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Abstract: An increasing amount of waste seashells in China has caused serious environmental pol-
lution and resource waste. This paper aims to solve these problems by using waste seashells as
modified materials to prepare high-performance modified asphalt. In this study, seashell powder
(SP) and stratum corneum-exfoliated seashell powder (SCESP) were adopted to prepare 10%, 20%
and 30% of seashell powder-modified asphalt (SPMA) and stratum corneum-exfoliated seashell
powder-modified asphalt (SCESPMA) by the high-speed shear apparatus, respectively. The appear-
ance and composition of two kinds of SPs were observed and determined by the scanning electron
microscope (SEM). The types of functional groups, temperature frequency characteristics, low tem-
perature performance and adhesion of SPMA were tested by the Fourier-transform infrared (FTIR)
spectrometer, dynamic shear rheometer (DSR), bending beam rheometer (BBR) and contact angle
meter. The results show that the SP and SCESP are rough and porous, and their main component
is CaCO3, which is physically miscible to asphalt. When the loading frequency ranges from 0.1 Hz
to 10 Hz, the complex shear modulus (G*) and phase angle (δ) of SPMA and SCESPMA increase
and decrease, respectively. At the same load frequency, SCESPMA has a larger G* and a smaller δ
than SPMA. At the same temperature, SCESPMA has a larger rutting factor (G*/sin δ) and better
high-temperature deformation resistance than SPMA. SP and SCESP reduce the low-temperature
cracking resistance of asphalt, of which SCESP has a more adverse effect on the low-temperature
performance of asphalt than SP. When SP and SCESP are mixed with asphalt, the cohesion work
(Waa), adhesion work (Was) and comprehensive evaluation parameters of water stability (ER1, ER2
and ER3) of asphalt are improved. It is shown that both SP and SCESP have good water damage
resistance, of which SCESP has better water damage resistance than SP. These research results have
important reference value for the application of waste biological materials in asphalt pavement.

Keywords: asphalt pavement; seashell powder; modified asphalt; high- and low-temperature
performance; water stability

1. Introduction

The repeated load of vehicles can cause damage to the asphalt pavement. In order to
improve the road performance of asphalt pavement, road workers have developed a variety
of modifiers [1,2] to enhance the service quality and service life of asphalt pavement [3,4].
With the continuous improvement of environmental protection requirements, the concept
of sustainable development has been introduced into road engineering, and more and more
bio-based modified materials have been applied to asphalt pavement.

Bio-based modified materials have a series of advantages, such as regeneration, envi-
ronmental protection and low price. Different bio-based modified materials have various
effects on the road performance of asphalt [5]. At present, bio-based modified materials
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are mainly divided into bio-oil- and animal–plant-modified materials. They can modify
some pavement performance of asphalt to obtain modified asphalt that is more beneficial
to engineering application value.

The direct use of animals and plants after simple processing as modified asphalt
materials has been gradually developed in recent years, and many scholars have conducted
a series of researches in this field. Coconut seashell, coconut seashell fiber and palm seashell
powders can increase the softening point temperature and rutting factor of asphalt [6–8].
Adding lignin and oil palm seashell powder to asphalt can significantly enhance the
high-temperature stability of asphalt [9,10]. The addition of peanut seashell powder to
asphalt can strengthen the rutting resistance of asphalt, and weaken its low-temperature
performance and fatigue performance. When the content is 10%, the peanut seashell
powder has better high-temperature storage stability [11]. Sargassum can promote high-
temperature performance of asphalt. It has the best high-temperature stability when the
content is 2.5%, and has good compatibility with asphalt [12]. Adding waste leather to
70 # asphalt improves its high-temperature performance, creep recovery ability and anti-
aging performance [13]. Waste crayfish seashell powder can improve the high-temperature
performance and creep resistance of asphalt [14]. Adding fish scales into neat asphalt can
improve the adhesion, viscoelasticity, temperature sensitivity and permanent deformation
resistance of asphalt [15]. The fish scale powder treated with silane coupling agent has
little effect on the low-temperature and fatigue properties of asphalt, but it can change
the viscoelastic components of asphalt, thereby improving the high-temperature stability
of asphalt [16]. The addition of eggshell to asphalt mixture can reduce the amount of
mineral powder and asphalt. At the same time, the road performance and mechanical
property tests of modified asphalt are carried out. It is found that the high-temperature
stability of asphalt is improved by the addition of eggshell, which can be applied to asphalt
pavement engineering [17]. Some scholars have found that the eggshell powder has a rough,
porous and loose structure, which improves the strange hardness and thermal stability.
Its interaction with asphalt is a physical miscibility process [18]. When eggshell powder
is mixed into asphalt, it makes asphalt hard and increases moisture susceptibility [19].
Laurel scallop, goby scallop and pectin scallop powders can significantly improve the
elasticity of asphalt, reduce its low-temperature crack resistance, and keep the types of
functional groups inside it unchanged [20]. The medium and low content of oyster powder
can improve the low-temperature, rutting and fatigue properties of asphalt. This material
can be used as a substitute for filler in asphalt mixtures [21]. The snail seashell powder can
be well mixed with asphalt, which can reduce the void of asphalt mixture, thus improving
the stability of asphalt mixture, but will reduce the permeability and rotary viscosity
of asphalt [22]. Combined with the existing research, it is found that animal-modified
materials can improve the high-temperature stability of asphalt to varying degrees. Some
animal-modified materials can improve the fatigue performance of asphalt, but have
negative effects on the low-temperature performance of asphalt to varying degrees. At the
same time, most of these modified materials are physical modifications of asphalt.

China is rich in freshwater shellfish and aquatic products. Some seashell materials
are currently used in handicraft manufacturing, decoration materials, agriculture and
animal husbandry. These fields have high technical parameter requirements for seashell
materials, and not all seashell products can meet these requirements. Therefore, a large
number of seashells are directly dumped as garbage every year, resulting in great waste and
environmental pollution. However, a large number of stone, asphalt and other materials
are required in the construction process of asphalt pavement. If waste seashells can be used
in asphalt pavement, the waste seashells pollution will be effectively reduced. At present,
relevant scholars have been looking for countermeasures to reduce the environmental
pollution caused by waste seashells. Existing researches have studied some waster seashells
as modified asphalt materials. There is a lack of research on the road performance of
Hyriopsis cumingii seashell powder-modified asphalt. Therefore, it is very meaningful to
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apply the Hyriopsis cumingii seashell powder to modify the asphalt, thus improving the
road performance of asphalt pavement.

2. Materials Selection and Sample Preparation
2.1. Materials
2.1.1. Aggregate and Asphalt

The limestone was used for the test and its surface energy was shown in Table 1.
The A-70 # asphalt produced by SK Company in Korea was selected. According to the
requirements of relevant specifications, the technical indexes of asphalt were tested [23,24],
and its relevant properties are shown in Table 2.

Table 1. Surface energy parameters of limestone.

Aggregate γs/mJ·m−2 γd
s /mJ·m−2 γ

p
s /mJ·m−2

Limestone 48.76 43.66 5.10

Table 2. Test results of A-70 # neat asphalt.

Items
Test Specification: JTG E20-2011

Measured Values Technical Requirements Reference Methods

Penetration (25 ◦C, 100 g, 5 s) (0.1 mm) 69.9 60~80 T0604-2011.

Penetration index (PI) 0.201 −1.5~+1.0 T0604-2011.

Length (5 cm/min, 10◦C) (cm) 33 ≥15 T0605-2011.

Length (5 cm/min, 15◦C) (cm) >100 ≥100 T0605-2011.

Softening point (Global method) (◦C) 49.5 ≥46 T0606-2011.

Wax content (distillation) (%) 0.5 <2.2 T0615-2011.

Flash point (◦C) 335 ≥260 T0611-2011.

Solubility (%) 99.87 ≥99.5 T0607-2011.

Density (25 ◦C) (g/cm)3) 1.037 Measured T0603-2011.

60 ◦C Dynamic viscosity (Pa·s) 199.8 ≥180 T0620-2000.

Rolling thin film
oven test (163 ◦C,

85 min)

Mass loss (%) −0.065 ≤±0.8 T0609-2011.

Residual penetration ratio (%) 81 ≥61 T0604-2011.

Residual ductility (10 ◦C) 7 ≥6 T0605-2011.

Residual ductility (15 ◦C) 28 ≥15 T0605-2011.

2.1.2. Seashell and Seashell Powder

The seashell of Hyriopsis cumingii was used in the test. Previous studies have shown
that the seashell of Hyriopsis cumingii is divided into three layers. From the outside to the
inside, it can be divided into the stratum corneum, prismatic layer and nacre, of which the
prismatic layer with many holes is a porous structure, as shown in Figure 1 [25].

There are two kinds of seashell powders used in the test, that is, seashell powder
(SP) and stratum corneum-exfoliated seashell powder (SCESP). The production process of
the two is as follows: put the seashell and seashell with exfoliated stratum corneum into
a small-scale high-speed multifunctional pulverizer for grinding, as shown in Figure 2,
and then sift the powders through a 0.15 mm sieve to obtain the required ones, as shown
in Figures 3 and 4. The physical characteristics of shells and shell powder are shown in
Table 3.
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Table 3. Physical characteristics of shell and shell powder.

Seashell
Name

Seashell
Structure

Types of
Seashell Powder Appearance Particle Size of

Seashell Powder

Hyriopsis
cumingii

Stratum
corneum

Prismatic layer
Nacre

Seashell powder Light yellow
powder

<0.15 mmStratum
corneum-exfoliated

seashell powder

Milky white
powder

2.1.3. Reagent for Contact Angle Test

The distilled water, glycerol and formamide were used in the test, and their surface
energy parameters are shown in Table 4.

Table 4. Surface energy parameters of reagents.

Reagents γl/mJ·m−2 γd
l /mJ·m−2 γ

p
l /mJ·m−2

Distilled water 72.8 21.8 51
Glycerol 64 34 30

Formamide 58 39 19

2.2. Sample Preparation

There have been studies on the use of biological materials to prepare modified asphalt.
Generally, 5~30% of biological materials are used to prepare modified asphalt to study
the road performance of modified asphalt [20,26]. The preparation of the seashell powder-
modified asphalt sample in this study refers to the relevant existing research methods [20].
The sample preparation process is as follows: pour 2100 g neat asphalt into 7 sample cups
evenly; heat the asphalt in the sample cup to 150 ◦C until it becomes complete flow; mix
SP and SCESP into 6 sample cups, and stir the mixture for 30 min at 2500–3000 r/min
under the high-speed shear instrument, as shown in Table 5. The seven modified asphalt
samples were prepared as follows: neat asphalt (NA-70), 10% of SPMA (SPMA-10%), 20%
of SPMA (SPMA-20%), 30% of SPMA (SPMA-30%), 10% of SCESPMA (SCESPMA-10%),
20% of SCESPMA (SCESPMA-20%), and 30% of SCESPMA (SCESPMA-30%).

Table 5. Contents of SP and SCESP in modified asphalt.

Sample No. 1 2 3 4 5 6 7

Content of SP (g) 0 10 20 30
Content of SCESP (g) - - - - 10 20 30



Materials 2022, 15, 6788 6 of 19

2.3. Test Method
2.3.1. Micro Characteristic Test

In order to study the appearance and chemical composition of SP and SCESP, in this
study, the tungsten filament scanning electron microscope (SEM) Evo10 of Zeiss company in
Oberkhein, Germany was used to observe the appearance and morphology of SP and SCESP,
and the Bruker X-ray energy dispersive spectrometer (EDS) equipped on the instrument
was adopted to analyze their main elements and obtain their main chemical components.

2.3.2. Fourier-Transform Infrared (FTIR) Spectroscopy

The FTIR spectroscopy has important advantages in the analysis of organic com-
pounds. It can be used for the analysis of organic compounds with asphalt and modified
asphalt. In this study, the Bruker Tensor-27 FTIR spectrometer with scanning range of
500 cm−1–4000 cm−1 and scanning times of 64 was used to analyze the functional groups
of seven asphalt samples. The FTIR spectrometer was produced by Bruker Corporation in
Billerica, USA. Four groups of parallel tests were conducted on each asphalt sample.

2.3.3. Dynamic Shear Rheometer (DSR) Test

For purpose of study the effects of SP and SCESP on the high-temperature rheological
properties of asphalt, the viscoelastic properties of SPMA and SCESPMA under different
load frequencies were also investigated. The dynamic shear rheometer MCR302 of Anton
Paar company in Graz, Austria was used to carry out temperature-frequency scanning
test [27]. The loading frequency of frequency scanning test ranges from 0.1 Hz to 10 Hz, and
the test temperatures include 58 ◦C, 64 ◦C, 70 ◦C and 76 ◦C. The complex shear modulus
(G*) and phase angle (δ) of NA-70 and six modified asphalts were tested. The size of the
sample is 25 mm in diameter and 1 mm in thickness. Four groups of parallel tests were
carried out for each asphalt sample.

2.3.4. Bending Beam Rheometer (BBR) Test

Referring to the relevant requirements of AASHTO 2015, the creep stiffness (S) and
creep rate (m) of NA-70 and six modified asphalts were tested with the TE-BBR tester of
Cannon Company in State College, USA, and it was required that the beam specimen at
60 s have a S ≤ 300 MPa and a m ≥ 0.3. The test temperatures of −12 ◦C, −18 ◦C and
−24 ◦C were selected, and four groups of parallel tests were performed.

2.3.5. Contact Angle Test

There is a close relationship between the water stability of asphalt and its adhesion
and cohesion properties, and the adhesion and cohesion properties of asphalt can be
obtained by contact angle test. As shown in Figure 5, the DSA100 contact angle meter of
KRUSS Company in Hamburg, Germany was first used to measure the contact angle of
asphalt sample and limestone. The distilled water, glycerol and formamide with known
surface energy parameters were chosen as reagents. The interface diagram of reagents and
limestone was shown in Figure 6. Five parallel tests were then carried out on each reagent
and sample. If the data difference is large, the number of experiments will be supplemented.
Finally, the average value of the five test results within the allowable error range was taken
as the value of contact angle.

In order to evaluate the deformation resistance of asphalt and the adhesion between
the asphalt and limestone, the cohesion and adhesion work indexes were introduced in
this study. The calculation process is as follows.
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The surface energy is the work required to produce a new interface per unit area of
material at certain temperatures, and consists of a dispersion component and a polarity
component, which can be expressed as Equation (1):

γ = γd + γp (1)

where: γ is the surface energy; γd is the dispersive component of the surface energy; and
γp is the polar component.

The cohesion work Waa refers to the deformation resistance of asphalt and modified
asphalt slurry when relative displacement is generated under external force [28]. The
greater the cohesion work, the stronger the deformation resistance. It can be expressed as
Equation (2):

Waa = 2γa (2)

where: Waa is the surface energy of asphalt or modified asphalt.
The adhesion characteristics between the asphalt (or modified asphalt) and limestone

can be characterized by the adhesion work Was. The greater the adhesion work, the better
the stability of the two after combination. Its expression is as follows:

Was = γa + γs − γas (3)

where: Was is the adhesion work between the asphalt (or modified asphalt) and limestone;
γa is the surface energy of asphalt or modified asphalt; γs is the surface energy of limestone;
and γas is the interface energy of asphalt (or modified asphalt) and limestone [29], which
can be expressed as Equation (4).

γas = γa + γs − 2
√

γd
a γd

s − 2
√

γ
p
a γ

p
s (4)
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where: γd
a and γd

s are dispersion components of asphalt (or modified asphalt) and limestone
surface, respectively; γ

p
a and γ

p
s are polar components of asphalt (or modified asphalt) and

limestone surfaces, respectively.
The Young Equation is shown in Equation (5).

γs = γas + γa cos θ (5)

The Young–Dupre Equation (6) can be obtained from Equations (1)–(5).

Was = γa(1 + cos θ) = 2
√

γd
a γd

s + 2
√

γ
p
a γ

p
s (6)

The water damage resistance of asphalt mixture can be characterized by the spalling
work (Wasw). The Wasw is characterized by the external work required for the stripping of
asphalt (or modified asphalt) and limestone under the action of water [30], which can be
expressed by Equation (7).

Wasw = Waw + Wsw − Was (7)

where Waw is the adhesion work between the asphalt (or modified asphalt) and distilled
water, and Wsw is the adhesion work between the limestone and distilled water.

However, this index is not comprehensive. At present, scholars at home and abroad
have found through research that the water damage resistance of asphalt and limestone is
greatly related to the adhesion work, cohesion work and peeling work. Therefore, three
water stability parameters ER1, ER2 and ER3 of asphalt and limestone were proposed [31].
The larger their values, the stronger the water damage resistance of asphalt and limestone,
as shown in Equations (8)–(10).

ER1 =

∣∣∣∣ Was

Wasw

∣∣∣∣ (8)

ER2 =

∣∣∣∣Was + Waa

Wasw

∣∣∣∣ (9)

ER3 =

∣∣∣∣min(Was, Waa)

Wasw

∣∣∣∣ (10)

3. Results and Discussion
3.1. Microscopic Characteristics of Seashell Powder

The SEM has unique advantages in observing the micro morphology of materials.
Therefore, this study used this equipment to observe the appearance and chemical compo-
sition of SP and SCESP. The effects of appearance morphology and chemical composition
of the two particles on the performance of NA-70 were explored, and the test results are
shown in Figure 7 and Table 6.

From Figure 7, it can be seen that the surface of SP and SCESP are rough with more
folds, unevenness, internal pores and porosity. The SCESP has more internal holes and
pores than the SP. It has been found that there are many holes in the prismatic layer of the
seashell, which may be closely related to the existence of a large number of holes in SP and
SCESP. There is more contact area between the SP (or SCESP) and NA-70 after high-speed
shear stirring, which helps form a strong adsorption capacity between them.

Table 5 shows that the main elements of SP and SCESP are C, O, CA, Si, S, Al and
Mg, and the main compounds are CaCO3, SiO2, Al2O3 and MgO; the content of CaCO3
is the highest and the composition is similar to that of limestone, which indicates that
when SP and SCESP are added to NA-70, CaCO3 plays a major role in the change in road
performance of NA-70.
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Table 6. Main components of SP and SCESP.

Sample Type Main Components

SP

Element C O Ca Si S Al

Weight (%) 42.54 37.80 12.39 3.86 1.85 1.56

Chemical compound CaCO3 SiO2 Al2O3

Weight (%) 76.32 15.25 8.43

SCESP

Element C O Ca Si S Mg

Weight (%) 33.25 44.55 18.58 1.85 0.91 0.86

Chemical compound CaCO3 SiO2 MgO

Weight (%) 86.62 8.23 5.15

3.2. Functional Group Analysis

There are many functional groups in asphalt [32]. In order to analyze the effects of SP
and SCESP on the functional groups of NA-70, this study used the FTIR spectroscopy to
analyze the functional groups of SPMA and SCESPMA, and the test results are shown in
Figure 8.
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It can be seen from Figure 8 that in the range of 4000–500 cm−1, NA-70, SPMA
and SCESPMA have the same absorption peak. There are characteristic peaks caused by
stretching vibration near 2924 cm−1 and 2853 cm−1, C=C stretching vibration characteristic
peaks near 1600 cm−1, aliphatic C-H bending deformation near 1456 cm−1 and 1376 cm−1,
sulfoxide group (S=O) absorption peaks near 1030 cm−1, and C-H bond bending vibration
near 860 cm−1, 813 cm−1, 746 cm−1 and 722 cm−1. It is shown that no new chemical
components are generated after the two are mixed, which is physically miscible. Therefore,
the modification of SP and SCESP to NA-70 is physical.

3.3. Analysis of High-Temperature Rheological Properties

In order to study the effect of frequency on their viscoelasticity, the frequency sweep
of SPMA and SCESPMA was carried out to obtain G* and δ. The curves with frequency are
shown in Figures 9 and 10, respectively.

It can be seen from Figure 9 that the G* of SPMA and SCESPMA increases linearly
with the increase in load frequency at 58 ◦C~88 ◦C. The specific rules are: SCESPMA-
30% > SPMA-30% > SCESPMA-20% > SPMA-20% > SCESPMA-10% >SPMA 10% > NA-70.
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When the load frequency ranges from 0.1 Hz to 10 Hz, the G* of SPMA and SCESPMA
increases; when the temperature increases, the G* of SPMA and SCESPMA decreases. It is
shown that the load frequency has an important influence on the viscoelasticity of SPMA
and SCESPMA. The addition of SPMA and SCESPMA can improve the load resistance of
asphalt. The SCESP has better deformation resistance, indicating that the stratum corneum
of seashell has an adverse effect on the deformation resistance of asphalt. In addition,
SPMA is more sensitive to temperature.

It can be seen from Figure 10 that at 58 ◦C~76 ◦C, the δ of NA-70, SPMA and SCESPMA
gradually decreases with the increase in frequency. At 0.1 Hz~1.59 Hz, the value of δ
decreases significantly, while at 1.59 Hz~10 Hz, the value of δ decreases slowly. The
specific rules are: NA-70 > SCESPMA-10% > SCESPMA-20% > SPMA-10% > SCESPMA-
30% > SPMA-20% > SPMA-30%. It is indicated that the temperature has a significant effect
on the viscoelasticity of SPMA and SCESPMA; as the temperature increases, the effect is
more significant. At low frequency, SPMA and SCESPMA show more viscous performance,
while with the increase in frequency, the viscous performance decreases, and the elastic
performance increases.

To analyze the high-temperature deformation resistance of SPMA and SCESPMA, the
rutting factors (G* and sin δ) at 58 ◦C, 64 ◦C, 70 ◦C and 76 ◦C were measured at 1.59 Hz,
and the results are shown in Figure 11.
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Figure 9. Relationship among G * and frequency of SPMA and SCESPMA at different temperatures.
(a) 58 ◦C; (b) 64 ◦C; (c) 70 ◦C; (d) 76 ◦C.
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From Figure 11, it can be seen that the G* and sin δ of NA-70, SPMA and SCESPMA
gradually decrease from 58 ◦C to 76 ◦C, and their specific rules are: SCESPMA-30% > SPMA-
30% > SCESPMA-20% > SPMA-20% > SCESPMA-10% > SPMA-10% > NA-70. It is shown
that the temperature has significant effect on the G* and sin δ of SPMA and SCESPMA,
which becomes less and less significant with the increase in temperature. SCESPMA has
better high-temperature rutting resistance than SPMA. Previous studies have analyzed the
impact of bio-based modified materials on the high-temperature performance of asphalt,
and few have analyzed the impact of different components of these materials on the
G*/sin δ of asphalt [11]. The effects of SP and SCESP on the G*/sin δ of asphalt were
analyzed, respectively, in this study, and the potential of seashell materials to improve the
high-temperature performance of asphalt was studied in detail.

The U.S. Strategic Highway Research Program (SHRP) uses the rutting factors G* and
sin δ as rating indexes for the high-temperature performance of asphalt [33,34]. In this
study, a continuous high-temperature performance gradation (PG) analysis was conducted
for SPMA and SCESPMA with reference to ASTM D 7643-16, and the specific results are
shown in Figure 12.
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As shown in Figure 12, the temperature TcH of continuous high-temperature PG of
NA-70 increases as the contents of SP and SCESP increase. Compared with that of NA-70,
the TcH of SCESPMA-10%, SCESPMA-20% and SCESPMA-30% increases by 4.49%, 6.98%
and 9.49%, respectively, and the TCH of SPMA-10%, SPMA-20% and SPMA-30% increases
by 4.22%, 6.21% and 8.52%, respectively.

It can be found that the temperature TCH of SCESPMA is higher than that of SPMA at
the same content. It is indicated that SCESP improves the high-temperature performance of
NA-70, which may be related to the prismatic layer of seashell with more holes. The holes
increases the contact surface between the seashell powder and NA-70, thus improving its
high-temperature rutting resistance.

3.4. Analysis of Rheological Properties at Low Temperature

The evaluation parameters of low-temperature performance of asphalt are usually S
and m [35,36]. In this study, the S and m values of NA-70 and SPMA and SCESPMA were
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tested, and the values of S and m are shown in Figure 13. To analyze the low-temperature
cracking resistance of NA-70, SPMA and SCESPMA more comprehensively, this study used
the comprehensive evaluation parameter of low-temperature performance λ = S/m (the
smaller the λ value, the better the low temperature performance), and the values of λ are
shown in Figure 14.
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It can be observed from Figure 13a that the S value of SCESPMA are larger than that of
SPMA at the same temperature; with the increase in SP and SCESPMA content, the S value
of NA-70 increases. The results show that the low-temperature bending creep performance
of NA-70 with SP and SCESPMA added is worse, and the low-temperature bending creep
performance of SPMA is better than that of SCESPMA at the same content.

It is obvious from Figure 14 that the λ value of SPMA is smaller than that of SCESPMA
at the same temperature, and the λ values of both SPMA and SCESPMA increase as the



Materials 2022, 15, 6788 15 of 19

contents of SP and SCESP increase. It is indicated that SPMA has better low-temperature
crack resistance than SCESPMA. Previous studies have found that adding other seashell ma-
terials to asphalt will generally reduce its low-temperature crack resistance [20,21], which is
consistent with the results of this study. However, this study finds that the stratum corneum
of seashell has better low-temperature crack resistance than other structural layers.

In this study, NA-70, SPMA and SCESPMA were analyzed by using the index TcL of
continuous low-temperature PG with reference to ASTM D 7643-16, and the values of TcL
are shown in Figure 15.
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In Figure 15, it is shown that the temperature TcL of continuous low-temperature
PG of NA-70 increases with the increase in SP and SCESP contents; compared with that
NA-70, the TcL of SPMA increases by 5.52%, 16.72%, and 28.44%, respectively, and the TcL
of SCESPMA increases by 6.51%, 18.73% and 30.10%, respectively.

3.5. Analysis of Water Stability

To verify the reliability of contact angle test results, after obtaining the contact angles
of NA-70, SPMA and SCESPMA with three reagents, a linear fitting was performed on
the surface energy γl and γl cos θ of different reagents, and the test results are shown in
Figure 16.

According to Figure 16, γl and γl cos θ of NA-70 and SPMA and SCESPMA show good
linear correlation above 0.89, indicating that the contact angle test data are reliable.

Based on the data in Tables 1 and 3, Waa, Was and Wasw of NA-70, SPMA and SCESPMA
were obtained by Equations (2), (3) and (7), and the test results are shown in Figure 17.

As shown in Figure 17, the specific rules of Waa and Was of SPMA and SCESPMA are:
SCESPMA-30% > SPMA-30% > SCESPMA-20% > SPMA-20%> SCESPMA-10% > SPMA-
10% > NA-70. It is found that compared with NA-70, SCESPMA improves Waa and
Was by 9.91~27.70% and 5.44~15.04%, respectively, and SPMA enhances Waa and Was
by 7.08~26.23% and 4.26~14.51%, respectively. The specific rules of Wasw of SPMA
and SCESPMA are: NA-70 > SCESPMA-10% > SPMA-10% > SCESPMA-20%> SPMA-
20%> SCESPMA-30% > SPMA-30%. It is shown that compared with NA-70, the Wasw of
SCESPMA and SPMA is reduced by 0.38~1.83% and 0.72~2.1%, respectively.
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The results show that both SP and SCESP improve the Waa and Was of NA-70 except
for the Wasw. SCESPMA has better adhesion and cohesion than SPMA, indicating that the
stratum corneum in the seashell is not conducive to improving the adhesion and cohesion
of NA-70. The existing research on bio-based modified asphalt materials mainly focuses
on its high- and low-temperature rheological properties, micro morphology and chemical
composition [15,37], and rarely involves the adhesion and cohesion properties of seashell
powder-modified asphalt. The results of this study show that the water stability of asphalt
and limestone is not only related to Wasw, but also has a close relationship with Waa and Was,



Materials 2022, 15, 6788 17 of 19

and the above three indexes should be considered comprehensively in this study. Hence,
this study introduced the comprehensive evaluation parameters ER1, ER2 and ER3 for
asphalt and limestone, so as to perform a comprehensive evaluation on the water stability
of SPMA, SCESPMA and limestone, and the test results are shown in Figure 18.
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It can be seen from Figure 18 that the specific rules of ER1, ER2 and ER3 of SPMA and
SCESPMA are: SCESPMA-30% > SPMA-30% > SCESPMA-20% > SPMA-20%> SCESPMA-
10% > SPMA-10% > NA-70; as the contents of SP and SCESP increase, ER1, ER2 and ER3
increase; and at the same content, the ER1, ER2 and ER3 values of SCESPMA are larger
than those of SPMA. It shows that SP and SCESP can improve the water damage resistance
of NA-70 and limestone, and SCESP is more conducive to improving the water damage
resistance of NA-70 than SP, which indicates that the stratum corneum in the seashell is not
conducive to the water stability of asphalt and limestone.

4. Conclusions

In this study, the potential of SP and SCESP as asphalt modifiers was discovered, and
the high-low temperature performance and water stability of SPMA and SCESPMA were
studied. The main conclusions can be summarized as follows.

(1) The surface of SP and SCESP is rough with more pores and holes, and their main
component is CaCO3. SCESP has more pores and holes than SP, and has better
adsorption effect during mixing with asphalt, thus giving the modified asphalt a
better adhesion effect. From the perspective of the type and content of characteristic
functional groups of modified asphalt. The modification of SP and SCESP to NA-70 is
a physical process.

(2) Temperature–frequency tests show that SP and SCESP improve the high-temperature
deformation resistance of NA-70. The G* of SPMA and SCESPMA is linear with
the load frequency. At the same temperature, the G* of SCESPMA is more sensitive
to the load frequency than that of SPMA, and SCESP has better high-temperature
improvement effect on NA-70 than SP.

(3) BBR tests indicate that SP and SCESP increase the creep modulus (S) and reduce
the creep rate (m) of NA-70, resulting in a decrease in the low-temperature crack
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resistance of NA-70, and SCESP is more detrimental to the low temperature crack
resistance of NA-70 than SP at the same content.

(4) The contact angle test shows that SP and SCESP enhance the cohesion work, adhesion
work and water stability of NA-70; in addition, at the same content, SCESP strengthens
the cohesion work, adhesion work and water stability of NA-70 better than SP.
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