
Citation: Kamimura, R.; Kanematsu,

H.; Ogawa, A.; Kogo, T.; Miura, H.;

Kawai, R.; Hirai, N.; Kato, T.;

Yoshitake, M.; Barry, D.M.

Quantitative Analyses of Biofilm by

Using Crystal Violet Staining and

Optical Reflection. Materials 2022, 15,

6727. https://doi.org/10.3390/

ma15196727

Academic Editors: Jordi Sort and

Valery V. Tuchin

Received: 30 April 2022

Accepted: 23 September 2022

Published: 28 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Quantitative Analyses of Biofilm by Using Crystal Violet
Staining and Optical Reflection
Ryuto Kamimura 1, Hideyuki Kanematsu 1,* , Akiko Ogawa 1 , Takeshi Kogo 1 , Hidekazu Miura 2,
Risa Kawai 1, Nobumitsu Hirai 1 , Takehito Kato 3 , Michiko Yoshitake 4 and Dana M. Barry 5,6

1 National Institute of Technology (KOSEN), Suzuka College, Suzuka 510-0294, Mie, Japan
2 Faculty of Medical Engineering, Suzuka University of Medical Science, Suzuka 510-0293, Mie, Japan
3 National Institute of Technology (KOSEN), Oyama College, Oyama 323-0806, Tochigi, Japan
4 National Institute for Materials Science (NIMS), Tsukuba 305-0044, Ibaraki, Japan
5 Department of Electrical & Computer Engineering, Clarkson University, Potsdam, NY 13699, USA
6 STEM Laboratory, State University of New York, Canton, NY 13617, USA
* Correspondence: kanemats@mse.suzuka-ct.ac.jp; Tel.: +81-59-368-1848

Abstract: Biofilms have caused many problems, not only in the industrial fields, but also in our daily
lives. Therefore, it is important for us to control them by evaluating them properly. There are many
instrumental analytical methods available for evaluating formed biofilm qualitatively. These methods
include the use of Raman spectroscopy and various microscopes (optical microscopes, confocal
laser microscopes, scanning electron microscopes, transmission electron microscopes, atomic force
microscopes, etc.). On the other hand, there are some biological methods, such as staining, gene
analyses, etc. From the practical viewpoint, staining methods seem to be the best due to various
reasons. Therefore, we focused on the staining method that used a crystal violet solution. In the
previous study, we devised an evaluation process for biofilms using a color meter to analyze the
various staining situations. However, this method was complicated and expensive for practical
engineers. For this experiment, we investigated the process of using regular photos that were
quantified without any instruments except for digitized cameras. Digitized cameras were used to
compare the results. As a result, we confirmed that the absolute values were different for both cases,
respectively. However, the tendency of changes was the same. Therefore, we plan to utilize the
changes before and after biofilm formation as indicators for the future.

Keywords: biofilms; crystal violet; optical reflection; color analyses; XYZ color plane; L*a*b*
color plane

1. Introduction

A biofilm (BF) is a thin film of material formed by bacterial activity on the surface of
a material or other interface. The fundamental concepts of biofilms have been clarified
and explained by many researchers and summarized in some books, reviews, etc. [1–5]. In
most cases, they form on materials’ surfaces. Therefore, biofilm formation must be affected
by materials’ surfaces. From this viewpoint, we have tried to show how materials affect
biofilm formation and growth [6,7]. BF is composed of about 80% water, EPS (extracellular
polymeric substances), and bacteria. It has a characteristic sliminess. This sliminess is
said to be caused by quorum sensing, a phenomenon in which bacteria adhere to the
surface of material, multiply, and expel polysaccharides outside of the colony. In addition
to polysaccharides, proteins, lipids, and nucleic acids (DNA and RNA) are produced in BF,
which collectively is called EPS (Figure 1).
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Figure 1. Schematic diagram of biofilms on materials.

Bacteria in BFs have different properties from those of ordinary airborne bacteria. This
affects various fields, such as medicine, environmental science, architecture, mechanics,
chemical and pharmaceutical engineering, pharmaceuticals, and materials science. To
control these effects, BF must be accurately evaluated by taking appropriate measures.

As described above, the appropriate evaluation method for BF is very important and
the main premise for the following development of anti-biofilm materials. The evaluation
methods are mainly classified into two types. One of them is the evaluation group com-
posed of many versatile analytical instruments. These include various microscopes, such
as optical microscopes, electron microscopes, confocal laser microscopes, etc., or various
analytical facilities, such as Raman spectroscopy, FT-IR spectroscopy, etc. The other type is
the biological evaluation group that is composed of gene analyses, staining methods, etc.
These two types are combined appropriately to produce new advanced analytical meth-
ods. Examples include electron microscopes [8–12], confocal laser microscopes [13–17],
IR measurements [18–21], and Raman spectroscopy [22–29]. Some proposed methods
have made great contributions for clarifying the biological essence of biofilms and their
relationship with materials and environments. These methods provided us with qualitive,
semi-quantitative, and quantitative analyses for our research projects. However, we still
need other new evaluation methods for practical applications. Practical applications mean
that researchers, engineers, and general users (facing practical industrial or daily life prob-
lems) could use them to check biofilms quantitatively as well as qualitatively, and above
all, products that have relatively large and unsteady shapes should be analyzed directly. In
such a case, the evaluation method requires swiftness and simplicity. From the practical
viewpoint, the measurement condition should be close to satisfy those requirements as
much as possible. To satisfy the purpose, the SIAA (Society of International Sustaining
Growth for Antimicrobial Articles, Japan, Tokyo), composed of more than 1000 Japanese
companies in the antimicrobial materials field, are going to establish an ISO and we expect
that it would be valid until March 2023. In this method, crystal violet staining [30–32]
biofilms are extracted into sodium dodecyl sulfate (SDS) solution and the absorbance by
590 nm light is defined as the quantity of biofilms. However, if the stained colors of speci-
mens could be evaluated directly, the process would be simpler. Therefore, we carried out
some experiments as trials to determine the biofilm quantity by measuring surface color
at the stained biofilms, so that the newly proposed method would lead to the modified
quantification method in the future.
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2. Experimental Section
2.1. Substrate Specimens

In this experiment, commercially available PE (polyethylene sheet), and pure Titanium
specimens were used as substrates. Thin sheets (0.5 to 1.0 mm thick) of each material
were cut into 10 × 10 mm2 pieces using metal shears and they were cleaned with alcohol.
We used two specimens because we wanted to confirm the applicability of the proposed
method in this experiment to both metallic materials and polymeric substances.

2.2. Bacteria

Escherichia coli (E. coli, K12 G6) were used as model bacteria in this study. The bacteria
were selected due to the following two reasons. First, the model bacteria for this study
should have low risk and should be easy to deal with. Next, we often used these bacteria
in previous studies and have accumulated versatile data and experiences. Therefore, we
used E. coli as our model bacteria.

2.3. Biofilm Formation

Biofilm formation was carried out by a static method. Luria–Bertani (LB) liquid
medium (2068-75, M9T2881, Nacalai Co., Kyoto, Japan) was autoclaved at 121 ◦C for
15 min and E.coli were added in LB medium, so that the colony formation unit (CFU) per
milli liter (mL) was around 1 × 109 after a shaking incubation at 37 ◦C for 24 h. Next, the
bacterial solution was put into 12 plastic wells, so that each well was filled with 1.2 mL of
solution. Then, the specimens were immersed into wells for 0, 1, and 3 days at 25 ◦C in
an incubator.

2.4. Raman Spectroscopy

We used Raman spectroscopy as a confirmation method to verify that biofilms were
really formed. Specimens with BFs were pretreated by freeze dehydration in advance to
carry out Raman spectroscopy. The freeze dehydration process is composed of two steps.
One of them is the substitution of water in BFs with alcohol, and the other is vacuuming.
The concrete steps are described as follows.

The aqueous solutions were adjusted so that the ratios of distilled water: ethanol
(Ethanol, C2H5OH, 99.5%, Reagent Special Grade, 057-00451, APQ8101, Wako Pure Chemi-
cal Industries, Ltd., Osaka, Japan) were 7:3, 5:5, 3:7, 2:8, 1:9, 0.5:9.5, 0.2:9.8, and 0:1. Solutions
of ethanol and t-butyl alcohol (tert-Butyl alcohol, 2-Methyl-2-propanol, special grade, 000-
10915, G72121J, Kishida Chemical Co., Osaka, Japan) in the wells were aspirated with a
dropper; the adjusted solution was added with a dropper and replaced in turn, and the
wells were allowed to stand for 15 min. After alcohol displacement, the samples were
frozen in a freezer and vacuumed using a vacuum pump.

Raman spectroscopy was carried out, using a Raman spectrometer (LabRAM HR Evo-
lution, Horiba, Kyoto, Japan). A laser beam (532 nm) was irradiated onto the sample’s sur-
face (diameter: approximately 1 µm), and the Raman shift was measured three times (N = 3)
under the following conditions: −50% attenuation filter, 3 s exposure time, 5 integration
times, grating: 300 gr/mm, and measurement wavelength range: 500 cm−1–3500 cm−1.

2.5. Color Analyses

An aqueous solution containing 0.1% crystal violet (CV) was prepared to stain spec-
imens. The solution was used as a standard solution for ISO. This is because we have
investigated some cases using the solution in the past. After bacterial solutions were re-
moved from the wells, the CV solution was put into the well containing the sample and the
immersion continued for 30 min. Then, the CV solution was removed, and pure water was
poured into the wells to remove non-special absorbed CV, which was washed away from
the specimens’ surfaces. Then the water was immediately removed. This washing process
was repeated three times. As a result, we obtained stained specimens that correspond to
the amounts of biofilm present.
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To evaluate the extent of biofilm formation on specimens, the staining must be ana-
lyzed quantitatively. In usual cases, the stained parts are extracted into a proper solution
and the absorbances are measured [33,34]. On the contrary, we measured the stained violet
color on specimens by optical reflection, using color meters. Then, by combining three
color parameters, L*, a* and b* were obtained [35]. In this study, we analyzed the color
reflection of stained parts using photos and image analyses. A digital camera (1066C004,
PSG7X Mark II, Canon Inc., Tokyo, Japan), a black box, and a ring light source using a
white LED were set up for photographing the specimens. The camera parameters used in
the shooting were aperture f = 9.0, shutter speed SS = 1/40, and ISO sensitivity 125. The
photographed samples were analyzed using ImageJ, and histograms of each RGB color
within the measurement range on the image were obtained. The histograms were converted
into the XYZ color system (Equation (1)).X

Y
Z

=

0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

 (1)

Then, they were converted into the Yxy color system (Equation (2)), and plotted on
the xy chromaticity diagram, according to the following equations:

x =
X

X + Y + Z
, y =

Y
X + Y + Z

(2)

To compare the results by this new method with those by using a color meter in the
past, we measured the specimens’ stained surfaces, using a color measurement device
(Color Reader, CR-13, Konica Minolta Sensing, Inc., Tokyo, Japan). The results were then
plotted on an xy color diagram.

3. Results and Discussions
3.1. Confirmation of Biofilm Formation on Both Specimens

The results of the Raman spectrometer measurements of pure titanium specimens
immersed in E. coli culture solution (for different periods of time) are shown in Figure 2.
The wavenumber (cm−1) is on the horizontal axis and the intensity is on the vertical axis.
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Figure 2. Change of Raman shifts for titanium specimens immersed in LB media filled with E. coli.

The results for the Ti substrate alone showed no specific peaks. On the contrary,
specimens immersed in the bacterial solution of LB showed peaks at 2930 cm−1, 1660 cm−1,
1440 cm−1, and 1320 cm−1. These are typical peaks for biofilms as compared to those we
previously confirmed for specimens where biofilms formed on them.
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Figure 3 shows the results of the Raman spectrometer measurements of the samples
immersed in E. coli culture solution (for different periods of time) on the PE substrate.
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In the measurement for only the PE substrate, sharp peaks were detected at 2880 cm−1,
1440 cm−1, 1290 cm−1, 1130 cm−1, and 1060 cm−1, and a broad peak was found at around
2160 cm−1, respectively. Obviously, these peaks were derived from PE itself. However, we
could observe that these original PE-derived peaks were clearly reduced. Furthermore, the
extent of the reduction increased with the immersion time. Figure 3 shows that it was hard
for us to analyze biofilm peaks because the PE-derived peaks were relatively strong. We
enlarged the results for the specimen immersed in E. coli for 3 days. They are displayed
in Figure 4.
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Figure 4. Enlarged results for PE immersed in LB bacterial solution.

In Figure 4, peaks at 2930 cm−1, 1660 cm−1, 1440 cm−1, and 1320 cm−1 were also
observed, even though they were not so remarkable. Since they were typical peaks for
specimens with biofilms, we could confirm biofilms also on the surface of PE.

3.2. Results of Staining Evaluations

After staining samples on Ti substrates with different immersion periods in the E. coli
culture medium, measurements were made using a colorimeter. The results were plotted
on an xy chromaticity diagram, as shown in Figure 5 below.
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The dots in the upper right of the figure for the Ti substrate only shift to the lower
left as the immersion period in the E. coli culture medium increases. The mean values
and standard deviations of the colorimetric measurements of Ti substrate and Ti specimen
immersed in E. coli culture medium for 3 days are shown in Table 1 below.

Table 1. Average values and their standard deviations for stained titanium specimens.

Average Standard Deviation

Ti only (x,y) (0.3237, 0.3425) (0.0009, 0.0014)

E. coli on Ti for 3 days (x,y) (0.3171, 0.3335) (0.0016, 0.0009)

After staining the PE substrate, the samples were immersed in the E. coli culture
solution for different periods of time. Then, they were measured by using a colorimeter
and plotted on an xy chromaticity diagram (Figure 6). In the PE samples, as in the Ti
samples, there is a tendency that the point cloud shifts to the lower left as the immersion
period increases.
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The color difference between two points (x1, y1) and (x2, y2) on the xy chromaticity
diagram is defined as ∆C, according to the following equation:

∆C =

√{
(x1 − x2)2 + (y1 − y2)2

}
(3)

The color difference between the substrate and samples immersed in the E. coli culture
medium (for 3 days) in Ti and PE, respectively, was measured using a colorimeter. Table 2
shows the color difference between the two samples.

Table 2. Color difference between titanium and PE specimens.

Ti PE

Color Difference ∆C 0.01126 0.03037

After staining samples on Ti substrates with different immersion periods in the E. coli
culture medium, measurements were made using an image analysis technique. The results
were plotted on an xy chromaticity diagram, shown in Figure 7 below.

Materials 2022, 15, x FOR PEER REVIEW 7 of 10 
 

 

 
Figure 6. Color changes of stained PE specimens with immersion times. 

The color difference between two points (x1, y1) and (x2, y2) on the xy chromaticity 
diagram is defined as ΔC, according to the following equation: 

ΔC = ඥ{(x1 − x2)ଶ + (y1 − y2)ଶ}  (3)

The color difference between the substrate and samples immersed in the E. coli cul-
ture medium (for 3 days) in Ti and PE, respectively, was measured using a colorimeter. 
Table 2 shows the color difference between the two samples. 

Table 2. Color difference between titanium and PE specimens. 

 Ti PE 
Color Difference ΔC 0.01126 0.03037 

After staining samples on Ti substrates with different immersion periods in the E. coli 
culture medium, measurements were made using an image analysis technique. The re-
sults were plotted on an xy chromaticity diagram, shown in Figure 7 below. 

 
Figure 7. Color changes based on image analyses and calculations. 

0.295

0.315

0.335

0.295 0.305 0.315

y

x

PE_only

PE_E.coli_1day

PE_E.coli_3days

0.3

0.305

0.31

0.315

0.32

0.325

0.295 0.3 0.305 0.31

y

x

Ti_only

E.coli_3days

Figure 7. Color changes based on image analyses and calculations.

The mean values and standard deviations of the results of staining the Ti substrate
and the samples immersed in the E. coli culture medium (for 3 days) are shown in Table 3.

Table 3. Average values and their standard deviations based on image analyses and calculations.

Average Standard Deviation

Ti only (x,y) (0.30670, 0.31886) (0.00132, 0.00146)

E. coli on Ti for 3 days (x,y) (0.30087, 0.330926) (0.00184, 0.00317)

Results for the color evaluations show that the mean values of the two methods (color
meter measurements and image analyses) were different, but the standard deviation and
the trend of the color change in the immersed samples were similar. The colorimetric
method was the same as the image analysis method.

We started this research project to complete the evaluation method as a quantitative
one. At this point, we have not completed it. However, we showed that this method has the
potential to be a substitution method for the extraction one. To rapidly quantify the biofilm
of products or large-scale specimens, the color change should be expressed as concrete
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figures, such as vector values or more statistical ones. We will continue this project to obtain
our final goal.

4. Conclusions

In this experiment, we investigated the process where usual photos were quantified
without any instruments, except for the usual digitized cameras. The results were compared
by using a digitized camera. We obtained the following results from our experiments:

(1) We confirmed by Raman spectroscopy that biofilms formed both on titanium and PE
specimens, respectively.

(2) Although the average of the number of color values obtained by the method using
image analysis is different from that by the method using a colorimeter, the accuracy
and trend of the shift of the point cloud are almost the same. Therefore, the method
using image analysis is effective as an alternative colorimetric method to the method
using a colorimeter.

(3) We found that, in the future, it is possible that the image analyses from photos could
be applied to the evaluation of biofilms.
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