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Abstract: An efficient eigenvalue algorithm is developed for the axial vibration analysis of embedded
short-fiber-reinforced micro-/nano-composite rods under arbitrary boundary conditions. In the
formulation, nonlocal elasticity theory is used to capture the size effect, and the deformable boundary
conditions at the ends are simulated using two elastic springs in the axial direction. In addition, to
determine the reinforcing effect of restrained nano-/micro-rods, a new system of linear equations with
the concept of the infinite power series is presented. After performing the mathematical processes
known as Fourier sine series, Stokes’ transformation and successive integration, we finally obtain
a coefficient matrix in terms of infinite series for various rigid or deformable boundary conditions.
Some accurate eigenvalue solutions of the free axial vibration frequencies of the short-fiber-reinforced
micro-/nano-composite rods with and without being restrained by the means of elastic springs are
given to show the performance of the present method. The presence of the elastic spring boundary
conditions changes the axial vibration frequencies and corresponding mode shapes.

Keywords: axial vibration; short-fiber-reinforced; Fourier series; nonlocal elasticity

1. Introduction

Due to their unique qualities, composite materials have garnered increasing attention
over the past few decades. Composites are materials formed from at least two different
components with different chemical and physical properties. These special materials have
a more advanced structure than their constituent components thanks to the combination of
different properties.

There are various types of composite materials used in different applications in the
field of engineering. They can be constituted in different forms in accordance with the
intended use. One of these is short-fiber-reinforced composite materials. These materials
are formed by placing fibers of short length into a matrix in various arrangements.

Recently, studies involving the analysis of reinforced structures have gained mo-
mentum. Fiber-reinforced [1,2], carbon nanotube-reinforced [3–10] and graphene platelet-
reinforced [11–15] structures can be found in the recent literature. However, other compos-
ite structures like functionally graded [16–20], sandwich [21,22] and porous functionally
graded structures [23–28] have also attracted considerable interest. As can be seen, com-
posite structures have attracted attention not only at a macro scale but also at nano and
micro scales. While analyzing structures at nano and micro scales, we see that many of
them are presented with theories based on the size effect. When we look at the governing
equations represented by these theories, it is understood that they contain one or more
parameters in addition to the classical constants. These parameters, generally called small-
scale parameters, make it possible to investigate the size effect. Researchers working on the
analysis of various very small-scale nano- and micro-structures have used these size effect
theories, such as doublet mechanics theory [29–33], modified couple stress theory [34–39],
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nonlocal elasticity theory [1,40–45], nonlocal strain gradient theory [46–49] and strain gra-
dient theory [50–53]. Researchers use a variety of techniques to analyze an element or
structure, such as a rod, beam, plate, frame, etc., whether at the macro, nano, or micro
level. Some of these techniques are: the finite element method [1,33,41,42,54,55], artificial
neural networks [56], the Laplace transform [57], Stokes’ transformation [18,28,43,45], the
perturbation technique [5] and the Chebyshev–Ritz method [19]. This is the first work to
investigate the longitudinal vibration behavior of short-fiber-reinforced micro-/nano-rods
embedded in an elastic medium via Fourier sine series with Stokes’ transformation.

This paper presents the free axial vibrational response of a restrained and size-
dependent micro- and nano-scale rod embedded in an elastic medium based on Eringen’s
nonlocal elasticity theory [58]. The size dependency of the material characteristics are mod-
eled according to the short-fiber-reinforced micro- and nano-composite rods. In addition,
displacements at the ends are defined based on classical rod theory. This paper presents
for the first time a solution based on the Stokes’ transformation and Fourier sine series
for the axial vibration of short-fiber-reinforced nano-/micro-rods with arbitrary boundary
conditions in the presence of an elastic medium. The contribution of this work is that it
provides an approach to study the effect of both an elastic medium and arbitrary boundary
conditions on the axial vibration of short-fiber-reinforced micro-/nano-rods. Fourier sine
series are also utilized to define the axial deflection function. Nonlocal force boundary
conditions are utilized to derive the systems of linear equations for specifying the elastic
foundation, nonlocal and short fiber parameters. The linear system of equations obtained
is discretized with the help of Stokes’ transformation. A coefficient matrix and the cor-
responding eigenvalue problem is constructed for longitudinal dynamic analysis of the
short-fiber-reinforced micro- and nano-composite rods under rigid or restrained boundary
conditions. This coefficient matrix includes nonlocal parameter boundary conditions, a
short fiber constant and an elastic foundation coefficient.

2. Nonlocal Elasticity

Nonlocal elasticity theory is the most preferred continuum mechanics approach for
nano-sized structures. This continuum mechanics theory was introduced by Eringen [58].
In accordance with nonlocal elasticity theory, the stresses and strains of one location inside
a structure are related to the stresses and strains of other locations that are close to the
reference point.

For the axial vibration behavior of a composite micro-/nano-sized rod, the constitutive
equation based on the nonlocal elasticity theory is written as follows [1]:[

1− µ
∂2

∂x2

]
τxx = Ecε (1)

where µ = e0a2, τxx denotes the nonlocal stress, Ec specifies the Young’s modulus of
the composite, and ε represents the axial strain. In addition, e0a is called the nonlocal
parameter. This nonlocal parameter allows us to investigate the size effect on the composite
micro-/nano-rod. Furthermore, a defines the internal characteristic length and e0 specifies
a material constant. The equation of motion for the longitudinal vibration of the composite
micro- and nano-rods can be described by [44]:

∂Nl

∂x
+ f = ρc A

∂2u(x, t)
∂t2 (2)

in which Nl denotes the axial force of local (classical) elasticity, f specifies the distributed
axial force acting on the composite rod, ρc represents the density of the composite, A is the
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cross-sectional area, u(x, t) is the axial displacement and t is the time. In addition, the axial
force of local elasticity Nl can be defined as:

Nl =
∫
A

σxxdA (3)

In Equation (3), σxx is the component of local stress. By integrating Equation (1) with
respect to the cross-sectional area of the composite, the following relation is obtained:

N − µ
∂2N
∂t2 = Nl (4)

Here, N represents the axial force of nonlocal elasticity theory and is defined as:

N =
∫
A

τxxdA (5)

One can derive the equation of motion for longitudinal vibration of the composite
micro- and nano-rods via Equations (2)–(5):

Ec A
∂2u(x, t)

∂x2 + f − µ
∂2 f
∂x2 = ρc A

∂2u(x, t)
∂t2 − µρc A

∂4u(x, t)
∂x2∂t2 (6)

In this paper, the influence of an elastic medium on the longitudinal vibration frequen-
cies of the short-fiber-reinforced composite micro- and nano-rods is investigated for the
first time. For this purpose, the force based on the elastic medium is considered in the
following form [44]:

f = −ku(x, t) (7)

In this study, the composite micro-/nano-rod is considered to be surrounded by an
elastic medium. As expected, this elastic medium has a stiffness. In Equation (7), k denotes
the stiffness of the elastic medium. One can derive the equation of motion for an embedded
composite micro-/nano-rod by inserting Equation (7) into Equation (6) as follows:

Ec A
∂2u(x, t)

∂x2 − ku(x, t) + µk
∂2u(x, t)

∂x2 − ρc A
∂2u(x, t)

∂t2 + µρc A
∂4u(x, t)
∂x2∂t2 = 0 (8)

It should be highlighted here that if the parameter µ is set to zero, the equation is
simplified to the equation of the classical embedded composite rod as follows:

Ec A
∂2u(x, t)

∂x2 − ku(x, t)− ρc A
∂2u(x, t)

∂t2 = 0 (9)

The other point that should be highlighted here is that if the elastic medium stiffness
k is set to zero, the equation is reduced to the equation of the un-embedded composite
micro-/nano-rod as follows [1]:

Ec A
∂2u(x, t)

∂x2 − ρc A
∂2u(x, t)

∂t2 + µρc A
∂4u(x, t)
∂x2∂t2 = 0 (10)

3. Material Properties of Short-Fiber-Reinforced Composite

In this study, the free longitudinal vibration behavior of the embedded short-fiber-
reinforced composite micro-/nano-rod with deformable boundary conditions is investi-
gated via Eringen’s nonlocal elasticity theory [58]. Furthermore, an aligned composite
micro-/nano-rod and a randomly oriented composite micro-/nano-rod with elastic springs
are shown in Figures 1 and 2, respectively. In addition, an illustration of a randomly ori-
ented composite material may be seen in Figure 3. As can be seen in the governing equation
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of embedded nano-rods given in Equation (10), Young’s modulus (Ec) and density (ρc) are
properties of short-fiber-reinforced micro-/nano-rods that should be defined. In this section,
these properties are described. This study adopts the Halpin–Tsai equations [59]. These
simple and easy-to-use equations are quite reasonable as they give accurate predictions, as
long as the fiber volume fraction does not approach one [60]. Via Halpin–Tsai equations,
the longitudinal and transverse Young’s moduli of aligned short-fiber-reinforced composite
materials are written as follows [60]:

EL = Em

1 +
(

2l
d

)
ηLVf

1− ηLVf

 (11)

ET = Em

(
1 + 2ηTVf

1− ηTVf

)
(12)

Figure 1. Illustrations of composite micro-/nano-rods with elastic springs: (a) aligned composite
micro-/nano-rod; (b) randomly oriented composite micro-/nano-rod.
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Figure 2. Illustration of a randomly oriented composite material.

By arranging short fibers in a matrix in different ways, short-fiber-reinforced composite
materials are formed. In the above equations, Em represents the Young’s modulus of the
matrix, d is the diameter of the fiber, l denotes the length of the fiber and Vf is the volume
fraction of the fiber. In addition, ηL and ηT seen in Equations (11) and (12) are described as:

ηL =

 E f
Em
− 1

E f
Em

+ 2
(

l
d

)
 (13)

ηT =

 E f
Em
− 1

E f
Em

+ 2

 (14)

in which E f specifies the Young’s modulus of the fiber of the composite. Moreover, the
Young’s modulus of a randomly oriented short-fiber-reinforced composite is described as
follows [60]:

Ec = Erandom =
3
8

EL +
5
8

ET (15)

Lastly, the density of the short-fiber-reinforced composite should be defined. The
density of the short-fiber-reinforced composite is given as follows [1]:

ρc = ρm

(
1−Vf

)
+ ρ f Vf (16)

In the above equation, ρc, ρm and ρ f are the density of the short-fiber-reinforced
composite, matrix and fiber, respectively. Short-fiber-reinforced composites include two
different components, the matrix and the fibers, with different material properties. Depend-
ing on these components’ properties, the composite’s material properties are calculated
with the equations given above.
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Figure 3. The variations of non-dimensional frequencies of short-fiber-reinforced composite nano-
rods versus nonlocal parameter: (a) 1st mode (b) 2nd mode (c) 3rd mode (d) 4th mode (e) 5th mode
(f) 6th mode (g) 7th mode.
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4. Fourier Infinite Series with Stokes’ Transformation

In this section of the study, the adopted solution procedure is applied to the longitudi-
nal vibration of embedded short-fiber-reinforced composite micro-/nano-rods restrained
with axial elastic springs at both ends. Assuming harmonic vibrations, u(x, t) may be
represented by:

u(x, t) = Ψ(x) cos(ωt) (17)

One can get the following expression by substituting Equation (17) into Equation (8):

− Ec A
d2Ψ(x)

dx2 − kΨ(x)− µk
d2Ψ(x)

dx2 − ρc Aω2Ψ(x) + µρc Aω2 d2Ψ(x)
dx2 = 0 (18)

in which ω specifies the natural frequency of the composite micro-/nano-rod in terms of
rad/s and Ψ(x) defines the modal displacement function, and Ψ(x) can be written in three
separate regions as below [43,45]:

Ψ(x)= Ψ0 x = 0, (19)

Ψ(x)= ΨL x = L, (20)

Ψ(x)= ∑∞
j=1 Hjsin

(
jπx
L

)
0 < x < L (21)

Hj in Equation (21) is defined as:

Hj=
2
L

∫ L

0
Ψ(x) sin

(
jπx
L

)
dx (22)

The first derivative of Equation (21) leads to:

Ψ′(x)= ∑∞
j=1

jπ
L

Hj cos
(

jπx
L

)
(23)

Furthermore, we can write Equation (23) as a Fourier cosine infinite series as follows:

Ψ′(x) =
h0

L
+ ∑∞

j=1 hj cos
(

jπx
L

)
(24)

The coefficients h0 and hj can be expressed as:

h0 =
2
L

∫ L

0
Ψ′(x)dx =

2
L
[Ψ(L)−Ψ(0)] (25)

hj=
2
L

∫ L

0
Ψ′(x) cos

(
jπx
L

)
dx j = 1, 2, . . . (26)

If we apply integration by parts, we obtain the following expressions:

hj=
2
L

[
Ψ(x) cos

(
jπx
L

)]L

0
+

2
L

[
jπ
L

∫ L

0
Ψ(x) sin

(
jπx
L

)
dx
]

(27)

hj=
2
L

[
(−1)jΨ(L)−Ψ(0)

]
+

jπ
L

Hj (28)

To continue the mathematical steps, we should find the first two derivatives of the
displacement function Ψ(x). The first two derivatives of Ψ(x) are calculated as [43,45]:

dΨ(x)
dx

=
ΨL −Ψo

L ∑∞
j=1 cos

(
ξ jx
)2

(
(−1)jΨL −Ψ0

)
L

+ ξ j Hj

 (29)
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d2Ψ(x)
dx2 = ∑∞

j=1 ξ j sin
(
ξ jx
)2

(
(−1)jΨL −Ψ0

)
L

+ ξ j Hj

 (30)

in which ξ j is defined as:

ξ j =
jπ
L

(31)

In this step of the solution, we should find the Fourier coefficient Hj. To find Hj, we
substitute Equations (21), (30) and (31) into Equation (18):

Hj=
2jπ
(
−γ2λ2 + γ2K + 1

)(
Ω0 − (−1)jΩL

)
−λ2 + K2 + π2 j2γ2K− π2 j2γ2λ2 + π2 j2

(32)

Here,
γ2 =

µ

L2 (33)

K =
kL2

Em A
(34)

λ2 =
ρc Aω2L2

Ec A
(35)

The axial displacement for the axial vibration of a composite micro-/nano-sized rod
embedded in an elastic medium yields:

u(x, t) = ∑∞
j=1

2jπ
(
−γ2λ2 + γ2K + 1

)(
Ω0 − (−1)jΩL

)
−λ2 + K2 + π2 j2γ2K− π2 j2γ2λ2 + π2 j2

sin
(

jπx
L

)
cos(ωt) (36)

The above equation is the more general axial displacement equation, consisting of the
elastic medium effect and small size effect for a composite micro-/nano-rod.

5. Frequency Determinants for the Short-Fiber-Reinforced Micro-/Nano-Rods

In this section of the study, a number of eigenvalue problems for the various degener-
ated cases of short-fiber-reinforced micro-/nano-rods based on nonlocal elasticity are set up.
Via these eigenvalue problems, the axial vibration frequencies of the short-fiber-reinforced
micro-/nano-rods are found.

5.1. General Case

To obtain the free axial frequencies of embedded short-fiber-reinforced micro-/nano-
rods, size-dependent boundary conditions should be written in terms of elastic axial springs
at both ends.

Ec A
∂u
∂x

+ µρc A
∂3u

∂x∂t2 =Ω0Ψ0, x = 0 (37)

Ec A
∂u
∂x

+ µρc A
∂3u

∂x∂t2 =ΩLΨL, x = L (38)

In the above equations, Ω0 and ΩL define the axial spring stiffnesses of the short-fiber-
reinforced nano-rod. By inserting Equations (29) and (36) into Equations (37) and (38), the
following two homogeneous equations are found:(

γ2λ2 −Ω0 − 1 +
∞
∑

j=1

2(−γ2λ4+λ2+γ2λ2K−K)
−λ2+π2 j2γ2K+K−π2 j2γ2λ2+π2 j2

)
Ψ0+(

−γ2λ2 + 1−
∞
∑

j=1

2(−1)j(−γ2λ4+λ2+γ2λ2K−K)
−λ2+π2 j2γ2K+K−π2 j2γ2λ2+π2 j2

)
ΨL = 0

(39)
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(
−γ2λ2 + 1−

∞
∑

j=1

2(−1)j(−γ2λ4+λ2+γ2λ2K−K)
−λ2+π2 j2γ2K+K−π2 j2γ2λ2+π2 j2

)
Ψ0+(

γ2λ2 −ΩL − 1 +
∞
∑

j=1

2(−γ2λ4+λ2+γ2λ2K−K)
−λ2+π2 j2γ2K+K−π2 j2γ2λ2+π2 j2

)
ΨL = 0

(40)

In the above equations, Ω0 and ΩL are the non-dimensional forms of the stiffnesses of
axial springs and they are defined by:

Ω0 =
Ω0L
Em A

(41)

ΩL =
ΩLL
Em A

(42)

Via Equations (39) and (40), the following eigenvalue problem is constructed to be
resolved for the constants Ψ0 and ΨL:[

Γ11 Γ12
Γ21 Γ22

][
Ψ0
ΨL

]
= 0 (43)

The elements of the coefficient matrix are given as:

Γ11 = γ2λ2 −Ω0 − 1 +
∞

∑
j=1

2
(
−γ2λ4 + λ2 + γ2λ2K− K

)
−λ2 + π2 j2γ2K + K− π2 j2γ2λ2 + π2 j2

(44)

Γ12 = −γ2λ2 + 1−
∞

∑
j=1

2(−1)j(−γ2λ4 + λ2 + γ2λ2K− K
)

−λ2 + π2 j2γ2K + K− π2 j2γ2λ2 + π2 j2
(45)

Γ21 = −γ2λ2 + 1−
∞

∑
j=1

2(−1)j(−γ2λ4 + λ2 + γ2λ2K− K
)

−λ2 + π2 j2γ2K + K− π2 j2γ2λ2 + π2 j2
(46)

Γ22 = γ2λ2 −ΩL − 1 +
∞

∑
j=1

2
(
−γ2λ4 + λ2 + γ2λ2K− K

)
−λ2 + π2 j2γ2K + K− π2 j2γ2λ2 + π2 j2

(47)

Free vibration frequencies of embedded short-fiber reinforced nano-rods are found by
the eigenvalues of the coefficient matrix in Equation (43).∣∣Γϕτ

∣∣ = 0 (ϕ, τ = 1, 2) (48)

The above solution covers the impacts of the elastic medium, the nonlocal parameter
and axial spring parameters. Nano-/micro-rods are one of the most important elements in
various engineering applications. When these elements are used as a component, they need
to be fixed to a place or another element. In theoretical studies of nano-/micro-rods, the
fixation patterns are often investigated with the same idealized combinations. The analysis
considers these combinations as clamped–clamped or clamped–free for rod elements. In
these combinations, the boundary conditions are considered to be and investigated as
fully rigid. On the other hand, during the realization of the engineering applications
mentioned, it may not be possible to give full rigidity to the boundaries of the rods. This
leads to a situation where the boundary conditions allow deformation contrary to what
is assumed. This paper presents an approach to investigate the deformation-permitting
boundary conditions of short-fiber-reinforced micro-/nano-rods. In applications where
short-fiber-reinforced micro-/nano-rods are used or likely to be used and subjected to
vibration, the dynamic behavior of these elements is important. With the solution approach
presented in this study, inferences regarding the vibration behavior of short-fiber-reinforced
micro-/nano-rods can be found for any desired boundary condition. For this purpose, it is



Materials 2022, 15, 6803 10 of 25

sufficient to input the desired stiffness values of the axial springs attached to the ends of
the micro-/nano-rod.

5.2. Without Elastic Medium Effect

To compute the free axial frequencies of short-fiber-reinforced micro-/nano-rods
without the elastic medium effect, the non-dimensional elastic medium parameter in
Equations (39) and (40) is set to zero. If we adjust the non-dimensional elastic medium
parameter K in Equations (39) and (40) to zero, we obtain the following equations:(

γ2λ2 −Ω0 − 1 +
∞

∑
j=1

2
(
−γ2λ4 + λ2)

−λ2 − π2 j2γ2λ2 + π2 j2

)
Ψ0 +

(
−γ2λ2 + 1−

∞

∑
j=1

2(−1)j(−γ2λ4 + λ2)
−λ2 − π2 j2γ2λ2 + π2 j2

)
ΨL = 0 (49)

(
−γ2λ2 + 1−

∞

∑
j=1

2(−1)j(−γ2λ4 + λ2)
−λ2 − π2 j2γ2λ2 + π2 j2

)
Ψ0 +

(
γ2λ2 −ΩL − 1 +

∞

∑
j=1

2
(
−γ2λ4 + λ2)

−λ2 − π2 j2γ2λ2 + π2 j2

)
ΨL = 0 (50)

Thus, the eigenvalue problem to be obtained from the above two equations will be
as follows: [

χ11 χ12
χ21 χ22

][
Ψ0
ΨL

]
= 0 (51)

The elements of the coefficient matrix given above are given as:

χ11 = γ2λ2 −Ω0 − 1 + ∑∞
j=1

2
(
−γ2λ4 + λ2)

−λ2 − π2 j2γ2λ2 + π2 j2
(52)

χ12 = −γ2λ2 + 1−∑∞
j=1

2(−1)j(−γ2λ4 + λ2)
−λ2 − π2 j2γ2λ2 + π2 j2

(53)

χ21 = −γ2λ2 + 1−∑∞
j=1

2(−1)j(−γ2λ4 + λ2)
−λ2 − π2 j2γ2λ2 + π2 j2

(54)

χ22 = γ2λ2 −ΩL − 1 + ∑∞
j=1

2
(
−γ2λ4 + λ2)

−λ2 − π2 j2γ2λ2 + π2 j2
(55)

The free vibration frequencies of embedded short-fiber-reinforced nano-rods are found
by the eigenvalues of the coefficient matrix in Equation (51).∣∣χϕτ

∣∣ = 0 (ϕ, τ = 1, 2) (56)

The above solution covers the influence of the nonlocal parameter and axial spring
parameters.

5.3. Without Nonlocal Effect

To compute the free axial frequencies of embedded short-fiber-reinforced micro-/nano-
rods without a size effect, the non-dimensional nonlocal parameter in Equations (39) and
(40) is set to zero. If we adjust the non-dimensional nonlocal parameter β in Equations (39)
and (40) to zero, we obtain the following equations:(

−Ω0 − 1 +
∞

∑
j=1

2
(
λ2 − K

)
−λ2 + K + π2 j2

)
Ψ0 +

(
1−

∞

∑
j=1

2(−1)j(+λ2 − K
)

−λ2 + K + π2 j2

)
ΨL = 0 (57)

(
1−

∞

∑
j=1

2(−1)j(λ2 − K
)

−λ2 + K + π2 j2

)
Ψ0 +

(
−ΩL − 1 +

∞

∑
j=1

2
(
λ2 − K

)
−λ2 + K + π2 j2

)
ΨL = 0 (58)
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Thus, the eigenvalue problem to be obtained from Equations (57) and (58) will be as
follows: [

φ11 φ12
φ21 φ22

][
Ψ0
ΨL

]
= 0 (59)

The elements of the coefficient matrix given in Equation (59) are defined as:

φ11 = −Ω0 − 1 +
∞

∑
j=1

2
(
λ2 − K

)
−λ2 + K + π2 j2

(60)

φ12 = 1−
∞

∑
j=1

2(−1)j(+λ2 − K
)

−λ2 + K + π2 j2
(61)

φ21 = 1−
∞

∑
j=1

2(−1)j(+λ2 − K
)

−λ2 + K + π2 j2
(62)

φ22 = −ΩL − 1 +
∞

∑
j=1

2
(
λ2 − K

)
−λ2 + K + π2 j2

(63)

The free vibration frequencies of embedded short-fiber-reinforced nano-rods are found
by the eigenvalues of the coefficient matrix in Equation (59).∣∣φϕτ

∣∣ = 0 (ϕ, τ = 1, 2) (64)

The above solution includes the impacts of the elastic medium parameter and axial
spring parameters.

5.4. Without Elastic Medium and Size-Effect

To obtain the free axial frequencies of short-fiber-reinforced micro-/nano-rods without
a size effect, the non-dimensional nonlocal parameter and elastic foundation parameter
in Equations (39) and (40) are adjusted to zero. If we set the non-dimensional nonlocal
parameter β and elastic foundation parameter K in Equations (39) and (40) to zero, we
derive the following expressions:(

−Ω0 − 1 +
∞

∑
j=1

2λ2

−λ2 + π2 j2

)
Ψ0 +

(
1−

∞

∑
j=1

2(−1)jλ2

−λ2 + π2 j2

)
ΨL = 0 (65)

(
1−

∞

∑
j=1

2(−1)jλ2

−λ2 + π2 j2

)
Ψ0 +

(
−ΩL − 1 +

∞

∑
j=1

2λ2

−λ2 + π2 j2

)
ΨL = 0 (66)

With the help of Equations (64) and (65), the following eigenvalue problem is derived:[
Λ11 Λ12
Λ21 Λ22

][
Ψ0
ΨL

]
= 0 (67)

The elements of the coefficient matrix given in Equation (67) are defined as:

Λ11 = −Ω0 − 1 +
∞

∑
j=1

2λ2

−λ2 + π2 j2
(68)

Λ12 = 1−
∞

∑
j=1

2(−1)jλ2

−λ2 + π2 j2
(69)

Λ21 = 1−
∞

∑
j=1

2(−1)jλ2

−λ2 + π2 j2
(70)
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Λ22 = −ΩL − 1 +
∞

∑
j=1

2λ2

−λ2 + π2 j2
(71)

The free vibration frequencies of short-fiber-reinforced classical rods are found by the
eigenvalues of the coefficient matrix in Equation (67).∣∣Λϕτ

∣∣ = 0 (ϕ, τ = 1, 2) (72)

The above solution includes the effects of the axial spring parameters to examine the
consequences of deformable boundary conditions on the axial vibration frequencies.

It should be noted here that there is wide-ranging, prominent knowledge on the effects
of axial spring parameters. The main contribution of this study is that it presents the axial
vibration behavior of embedded short-fiber-reinforced nano-rods with arbitrary boundary
conditions. The boundary condition is one of the significant parameters affecting the vibra-
tion behavior of any element or structure. When looking at the boundary conditions studied
in the literature, it is seen that most of them examine solutions performed under rigid
boundaries (clamped at both ends or clamped–free for a nano-/micro-rod). In addition, the
axial vibration behavior of short-fiber-reinforced nano-sized rods was examined by Gül
and Aydoğdu [1] for the first time. Gül and Aydoğdu [1] considered clamped–clamped
and clamped–free boundary conditions in their study. In the present paper, we examine the
longitudinal vibration of short-fiber-reinforced nano-sized rods under arbitrary support
conditions for the first time and include the impact of the elastic medium in the solutions.

6. Discussion

This section of the paper is dedicated to proving the correctness of the presented
solution approach and presenting several numerical examples for the randomly oriented
short-fiber-reinforced composite nano-rod. For this purpose, two comparison studies
are first given for two different boundary conditions, with the results presented in the
paper by Gül and Aydoğdu [1]. For these comparison studies, the material and geometrical
properties of the composite nano-rod are considered as follows [1]: ρ f /ρm = 4, E f /Em = 10,
l/d = 4, Vf = 0.5 and L = 20 nm. Table 1 compares the non-dimensional axial frequencies
in the first three modes of the randomly oriented composite nano-rod with two ends
clamped, while Table 2 compares the dimensionless axial vibration frequencies of the
randomly oriented composite nano-rod with one end clamped and the other end free. Gül
and Aydoğdu have not examined the effect of elastic medium in their study. Therefore, the
elastic medium parameter K is set equal to zero in the comparison studies.

In the following part of the study, various numerical studies are performed for ran-
domly oriented short-fiber-reinforced composite nano-sized rods with axial springs of
infinite stiffness at both ends (Ω0 = ΩL = ∞). Also, all calculations are done by j = 50.
These numerical studies are visualized with the help of a number of figures and the effects
of various parameters are studied in detail. The frequencies examined in the study are in
dimensionless form and the non-dimensional axial frequency of the composite nano-rod
(λ) is obtained in numerical studies as follows:

λ = ωL

√
ρm A
Em A

(73)

First, the impacts of the nonlocal parameter e0a on the dimensionless frequency values
of the short-fiber-reinforced nano-rod are investigated. For this purpose, the dimensionless
axial frequency values for nonlocal parameter values ranging from 0 nm to 0.5 nm are
plotted for the first seven modes in Figure 3. The following properties are used for this
figure: ρ f /ρm = 4, E f /Em = 10, l/d = 4, Vf = 0.5 and L = 20 nm. Also, the elastic medium
effect is omitted in this example. When we look at the changes in the dimensionless axial
frequencies of the short-fiber-reinforced composite nano-rod with the help of the figure, we
can say that a general decrease has occurred. In the first mode, when the nonlocal parameter
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is 0.0 nm, 0.1 nm, 0.2 nm and 0.3 nm, or when the nonlocal parameter is 0.0 nm and 0.1 nm
in the second mode, there is no change in the dimensionless axial frequencies. This can
be easily explained by the impact of the nonlocal parameter on the vibrational modes.
It should be noted that the amount of the decrease in the non-dimensional frequencies
increases with the increase in the vibration mode number. In the first and second modes
the changes are especially negligible, while in the higher modes the differences become
more pronounced. Thus, it can be concluded that the impact of the nonlocal parameter on
the axial frequencies of the short-fiber-reinforced composite nano-rod in higher modes is
more significant.

Table 1. Comparison of the first three non-dimensional axial frequencies of randomly oriented
short-fiber-reinforced composite nano-rods for the clamped–clamped boundary condition.

Mode Number Analytical Solution [1] Present
(Ω0=ΩL=∞)

e0a = 0 nm
1 3.5819 3.5819
2 7.1639 7.1639
3 10.7459 10.7459

e0a = 0.5 nm
1 3.5709 3.5709
2 7.0771 7.0771
3 10.4594 10.4594

e0a = 1 nm
1 3.5385 3.5385
2 6.8345 6.8345
3 9.7206 9.7206

Table 2. Comparison of the first three non-dimensional axial frequencies of randomly oriented
short-fiber-reinforced composite nano-rods for the clamped–free boundary condition.

Mode Number Analytical Solution [1] Present
(Ω0=∞, ΩL=0)

e0a = 0 nm
1 1.7909 1.7909
2 5.3729 5.3729
3 8.9549 8.9549

e0a = 0.5 nm
1 1.7896 1.7896
2 5.3360 5.3360
3 8.7871 8.7871

e0a = 1 nm
1 1.7854 1.7854
2 5.2297 5.2297
3 8.3352 8.3352

Secondly, the impacts of l/d ratios on the dimensionless frequency values of the
short-fiber-reinforced nano-rod are examined. For this purpose, non-dimensional axial
frequency values for l/d values ranging from one to seven are illustrated for the first seven
modes via Figure 4. The following properties are utilized for this investigation: ρ f /ρm = 4,
E f /Em = 10, e0a = 0.2 nm, Vf = 0.5, K = 0 and L = 20 nm. It can be clearly seen from
Figure 4 that with increasing l/d values, the dimensionless frequency values of the short-
fiber-reinforced nano-rod also increase. This increment is valid for all modes examined. It
should be noted that at low l/d values, the change in the dimensionless frequencies of the
short-fiber-reinforced composite nano-rod is more significant. As the l/d values increase,
the change in the dimensionless frequencies decreases.
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Figure 4. The variations of non-dimensional frequencies of short-fiber-reinforced composite nano-
rods versus l/d: (a) 1st mode (b) 2nd mode (c) 3rd mode (d) 4th mode (e) 5th mode (f) 6th mode
(g) 7th mode.
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Via Figure 5, the influence of composite nano-rod length on the dimensionless fre-
quency values is discussed. In Figure 5, the variation in the non-dimensional axial frequency
values of short-fiber-reinforced composite nano-rods versus length is plotted for the first
seven modes. The length of the composite nano-rod ranges from 10 nm to 20 nm and the
following properties are considered: ρ f /ρm = 2, E f /Em = 10, e0a = 0.2 nm, Vf = 0.5,
K = 0 and l/d = 2. When we look at the changes in the dimensionless axial frequencies
of the short-fiber-reinforced composite nano-rod via the figure, we can say that a general
increase has occurred. In the first mode, when the length is 12 nm, 14 nm, 16 nm, 18 nm and
20 nm, there is no change in the dimensionless axial frequencies of the composite nano-rod.
This can be explained by the impact of the length on the vibrational modes. It should be
highlighted here that the amount of the increment in the non-dimensional frequencies
increases with the increase in the vibration mode number. It may be said that the impact of
nano-rod length on the non-dimensional frequencies in higher modes is more prominent.

In Figure 6, the influence of elastic foundation is investigated. For this aim, the di-
mensionless frequency values of the short-fiber-reinforced composite nano-rod are plotted
against the dimensionless foundation parameter K for the first seven modes. The dimen-
sionless foundation parameter impacting the composite nano-rod changes from zero to six
and the following properties are considered in this investigation: ρ f /ρm = 2, E f /Em = 10,
e0a = 0.2 nm, Vf = 0.5, L = 20 nm and l/d = 2. From this figure, the increase in the
dimensionless frequencies of the short-fiber-reinforced nano-sized rod with increasing
foundation parameter values can be clearly discerned. It should be noted here that if the
dimensionless foundation parameter K is set to zero, the composite nano-sized rod becomes
independent of the foundation effect. It should also be noted that the lowest frequency
values are calculated at K = 0. From this it is clear that the presence of an elastic medium
has a hardening effect on the short-fiber-reinforced composite nano-rod. Another important
issue to be emphasized here is the influence of elastic foundation on the vibration modes.
When Figure 6 is examined, it can be seen that the increases in the dimensionless frequency
values are much higher in the first mode. If the modes are analyzed separately, it is clear
that the lowest amount of change occurs in the seventh mode. Based on these results, it is
possible to say that the elastic foundation effect is much more effective in lower modes.

Figure 7 aims to investigate the impacts of the foundation parameter and l/d ratio on
the dimensionless frequencies of the short-fiber-reinforced composite nano-rod. For this
purpose, Figure 7 demonstrates the alteration of the first mode dimensionless frequency
values of the composite nano-rod versus l/d for various foundation parameters K. The
dimensionless foundation parameter and l/d are changed from zero to six and from one
to seven, respectively. In addition, the following properties are used in this investigation:
ρ f /ρm = 4, E f /Em = 10, e0a = 0.2 nm, Vf = 0.5, L = 20 nm and l/d = 2. From here, the
increase in frequencies caused by the foundation parameter and l/d can be observed again.

Figure 8 demonstrates the impacts of the foundation parameter and the Ef/Em ratio
on the first dimensionless frequencies of the embedded short-fiber-reinforced composite
nano-rod. In this figure, the change in the first mode dimensionless frequencies of the
composite nano-rod versus Ef/Em for various foundation parameters K is plotted. The
dimensionless foundation parameter and Ef/Em are changed from zero to six and from
5 to 30, respectively. Furthermore, the following properties are assumed for this figure:
ρ f /ρm = 4, l/d = 2, e0a = 0.2 nm, Vf = 0.5, L = 20 nm. It can be understood from this
figure that an increment in the Ef/Em value is accompanied by an increase in the first-mode
axial frequencies.

The influence of Ef/Em ratios on the dimensionless frequency values of the short-fiber-
reinforced nano-rod are examined in Figure 9. For this purpose, the non-dimensional axial
frequency values for Ef/Em values ranging from 5 to 30 are demonstrated for the first seven
modes. The following properties are considered for this study: ρ f /ρm = 4, e0a = 0.2 nm,
Vf = 0.5, K = 0, l/d = 2, and L = 20 nm. It is clearly seen here that with increasing
Ef/Em values, the dimensionless frequencies of the composite nano-sized rod increase. It
should be emphasized here that at low Ef/Em values, the change in the dimensionless axial
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frequencies of the short-fiber-reinforced nano-rod is more prominent. As the Ef/Em values
increase, the change in the dimensionless axial frequencies of the composite nano-rod
decreases.

Figure 5. The variations of non-dimensional frequencies of short-fiber-reinforced composite nano-
rods versus length: (a) 1st mode (b) 2nd mode (c) 3rd mode (d) 4th mode (e) 5th mode (f) 6th mode
(g) 7th mode.
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Figure 6. The variations of non-dimensional frequencies of short-fiber-reinforced composite nano-
rods versus the foundation parameter: (a) 1st mode (b) 2nd mode (c) 3rd mode (d) 4th mode (e) 5th
mode (f) 6th mode (g) 7th mode.
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Figure 7. The variations of non-dimensional frequencies of short-fiber-reinforced composite nano-
rods versus l/d: (a) K = 0 (b) K = 1 (c) K = 2 (d) K = 3 (e) K = 4 (f) K = 5 (g) K = 6.
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Figure 8. The variations of non-dimensional frequencies of short-fiber-reinforced composite nano-
rods versus Ef/Em: (a) K = 0 (b) K = 1 (c) K = 2 (d) K = 3 (e) K = 4 (f) K = 5 (g) K = 6.



Materials 2022, 15, 6803 20 of 25

Figure 9. The variations of non-dimensional frequencies of short-fiber-reinforced composite nano-
rods versus Ef/Em: (a) 1st mode (b) 2nd mode (c) 3rd mode (d) 4th mode (e) 5th mode (f) 6th mode
(g) 7th mode.
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Lastly, the impacts of ρf/ρm ratios on the dimensionless frequencies of the composite
nano-sized rod are examined in Figure 10. For this purpose, non-dimensional axial fre-
quency values for ρf/ρm values ranging from 2 to 12 are shown for the first seven modes.
The following properties are considered for this study: E f /Em = 10, e0a = 0.2 nm, Vf = 0.5,
K = 0, l/d = 2, and L = 20 nm. It is observed here that with increasing ρf/ρm values,
the non-dimensional frequency values of the short-fiber-reinforced composite nano-rod
decrease. This decrement in the frequencies is valid for all modes examined. It should
be highlighted here that at low ρf/ρm values, the variation in the dimensionless axial
frequencies of the short-fiber-reinforced nano-rod is more conspicuous.

Figure 10. Cont.
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Figure 10. The variations of non-dimensional frequencies of short-fiber-reinforced composite nano-
rods versus ρf/ρm: (a) 1st mode (b) 2nd mode (c) 3rd mode (d) 4th mode (e) 5th mode (f) 6th mode
(g) 7th mode.

7. Conclusions

In this paper, the dynamics of embedded short-fiber-reinforced micro-/nano-rods have
been investigated using Eringen’s nonlocal elasticity theory. Based on this higher-order
theory and the material properties of the nano-rods, a coefficient matrix including the
elastic foundation, short fiber and the nonlocal parameter are obtained. The systems of
linear equations including infinite power series are constructed by introducing the nonlocal
force boundary conditions and with the help of the Stokes’ transformation together with
Fourier sine series. A precise and constant eigenvalue algorithm is applied to obtain the
axial vibration frequencies of composite nano-rods with deformable and rigid boundary
conditions. The present model is validated by comparing the analytical results with the
results available in the scientific literature. Eringen’s nonlocal small-scale parameter has a
softening effect on the free axial vibration frequencies for all the boundary conditions (rigid
or restrained), without observing the paradoxical response of nonlocal elasticity theory.
The hardening effect of the short-fiber parameter is more pronounced for all the boundary
conditions. Similar studies for other behaviors of short-fiber-reinforced nano-rods, such as
buckling, bending, wave propagation and forced vibration propagation, can be conducted
in future works.
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16. Shariati, A.; Jung, D.w.; Mohammad-Sedighi, H.; Żur, K.K.; Habibi, M.; Safa, M. On the vibrations and stability of moving
viscoelastic axially functionally graded nanobeams. Material 2020, 13, 1707. [CrossRef] [PubMed]

17. Akgöz, B.; Civalek, O. Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium.
Int. J. Eng. Sci. 2014, 85, 90–104. [CrossRef]

18. Civalek, O.; Uzun, B.; Yaylı, M.Ö. An effective analytical method for buckling solutions of a restrained FGM nonlocal beam.
Comput. Appl. Math. 2022, 41, 67. [CrossRef]

19. Ebrahimi, F.; Barati, M.R.; Civalek, O. Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal
microstructure-dependent nanostructures. Eng. Comput. 2020, 36, 953–964. [CrossRef]

20. Van Hieu, D.; Chan, D.Q.; Phi, B.G. Analysis of nonlinear vibration and instability of electrostatic functionally graded micro-
actuator based on nonlocal strain gradient theory considering thickness effect. Microsyst. Technol. 2022, 28, 1845–1865. [CrossRef]

21. Eftekhari, S.A.; Toghraie, D. Vibration and dynamic analysis of a cantilever sandwich microbeam integrated with piezoelectric
layers based on strain gradient theory and surface effects. Appl. Math. Comput. 2022, 419, 126867.

22. Fallah, Y.; Mohammadimehr, M. On the free vibration behavior of Timoshenko sandwich beam model with honeycomb core and
nano-composite face sheet layers integrated by sensor and actuator layers. Eur. Phys. J. Plus 2022, 137, 741. [CrossRef]

23. Hong, J.; Wang, S.; Qiu, X.; Zhang, G. Bending and Wave Propagation Analysis of Magneto-Electro-Elastic Functionally Graded
Porous Microbeams. Crystals 2022, 12, 732. [CrossRef]

24. Jalaei, M.H.; Thai, H.T.; Civalek, O. On viscoelastic transient response of magnetically imperfect functionally graded nanobeams.
Int. J. Eng. Sci. 2022, 172, 103629. [CrossRef]

25. Kar, U.K.; Srinivas, J. Frequency analysis and shock response studies in bidirectional functionally graded microbeam with thermal
effects. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 311. [CrossRef]
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