxic and earth-abundant photoabsorber materials, such as
CZTS(e) SnS Cu2O, CuSbSe2, and Sb2Se3, have been explored for PV applications [10,11].
Among those emerged as potential candidates for next generation light-harvesting ma-
terials of the chalcogenides, antimony selenide (Sb2Se3) has high absorption coefficients
(>105 cm−1), a six suitable band-gap energy of 1.1–1.2 eV, and a 6–8 earth-abundant low-
toxic constituent [12,13]. It is an innocuous and economical material having a band gap
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of ~1.2 eV [14]. Sb2Se3 has drawn considerable interest in the past few years due to its
sound photo-conducting attributes and superior thermoelectric power [15], which aid
uses in optical and thermoelectric cooling tools. Besides these uses, Sb2Se3 has diverse
uses in photodetectors, solar cells, batteries, and memory gadgets [16]. All these uses are
strongly reliant on the electrical, optical, microstructural, and other attributes of Sb2Se3.
Material synthesis and deposition too play a crucial part in attaining an improved quality
of materials. In the past decade, Sb2Se3 solar cells have been broadly studied, uncovering
significant advancement with PCEs of 3.21%, 7.6%, and 9.2% [2].

Several aspects were ascribed to this enhanced PCE, such as improved absorber growth
procedures (such as vapour transport deposition, close space sublimation, and hydrother-
mal), buffer layer optimisation (CdTe, ZnO, and TiO2) and innovative architectural designs
of the device [17]. There was an improvement in the device performance despite the Sb2Se3
cells’ display of photovoltage in a low value. Several studies by [18] noted that based on
the numerical simulations, after the suppression of the negative band bending, additional
holes were removed from the rear contact. It was pointed out that, compared to other
solar cells, the antimony chalcogenide (such as Sb2Se3) solar cells called for a better hole
transport layer (HTL). In addition, Chen et al. (2017) [19] reported that the Sb2Se3 efficiency
was improved by the inorganic PbS colloidal quantum dot film from 5.42 to 6.50%. Several
researchers utilised an inorganic copper(I) thiocyanate (CuSCN)-HTL to increase the Sb2Se3
cells’ PCE by 7.5%. The researcher used the following common HTL in different solar cells:
2,2,7,7-Tetrakis (N, N-di-p-methoxyphenylamine)- 9,9-spirobi-fluorene (Spiro-OMeTAD).
It was likewise utilised in the Sb2 (S, Se)3 solar cells that have a <10% PCE value [20,21].
Nonetheless, using organic HTLs for large-scale production is not advisable because of
their erratic device performance and expensive nature. Therefore, it is imperative to de-
sign a new, stable, cost-effective, and non-toxic material in order to manufacture efficient
photovoltaic (PV) cells.

Applying this technique is fairly simple and is broadly employed for examining
the HTLs’ efficiency in perovskite devices. Moreover, PEDOT: PSS is regarded to be
cost-friendly and offers high-quality results, making it an optimum choice as an HTL
for the development of PSC. Even though the use of PEDOT: PSS as an HTL for PSCs
is broad and effective, it shows poor performance as well as stability versus other HTLs
due to its highly doped characteristic. This results in numerous issues, such as acute
interfacial recombination. Thus, PEDOT: PSS conductivity was altered and enhanced by the
researchers via additional p-doping in order to match the energetics as well as enhance the
device performance. As an ETL, TiO2 is employed and generally annealed at >450 ◦C for
synthesising TiO2 crystals. The evaluation of some of the metal oxides, which were treated
under low temperatures, was done as ETLs in the PSCs in order to avoid annealing at high
temperatures, such as SnO2 [22], In2O3 [3], WO3 [23], amorphous-TiOx [24], Zn2SnO4 [25],
La-doped BaSnO3 [21], and ZnO [26]. From these ETLs, ZnO could be considered as a
potential ETL as an ultrahigh electron mobility (205–300 cm−2 /Vs) was observed [26].
Benami et al. (2022), found that, compared to TiO2, the use of ZnO as an electron transport
material increases cell efficiency [27]. As in a perovskite solar cell, the lower edge of the
conduction band enhances the transit of photogenerated electrons.

Various researchers have used different techniques to enhance the ZnO semiconductor
characteristics, and subsequently the PSCs’ photovoltaic performance via doping and
designing ZnO by employing other metal oxides or elements [28]. Even though these
experiments were conducted, it was challenging for the researchers to enhance ZnO-based
PSCs. ZnS was found to be similar with that of a ZnO wide bandgap semiconductor and it
also showed comparable physical characteristics. With regards to quantum-dot-sensitised
solar cells, ZnS showed outstanding electron mobility and was also seen to function similar
to ETL and the interfacial passivation layer [28]. ZnS is associated with a low conduction
band minimum (CBM) versus ZnO, making it a better match for MAPbI3-LUMO [28].
However, PSCs’ photovoltaic performance still needs more improvement by employing
ZnS or ZnO in order to facilitate the transportation of electrons to ZnO from MAPbI3 [29],
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In the past, a poor photovoltaic performance was displayed by the ZnS-based PSCs. The
ZnO/ZnS nanoparticle structure can be employed to considerably decrease the optical
band gap while simultaneously maintaining the required optical absorption value. As per
the theory, the PSCs’ open-circuit voltage (Voc) follows the energy difference between the
valence band maximum (VBM) and CBM (ELT) [30]. Thus, the Voc value can be increased
by adding ZnS to the ZnO-based PSCs [31]. Adding ZnS to the surfaces of ZnO behaves like
an energy barrier that blocks the recombination of charges between MAPbI3 and ZnO [32].
However, this could also result in increasing ZnO-based PSCs’ short-circuit current.

This study concentrated on numerical simulation for demonstrating the link of carrier
concentration, band gap, and energy level of the absorber layer on the antimony trisulfide
solar cell’s PCE. To consider different permutations about absorber thickness and identi-
fication of the quantum impact concerning solar cell parameters to increase simulation
outcomes’ applicability.

2. Materials and Methods

Here, the Sb2Se3 absorber-based TFSC was modelled and simulated by the researchers
making use of the SCAPS-1D program, which can be defined as a 1D solar cell device
simulator previously developed at the University of Gent [28]. Simulation of SCAPS-1D
aided in solving the Poisson’s, drift-diffusion, and carrier continuity equations, which
are the fundamental equations employed for designing a semiconductor device [33]. By
employing the SCAPS-1D simulator, the researchers studied PV devices’ various properties,
such as current–voltage (I–V), capacitance–voltage (C–V), and capacitance–frequency (C–F),
as well as their EQE and recombination profiles. The results showed that the device
performance is impacted by factors such as doping concentration, electron affinity, interface
defect density, cell thickness, operating temperature, bulk defect density, resistances, and
quantum efficiency metal work function. All simulations were conducted by maintaining
the following conditions: illumination of 100 mWcm−2, temperature = 300 K, and AM1.5 G
light spectrum. The ZnS/Sb2Se3/PEDOT: PSS heterojunction device structure is shown in
Figure 1, and the energy level pertaining to the TFSC structure in Figure 1.
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Figure 1. Structure of the Sb2Se3 solar cell device.

As per the structure, the ultrathin p-type PEDOT: PSS as HTL connected the p-type
Sb2Se3 absorber as well as rear metal contact. In the device, fluorine-doped tin oxide
(F: SnO2) and the n-type ZnS were included in the TCO layer and ETL. Moreover, in the
TFSCs, aluminium (Al) was employed to construct the front and rear metal contacts [34].
Table 1 shows the physical parameters that were considered in the simulation. The values
of material parameters employed in the numerical computation were taken from the
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literature. The travelling speed of holes and electrons was at 1 × 107 cm s−1 [35]. This
study employed the SCAPS-1D software (3.3.10) to demonstrate the absorption coefficients
pertaining to the ZnS and PEDOT:PSS as HTL materials, while the absorption coefficient
values pertaining to the PEDOT:PSS (HTL) materials and Sb2Se3 absorber were taken
based on the literature [35]. As previously noted, comparable defects were seen while the
researchers utilized a Gaussian distribution function. Setting of the energy levels pertaining
to the defects was done to mid-bandgap. They also involved absorber thickness/defect
densities and ETL/absorber in order to determine the heterojunction TFSC interface carrier
recombination. Table 1 shows all parameters pertaining to the interface faults.

Table 1. List of various simulation parameters involved in the perovskite planar structure.

Properties ZnS (ETL) Sb2Se3 PEDOT: PSS (HTL) References

Thickness (nm) 70 variable 40 [29,36]

Bandgap, Eg (eV) 3.5 variable 2.2 [29,35,37]

Electron Affinity, xe (eV) 4.5 4.04 2.9 [38–40]

Dielectric permittivity, ∈r (relative) 10 18 3 [38,41,42]

CB effective density of states, NC (cm−3) 1.5 × 1018 2.2 × 1018 2.2 × 1015 [39,42,43]

VB effective density of states, NV (cm−3) 1.8 × 1018 1.8 × 1019 1.8 × 1018 [39,42,43]

Electron thermal velocity (cm/s) 1 × 107 1 × 107 1 × 107 [34,37,41]

Hole thermal velocity 1 × 107 1 × 107 1 × 107 [34,37,41]

Electron mobility (cm2/Vs) 50 15 10 [39,42,44]

Hole mobility (cm2/Vs) 20 5.1 10 [39,42,44]

Shallow uniform donor density, ND (cm−3) 1 × 1022 0 0 [39]

Shallow uniform acceptor density, NA (cm−3) 0 variable 3.17 × 1014 [34,39]

Defect density Nt (cm−3) 1 ×1014 variable 1 × 1016 [34,39]

Energy level 0.6 variable 0.6 [25]

SCAPS–1D was employed for solving Poisson’s equation pertaining to electrons and
holes (Equation (1)), as given below [45]:

d2Ψ
dx2 =

e
∈0∈r

[P(x)− n(x) + ND − NA + ρP − ρn] (1)

Here, x = electrostatic potential; Ψ = elementary charge; ∈r = relative permittivity;
∈0 = vacuum permittivity; P = concentration of holes and electrons; ND, NA refer to
the donor and acceptor charges; and ρp and ρn refer to the concentration of holes and
electrons, respectively.

With regards to the theoretical perspective, the carrier lifetime τ has been defined
as the period in which the charge carrier can move freely, allowing it to contribute to the
electric conduction. Based on a uniform simulation of the Sb2Se3, development of the G
(generation rate) electron-hole pairs is done. Equations (2) and (3) define the developed
electron and hole densities with regards to Ec and Ev, as represented below [46]:

∆n = Gτn (2)

∆p = Gτp (3)

Should the above-mentioned carriers be trapped in perovskite as well as thermally
recited, then the spent time on these traps was not considered in the τn and τp. With regards
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to steady-state, it was seen that the rate of generation pertaining to the PSC was equal with
the rate of trapping, as presented in Equations (3) and (4) below [46]:

τn =
1

σp.vth.(Nt − Nr)
(4)

τρ =
1

σp.vth.nr
(5)

wherein, Nt, nr, σn, and vth refer to the total (i.e., occupied and unoccupied), occu-
pied defects, hole capture cross-section, and the thermal velocity, respectively. As per
Equations (4) and (5), the increase in defect density resulted in a reduction in carrier life-
time as well as a short carrier diffusion length (L) [47]. This L value accounted for the
perovskite quality. It was seen that when there was a higher L value versus Sb2Se3 thickness,
the performance of the device can be enhanced. The following equations were constructed
based on recombination current (Jo), L and Voc:

Jo ≈ q
Dn2

i
LN

(6)

Voc =
KT
q

1n
(

Jsc

Jo
+ 1

)
(7)

whereby, q, Dn, LN, K, and T are electric charge of electron, diffusion constant, longer
carrier diffusion length, Boltzmann constant, and temperature, respectively. As per
Equations (6) and (7), a decrease in the defect density resulted in a reduction of recom-
bination current as well as an increase in Voc, which was found to be comparable to the
study results. The internal quantum efficiency (IQE) and Jsc were observed to be directly
proportional to each another. The IQE can depend on the minority carrier diffusion lengths,
if the researchers consider the PSC to be a shallow junction solar cell along with a long
minority carrier lifetime, as represented in Equation (8).

IQE = 1− αt− B
αL2 (8)

wherein α, t, and B indicated the spectral absorption coefficient, distance in the perovskite
material, and Sb2Se3 thickness, respectively [48]. We employed the Shockley–Read–Hall
(SRH) recombination for describing the recombination components that impacted the defect
density in the PSC, as represented below

<SRH =
ϑσnσpNT

[
np− n2

i
]

σp[p + p1] + σn[n + n1]
(9)

where ϑ = electron thermal velocity, NT = no. of defects per volume, ni + intrinsic number
density, n and p = concentration of electrons and holes at equilibrium; and n1 and p1 = conc.
of electrons and holes in the trap defect and valence band, respectively.

3. Results and Discussions
3.1. Effect of Absorber Layer Thickness with QE

Figure 2 shows the (a) current density, (b) voltage characteristic, and (c) quantum
efficiency (QE) produced with Table 1 preliminary parameters. In Figure 2a, Voc exhibited
a decrease to a 200–800 nm thickness, which is the optimum value; it did not show any
change after that. This indicates that in thicker films, the charge recombination increases. FF
initially increases when the thickness reaches 200–800 nm and then it decreases from 84.14%
to 83.99% when the thickness is further increased from 900 to 1100 nm; this is attributable
to the incremental series resistance. Figure 2b illustrates the following simulation results:
the Jsc short circuit current increased when the absorber thickness is increased; when the
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thickness peaks to 1100 nm, the Jsc reaches 44.95 mA/cm2, saturating to a plateau. If the
FF and Voc trends with a varied Sb2Se3 thickness are taken into consideration, 800 nm, the
optimal absorber thickness, is achieved, as can be seen in Figure 3b, which corresponds to
a 28% PCE. This is because when the absorber thickness is too low, it does not benefit from
the full absorption of light, therefore resulting in a low PCE. On the other hand, an absorber
layer that is too thick will cause the photo-generated carriers to take a longer transfer route;
this leads to higher recombination. The following simulations show that in the dark, when
the thickness of the Sb2Se3 is set to the 800 nm optimum value, the device displays a current
density value at the extreme minimum; this can be ascribed to the minority carrier. The
reflection of the interface with each layer as well as that of the series and shunt resistance
are not taken into account during the simulation. Figure 2c reveals the changes in the QE:
it completely encompasses the visible spectrum while exhibiting a 300 to 900 nm range
in high spectral response, which comes with a significant absorption onset rising up to
500 nm. In addition, the subsequent parasitic absorption of the absorber is responsible for
the shorter wavelength region.
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3.2. Carrier Concentration vs. Bandgap

This section exhibits the efforts undertaken towards clarifying the various absorber
layers’ trend influence: through an analysis of the crucial photovoltaic performance char-
acteristics, as these ultimately govern the efficiency of the solar cell conversion. Figure 3
demonstrates that Jsc is reduced as the bandgap is increased, while Voc, a direct function
of the bandgap, is also increased. A higher bandgap leads to a Voc increase and a rate of
radiative recombination decrease [49]. Conversely, the Jsc parameter changes significantly,
as indicated in Figure 3. These changes are generally within the 30 to 46 (mA/cm2) range.
If the concentration is relatively low, less carrier collection occurs at the front contact, and
this leads to a reduced Jsc [50]. Despite that, it is possible to maintain a high Jsc value using
a buffer layer that has a higher concentration of carriers. In our scenario, however, no no-
ticeable improvement is observed even with a higher concentration of carriers. The optimal
band alignment at the buffer/absorber interface (i.e., increased carrier concentration and
bandgap) may explain the said occurrence. Such an alignment is crucial in efficient solar
cells towards increasing the Jsc [51]. This may be due to the fact that the carriers may have
enhanced diffusivity, because of their increased mobility.

Alternatively, because of a widening bandgap and constant carrier concentration, FF
decreases. PCE showed improvement at the absorber layer’s higher bandgap in spite of the



Materials 2022, 15, 6272 8 of 12

higher carrier concentration’s influence and regardless of the fact that PCE is considered to
be the function of FF, Voc, and Jsc. Our findings demonstrate that the optimal performance
began at a 1.2 eV bandgap and a 1 × 1016 (1/cm3) defect density.

We assert that if the optical qualities of the connected absorber layer are not properly
defined and adjusted, it may result in erroneous predictions regarding the real potential
of the examined p-absorber material [52]. For example, consider that Sb2Sb3, having a
1.04 eV bandgap, is being examined, because of the material’s polycrystalline nature and
the process of non-optimised deposition, it is quite possible that the thin film of the absorber
will already have a bulk defect density during the early phases of the design process. In
this situation, the assembled absorber layer exhibits a low carrier concentration, and it is
likely that the associated device will have an efficacy that is below 24% (see Figure 3d).
Nonetheless, the device’s efficiency could be boosted to an even greater level using an
absorber layer having a greater carrier concentration.

3.3. Defect Density vs. Energy Level

Another crucial characteristic that can dramatically affect device performance is the
absorber layer’s defect density. The greater concentrations of deficiencies in the absorber
layer produce a greater rate of recombination due to the growth of pinholes, and also a
higher rate of the film’s degradation, a lower strength, and a decrease in the device’s overall
performance [49]. On the other hand, when there is low defect density, the length of the
carrier diffusion is enhanced, and the process of the recombination process is rejected, both
of which cause an improved PV performance. Figure 4a–d shows the effect that the defect
density of the absorber layer has on the most significant parameters; the modelling was
accomplished by modifying the defect density from 1 × 1014 cm−3 to 1 × 1018 cm−3.

As one can see, cell performance worsens as the absorber layer’s overall defect density
increases. The defect density has a substantial effect on FF, Voc, and Jsc since it is an essential
parameter affecting the cell’s performance. It suggests that the radiative recombination had
a minor effect on electron-hole pair formation and passage in solar cells, and the impact of
modifying the Jsc defect states was insignificant until it reached around 1 × 1017 cm−3. It is
also fairly clear that the significant alterations in Voc, ranging from 0.6 to 1.0 V, are due to
the existent defect energy level. These changes can be observed quite clearly. Conversely,
the effect of radiative recombination on FF was noticeably more distinct. The cause for
the FF decline that was seen in association with an increase in the radiative recombination
rate was that electron-hole pairs were carried through the cell less effectively, causing
an increase in the energy quantity that was lost to recombination [50]. For instance, at a
0.55 eV energy level, the FF is as low as ~65% with a defect density of 1 × 1018 cm−3, and it
increases to 85% when the defect density is below 1 × 1014 cm−3. Moreover, as the defect
density increases from 1 × 1014 cm−3 to 1 × 1018 cm−3, the efficiency declines drastically,
the decline being between 10% and 30% (as shown in Figure 4d). It can be concluded that
the defect density has a direct impact on the efficiency since as the number of defects goes
higher, the charge carrier diffusion length decreases and it causes an introduction of more
recombination carriers to the absorber layer [51]. The presence of a greater defect density
leads to a higher recombination rate, as a result of which, the cell performance is affected.
The optimal efficiency of the cell of 30% was attained by fine-tuning the Voc at 1.0 eV, the Jsc
at 34 mA/cm2, and FF at 85%, and the defect density at 1 × 1014 cm−3.
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4. Conclusions

In this research, the development of the antimony triselenide solar cells was optimised
by using the SCAPS simulator for the p-i-n arrangement. They patterned the primary
SC on the basis of the TCO/ZnS/Sb2Se3/PEDOT: PSS arrangement. For an optimised
solar cell design, we used some parameters, such as the absorber layer thickness (ranging
from 200 to 1100 nm), the carrier concentration (from 1014 to 1018 cm−3), and the defect
density (which ranged from 1014 to 1018 cm−3) with an energy level (above valence band)
ranging from −0.1 to 0.6 eV. The simulations exhibited a PCE of >30%, at the Voc of
1.0 eV, Jsc of 34 mA/cm2, and FF of 85%. Moreover, it was noticed that the efficacy
of the antimony triselenide solar cells got higher as the thickness of the absorber layer
increased. Furthermore, the results indicated that a bandgap of 1.2 eV nm and a carrier
concentration of 1014 cm−3 was satisfactory. This research simulates the thickness of
the absorber layer and the quantum efficiency impact on the performance of the device.
The absorber layer thickness had been varied (ranging from 200 to 1100 nm) along with
the defect densities (ranging from 1014 to 1018 cm−3) and the energy level (ranging from
−0.1 to 0.6 eV). The outcomes indicated that the device performance was highly susceptible
to the defect densities; nonetheless, it exhibited a similar pattern in case of the absorber
layer thickness. When the thickness of the absorber layer was increased from 300 nm to
900 nm, it considerably increased the PCE. Conversely, when its value was increased from
1000 nm to 1100 nm, it exhibited a slight drop in the PCE. The investigators concluded that



Materials 2022, 15, 6272 10 of 12

the design of the device and the optimisation of the Sb2Se3 solar cells could significantly
benefit from their experimental outcomes.
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