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Abstract: This paper proposes a novel density-based concurrent topology optimization method
to support the two-scale design of composite plates for vibration mitigation. To have exceptional
damping performance, dynamic compliance of the composite plate is taken as the objective function.
The complex stiffness model is used to describe the material damping and accurately consider the
variation of structural response due to the change of damping composite material configurations. The
mode superposition method is used to calculate the complex frequency response of the composite
plates to reduce the heavy computational burden caused by a large number of sample points in
the frequency range during each iteration. Both microstructural configurations and macroscopic
distribution are optimized in an integrated manner. At the microscale, the damping layer consists
of periodic composites with distinct damping and stiffness. The effective properties of the periodic
composites are homogenized and then are fed into the complex frequency response analysis at the
macroscale. To implement the concurrent topology optimization at two different scales, the design
variables are assigned for both macro- and micro-scales. The adjoint sensitivity analysis is presented
to compute the derivatives of dynamic compliance of composite plates with respect to the micro and
macro design variables. Several numerical examples with different excitation inputs and boundary
conditions are presented to confirm the validity of the proposed methodologies. This paper represents
a first step towards designing two-scale composite plates with optional dynamic performance under
harmonic loading using an inverse design method.

Keywords: concurrent topology optimization; damping composite materials; dynamic compliance;
homogenization; composite plates

1. Introduction

Thin-walled composite plates have been widely used as structural components in
various engineering applications to bear static and dynamic loads. The vibrations caused by
the dynamic loads are transmitted to passengers and precision equipment, which reduces
the crew’s comfort, affects normal operations, and shortens the service life of high-precision
equipment [1]. There is a rising demand to design optimal composites that have a superior
combination of high stiffness and exceptional vibration mitigation capability. Over the past
few decades, active and passive methods have been developed to improve the dynamic
performance of composite structures [2–5]. Among these methods, incorporating a passive
damping material layer into the base plates (i.e., free-layer [6] or constrained-layer [7,8]) is
one of the most efficient, robust, and low-cost methods. Intrinsically, the vibration perfor-
mance of the composite plates is determined by the properties of the damping materials
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and their topological arrangements on the base plates. Conventional design practices for
damping composite architectures are focused on parameter analysis, in which only a few
design variables are considered (i.e., the thickness or the size of the damping layer) [9,10].
However, these rely heavily on the designers’ intuition and it is hard to obtain the optimal
configurations. These challenges are more notable when optimal microstructural damping
configurations and macroscopic arrangements are simultaneously pursued.

Topology optimization (TO) [11,12] is a powerful inverse design technique that does
not require predefined shapes. It can be used to generate a free-form optimal configuration
that fulfills the functional requirements quantified by the objective functions and constraints.
A series of TO methods have been developed to design damping composite structures,
which can be broadly classified into two categories: one is to optimize the macrostruc-
ture layout of the damping material on the plates [13–16], while the other is focused on
optimizing the composite architectures in microscale [17–20] using the homogenization
method [21–24]. However, most existing works focus on either the macro- or micro-scale
TO. Recent studies show that combining the macrostructure topology optimization with
microscale composite material design can significantly improve structural performance.
Zhu [25] proposed a concurrent TO strategy to optimize the layout of damping material
and the beam size of the lattice core; however, they did not consider the microstructure
design problems of the damping layer. Zhang [26] proposed a concurrent TO method to
design the free-layer damping structures with a maximum structural modal loss factor. In
addition to the damping performance, the vibration response of the structures controlled by
dynamic stiffness is equally important. To the authors’ knowledge, so far, limited researches
have focused on the multi-scale topology optimization of composite plate structures in a
frequency range. In this case, dynamic compliance is often used as the design objective
for vibration response design [27–33]. In these studies, dynamic compliance is calculated
using proportional damping, which cannot accurately consider the variation of damping
due to the change of damping material configurations.

Inspired by the abovementioned investigations, it can be reasonably expected that
developing a multi-scale dynamic optimization model to design the composite plates in
a frequency range is likely to obtain a light structure and efficiently suppress structural
vibration. The novelties of this paper are as follows:

1. A concurrent TO method that can optimize the dynamic compliance of a two-scale
composite plate subjected to harmonic loading in a specified frequency range is
developed based on the density method.

2. The complex stiffness model is used to describe the material damping and accurately
consider the variation of structural response due to the change of damping material
configurations. The mode superposition method is used to calculate the frequency
response of the composite plates to reduce the heavy computational burden caused
by a large number of sample points in the frequency range during each iteration.

3. In the numerical examples, the effects of the excitation frequency range and positions
on the optimal composite plate configurations are investigated. It is found that the
damping composite material layout is beneficial to resist the deformation of the
eigenmode. Finally, some general design rules for the design of composite structures
to improve vibration performance are also summarized.

The composite plate, at the macroscale, consists of a panel as the non-design domain
and a damping composite layer as the design domain (see Figure 1a–c). The layout of the
optimal damping composite materials on the plates will be optimized. At the microscale,
the unit cell of the periodic damping composite is composed of two materials with distinct
mechanical properties. One phase is a soft rubber with high damping, while the other is a
rigid polymer with high stiffness. The purpose is to improve the structural stiffness and
damping simultaneously. To implement the concurrent topology optimization, pseudo
density values at the macro and micro-scales are considered as the design variables. The
adjoint sensitivity analysis is presented to compute the derivatives of dynamic compliance
of composite plates with respect to the two-scale design variables.
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The rest of this paper is outlined as follows: Section 2 describes the general numerical
computation method of dynamic compliance of the damping composite structures using
the finite element method. Section 3 presents the mathematical optimization model of the
proposed concurrent topology optimization method and elaborates the sensitivity analysis
on the two scales. In Section 4, several numerical examples are presented to demonstrate
the effectiveness of the proposed method. Finally, the design rules and conclusions are
drawn in Section 5.

Figure 1. Two-scale composite plate design. (a) A composite plate consists of a metal panel and
periodic damping composite. (b) Periodic damping composite. (c) Microstructure of the periodic
damping composite.

2. Dynamic Compliance of the Composite Plate

In this section, the dynamic compliance of the proposed composite plate will be
derived. For completeness and consistency, details pertaining to the definition of complex
stiffness and complex frequency response are provided.

2.1. The Complex Stiffness Model for the Damping Material

A complex stiffness model [26] is used to describe the dynamic characteristic of the
damping material, which can be stated as:

E = E′ + ζE′′ = E′(1 + ζη) (1)

where E′ and E” are the storage and loss modulus of the damping material, respectively.
η is the loss factor of the damping material. ζ is the imaginary unit, ζ =

√
−1.

2.2. Complex Frequency Response of the Composite Plate

The momentum equation of a structural system under harmonic excitation can be
written as:

M
..
u + Ku = f eζωt (2)

where M and K are the global mass and stiffness matrices, respectively. K is the com-
plex when the structure contains a damping material with a complex stiffness shown in
Equation (1). u is the displacement vector of the macrostructure, f is the magnitude of the
harmonic force, ω is the excitation frequency of the harmonic force, and t is time.

The damping characteristic of the metal panel is ignored in this paper since it is
negligibly small compared with that of the damping material. The global stiffness matrix
of structure K is expressed as:

K = Kp + Kv = Kp + KR
v + ζKI

v = KR + ζKI (3)
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where the superscript “R” and “I” represent the real and imaginary parts, respec-
tively. The subscripts “p” and “v” denote the metal panel and the damping composite
layer, respectively.

Considering the free vibration of the composite structure, the complex eigenvalue λr
and the eigenvector Φr can be expressed as:

λ2
r = ω2

r (1 + ζηr) (4)

Φr = ΦR
r + ζΦI

r (5)

where ωr and ηr are the r-th real eigenvalue and loss factor of the macrostructure. Φr
R

and Φr
I are the real and imaginary parts of the complex eigenvector, respectively. The

eigenvector Φ is normalized to φ = {φ1, φ2, . . . φr, . . . }.
Converting the governing equation shown in Equation (2) to the frequency domain

leads to:
[KR + ζKI −ω2M]ueζωt = f eζωt (6)

The solution of Equation (6) is:

u =
[
KR + ζKI −ω2M

]−1
f = H(ω) f (7)

Based on the mode superposition method, the response of structure u is equal to
H(ω) when the magnitude of the harmonic force is a unit load. Then the response can be
described as:

Hjk(ω) =
Λ

∑
r=2

φrjφrk

ω2
r −ω2 + ζηrω2

r
(8)

where j is the DoFs of the excitation position, and k is the DoFs of the response position.
Λ is the number of eigenfrequencies/eigenmodes that are used to calculate the response.
Note that the more eigenmodes used, the more accurate results obtained. In this study,
Λ = 20 is used.

Using the non-normalized eigenvector Φ, Equation (8) can also be expressed as:

Hjk(ω) =
Λ

∑
r=1

ΦrjΦrk

mr(ω2
r −ω2 + ζηrω2

r )
(9)

where mr is the r-th mode mass.

2.3. Dynamic Compliance of the Composite Plate

If the response of the composite plate is obtained, the dynamic compliance can be
stated as:

C = uTF (10)

where F is the vector of the applied external load. Due to the complex stiffness matrix, the
displacement vector u is complex, which is expressed as u = uR + ζuI. Then the dynamic
compliance is given by:

C = CR + ζCI (11)

where CR and CI are the real and imaginary parts of the dynamic compliance, respectively.
The 2-norm of the dynamic compliance of the composite structures can be defined as:

d = ‖C‖ =
√

CR
2 + CI

2 (12)

According to Equations (6) and (10), compliance can be stated as:

C = uTF = uT
(

KR + ζKI −ω2M
)

u (13)
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The displacement vector is complex, so Equation (13) can be rewritten as:

C = uTF =
(

uT
R + ζuT

I

)(
KR + iKI −ω2M

)
(uR + ζuI) (14)

Finally, dynamic compliance C can be stated as:

C = uT
R
(
KR −ω2M

)
uR − uT

R
(
KI)uI − uT

I
(
KR −ω2M

)
uI − uT

I
(
KI)uR

+ζ
[
uT

R
(
KR −ω2M

)
uI + uT

R
(
KI)uR + uT

I
(
KR −ω2M

)
uR − uT

I
(
KI)uI

] (15)

According to Equation (15), CR and CI are expressed as:

CR = uT
R

(
KR −ω2M

)
uR − uT

R

(
KI
)

uI − uT
I

(
KR −ω2M

)
uI − uT

I

(
KI
)

uR (16)

CI = uT
R

(
KR −ω2M

)
uI + uT

R

(
KI
)

uR + uT
I

(
KR −ω2M

)
uR − uT

I

(
KI
)

uI (17)

3. Concurrent Topology Optimization and Sensitivity Analysis
3.1. Multi-Scale Modeling Procedure

In the present work, the dynamic compliance for the macrostructure is used as the
objective function. First, the homogenization method is used to calculate the effective
material properties of the viscoelastic composite, as shown in Figure 1c. Then the effective
material properties are used to calculate the stiffness and mass matrices of the composite
macrostructure in Equation (2), and the frequency response can be obtained by Equation (8).
Finally, Equation (10) is used to calculate the structural dynamic compliance.

3.2. Mathematical Model for the Concurrent to Problem

The density-based method is employed to identify the optimal micro and macro
configurations of the composite plate. The design variable X contains the information
at both micro- and macro-scales, X = [χMI, χMA]. If the microstructure of the damping
composite material is discretized into m elements, the design variable χMI is defined as χMI

= [χMI
1 ,χMI

i ,... χMI
m ]T. Analogously, if the macrostructure of the damping layer is discretized

into n elements, the design variable χMA is defined as χMA = [χMA
1 ,χMA

i ,... χMA
m ]T. To

maximize the structural dynamic stiffness, minimizing the structural dynamic compliance
in the specified frequency range is taken as the design objective. Generally, to avoid numer-
ical problems, the resonant frequency is excluded from the specified excitation frequency
range. To design materials with isotropic elastic properties, the isotropy constraint must be
implemented in the optimization algorithm. Finally, the mathematical model for the con-
current optimization problem considering the macro- and micro-scales can be formulated
as follows:

f ind : X
(

χMI
i , χMA

j

)
(18a1)

min : f = d (18a2)
s.t. : vMI(χMI) ≤ f MIvMI

0
(18a3)

vMA(χMA) ≤ f MAvMA
0

(18a4)(
Re
(

DH
11
− DH

22

))2 ≤ ε (18a5)(
Re
(

DH
11
+ DH

22
− 2
(

DH
12
+ 2DH

33

)))2 ≤ ε (18a6)(
Im
(

DH
11
− DH

22

))2 ≤ ε (18a7)(
Im
(

DH
11
+ DH

22
− 2
(

DH
12
+ 2DH

33

)))2 ≤ ε (18a8)
0 < χMI

min ≤ χMI
i ≤ 1, i = 1, 2, . . . , m (18a9)

0 < χMA
min ≤ χMA

j ≤ 1, j = 1, 2, . . . , n (18a10)

where, X is the design variable, which consists of the subsets of design variables for
both domains, the micro relative density χMI, and the macro relative density χMA. In
Equation (18a2), the objective is to minimize the dynamic compliance d in the excitation
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frequency range. In Equations (18a3) and (18a4), f MA and f MI are the volume fractions on
macro and micro scales, respectively. vMA and v0

MA are the maximum allowed volume of
the damping composite in the macro scale, while vMI and v0

MI are those of the soft material
in the micro scale. Isotropy constraints are enforced on both the real and imaginary parts
of the elastic matrix. Equations (18a5) and (18a6) are the real part, and Equations (18a7)
and (18a8) are the imaginary part. ε is the tolerance, which is set to 10−5 in this paper.
Equations (18a9) and (18a10) define the upper and lower bounds of the design variables
χMI and χMA, respectively. χMI

min and χMA
min are the small positive values for the lower bound

of the design variables to avoid numerical instabilities. m and n are the total number of
elements in the macro and micro models, respectively.

For the plate elements, the elastic stiffness matrix is expressed as:

D =
Et3

12(1− ν2)

∣∣∣∣∣∣
1 ν 0
ν 1 0
0 0 1−ν

2

∣∣∣∣∣∣ (19)

where E and µ are the Young’s modulus and Poisson’s ratio of the material, t is the thickness
of the plate.

The isotropy conditions can be expressed as:

(1)D11 = D22
(2)D11 + D22 = D12 + D21 + 4D33

(20)

where D11, D22, D12, D21, and D33 are the corresponding elastic tensor shown in Equa-
tion (19), D12 = D21.

Based on the isotropy conditions expressed as Equation (20), the isotropy constraints
shown in Equation (21) can be obtained. Note that, to make the value positive, a square of
the function is used.

(1)(D11 − D22)
2 ≤ ε

(2)[D11 + D22 − (D12 + D21 + 4D33)]
2 ≤ ε

(21)

3.3. Sensitivity Analysis
3.3.1. Material Interpolation Scheme

Finite element analyses are conducted concurrently in both macro- and micro-scales.
The effective elasticity matrix of the damping composite can be obtained by the homog-
enization theory. Generally, the element size of the unit cell should be less than the
half-wavelength, and the excitation frequency range cannot include the resonant frequency.
In this paper, the effect of frequency and temperature on the material damping is not
considered; thus the homogenized properties DH of the microstructure can be expressed as

DH =
1
|Y|

m

∑
i=1

∫
Y

DMI(I− bui)dY (22)

where ui is the elemental displacement of the microstructure due to the uniform strain
fields.|Y| is the volume of the unit cell. Y is the domain of the microstructure. DMI is the
elastic matrix of the i-th element in the microstructure. I is an identity matrix.

For the mass matrix, the equivalent physical density ρH of the composite material is:

ρH =
m

∑
i=1

viρ
MI
i (23)

where vi and ρi
H are the volume and density of the i-th element in the micro-scale, respectively.
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To obtain distinct optimal topologies, the solid isotropic material with penalization
method (SIMP) [34] is applied to the concurrent topology optimization. The elasticity
matrix and density of the i-th element in micro-scale can be then written as:

DMI
i =

(
χMI

i

)p
D1 +

(
1−

(
χMI

i

)p)
D2 (24)

ρMI
i =

(
χMI

i

)q
ρ1 +

(
1−

(
χMI

i

)q)
ρ2 (25)

where p and q are the exponents of penalization, here, p is 3 and q is 1. D1 and D2 denote
the elasticity matrix of materials A and B in the microstructure. ρ1 and ρ2 are the density.

Substituting the material interpolation shown in Equation (22) to Equation (24), the
effective complex elasticity matrix of the microstructure is:

DH =
1
|Y|

m

∑
i=1

∫
Y

(
(χMI

i )
p
D1 + (1− χMI

i )
p
D2

)
(I− bui)dY (26)

Substituting the material interpolation shown in Equation (23) to Equation (25), the
effective density of the microstructure is:

ρH =
m

∑
i=1

((
χMI

i

)q
ρ1 +

(
1−

(
χMI

i

)q)
ρ2

)
(27)

For the macro scale material interpolation, the elasticity matrix of the j-th element in
the macro scale, Dj

MA, is interpolated as:

DMA
j = (χMA

j )
p
DH (28)

The density of the j-th element in the macro model, ρj
MA, is interpolated as:

ρMA
j =

(
χMA

j

)q
ρH (29)

To obtain the structural response of the composite plate, macro-scale finite element
analysis should be conducted regarding the microstructural properties. The stiffness and
mass matrix of the damping layer Kv and Mv are assembled with the elemental stiffness or
mass matrix, which can be stated as:

Kv =
n

∑
j

kv
j =

n

∑
j

∫
Ωj

BTDMABdΩj (30)

Mv =
n

∑
j

mv
j =

n

∑
j

∫
Ωj

NTρMANdΩj (31)

where B and N are the strain–displacement matrix and shape function in the macro-scale.
kj

v and mj
v are the stiffness and mass matrices of the j-th element in the macrostruc-

ture, respectively. DMA is the elastic matrix that can be computed with Equation (28).
ρMA is the density that can be computed with Equation (29). Ω is the design domain of
the macrostructure.

The sensitivity analysis requires finite element analysis in both macro- and micro-
levels. The sensitivity of the macro system’s dynamic compliance due to the change of a
design variable on the macro- or micro-scales can be obtained by computing the derivative
of d given in Equation (12).
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3.3.2. Sensitivity Analysis at the Macro-Scale

Considering the change of each element at the macroscale, the sensitivity of the
macrostructure design variables yi can be derived. Using the chain rule, the sensitivity of
dynamic compliance expressed in Equation (12) with respect to the design variable yj can
be formulated as:

∂d
∂χMA

j
=

1
d

(
CR

∂CR

∂χMA
j

+ CI
∂CI

∂χMA
j

)
(32)

According to Equations (16) and (17), the sensitivities of CR and CI are as follows,

∂CR

∂χMA
j

= uT
R

(
∂KR

∂χMA
j
−ω2 ∂M

∂χMA
j

)
uR − uT

R

(
∂KI

∂χMA
j

)
uI − uT

I

(
∂KR

∂χMA
j
−ω2 ∂M

∂χMA
j

)
uI − uT

I

(
∂KI

∂χMA
j

)
uR (33)

∂CI

∂χMA
j

= uT
R

(
∂KR

∂χMA
j
−ω2 ∂M

∂χMA
j

)
uI + uT

R

(
∂KI

∂χMA
j

)
uR + uT

I

(
∂KR

∂χMA
j
−ω2 ∂M

∂χMA
j

)
uR − uT

I

(
∂KI

∂χMA
j

)
uI (34)

In which the KR and KI are stated as follows,

KR = Kp + Re(Kv) (35)

KI = Im(Kv) (36)

The thin-walled metal panel is the non-design domain; thus Kp is a constant. Using
the material interpolation scheme proposed in Equations (28) and (29), and based on the
stiffness Kv in Equation (30) and mass matrix Mv in Equation (31), the sensitivity of ∂KR

∂χMA
j

,

∂KI

∂χMA
j

, ∂M
∂χMA

j
can be obtained by the following equation.

∂KR

∂χMA
j

=
∂[Re(Kv)]

∂χMA
j

=
n

∑
j=1

∫
Ωj

BT
p
(

χMA
j

)p−1[
Re
(
DMA)]

∂χMI
i

BdΩj (37)

∂KI

∂χMA
j

=
∂[Im(Kv)]

∂χMA
j

=
n

∑
j=1

∫
Ωj

BT
p
(

χMA
j

)p−1[
Im
(
DMA)]

∂χMI
i

BdΩj (38)

∂M
∂χMA

j
=

n

∑
j=1

∫
Ω

NT
(

q
(

χMA
j

)q−1
ρMA

)
NdΩj (39)

The sensitivity in the macrostructure for maximizing the dynamic compliance of the
system is obtained by inserting Equations (37)–(39) to Equations (33) and (34). Then to
Equation (32), the sensitivity of the dynamic compliance with respect to the macro design
variable yj can be obtained.

3.3.3. Sensitivity Analysis at the Micro-Scale

Similar to the sensitivity analysis at the macro-scale, the sensitivity of dynamic com-
pliance concerning design variable xi in micro-scale can be obtained as:

∂d
∂χMI

i
=

1
d

(
CR

∂CR

∂χMI
i

+ CI
∂CI

∂χMI
i

)
(40)

where

∂CR

∂χMI
i

= uT
R

(
∂KR

∂χMI
i
−ω2 ∂M

∂χMI
i

)
uR − uT

R

(
∂KI

∂χMI
i

)
uI − uT

I

(
∂KR

∂χMI
i
−ω2 ∂M

∂χMI
i

)
uI − uT

I

(
∂KI

∂χMI
i

)
uR (41)



Materials 2022, 15, 538 9 of 30

∂CI

∂χMI
i

= uT
R

(
∂KR

∂χMI
i
−ω2 ∂M

∂χMI
i

)
uI + uT

R

(
∂KI

∂χMI
i

)
uR + uT

I

(
∂KR

∂χMI
i
−ω2 ∂M

∂χMI
i

)
uR − uT

I

(
∂KI

∂χMI
i

)
uI (42)

where the sensitivity of KR with respect to the micro-scale design variable xi is formulated as:

∂KR

∂χMI
i

=
n
∑

j=1

∫
Ωj

BT ∂
(

χMA
j

)p
[Re(DMA)]

∂χMI
i

BdΩj

=
n
∑

j=1

(
χMA

j

)p∫
Ωj

BT
(

1
|Y|
∫

Y (I− bu)T
{

p(χMI
i )

p−1
[Re(D1)] + p(1− χMI

i )
p−1

[Re(D2)]
}
(I− bu)dY

)
BdΩ

(43)

The sensitivity of KI with respect to the micro-scale design variable xi is formulated as:

∂KI

∂χMI
i

=
n
∑

j=1

∫
Ωj

BT ∂
(

ρMA
j

)p
[Im(DMA)]

∂χMI
i

BdΩj

=
n
∑

j=1

(
χMA

j

)p∫
Ωj

BT
(

1
|Y|
∫

Y (I− bu)T
{

p(χMI
i )

p−1
[Im(D1)] + p(1− χMI

i )
p−1
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The sensitivity of the mass matrix with respect to the micro-scale design variable xi is:
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Substituting Equations (43)–(45) into Equations (41) and (42), and then into Equa-
tion (40), the sensitivity of the dynamic compliance with respect to the micro design
variable xi can be obtained.

3.4. Design Process

The mathematical optimization problem expressed in Equation (18) is solved by the
method of moving asymptotes (MMA) [35]. The flow chart of the proposed method is
illustrated in Figure 2, which includes the following steps:

1. Construct the initial configurations in micro- and macro-scales. Set the initial guess
for design variables x and y. In this study, the initial value of the iteration number is
N = 0;

2. Calculate the effective properties of the damping composite material. The homoge-
nization method is used to calculate the effective material properties DH and ρH;

3. Perform the finite element analysis on a macro-scale, using DH and ρH to calculate
the frequency response of the macrostructure;

4. Compute the objective and constraints;
5. Analyze the sensitivity of the design variables in both macro-and micro-scales and

apply the sensitivity filter to avoid checkboard patterns or gray-scale elements;
6. Update the design variables X(x,y) by the MMA method;
7. Repeat steps 2–6 until the objective function is convergent or the iteration number N

reaches the predefined maximum value Nmax (in this paper, Nmax = 200).
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Figure 2. Flowchart of the concurrent topology optimization algorithm.

4. Model Verification and Numerical Examples
4.1. Model Verification of Frequency Response of Composite Plates

In this section, we verify the proposed multi-scale model for composite plates by
comparing the results from the full-scale model with those from the commercial finite
element tool. The density, Young’s modulus, Poisson’s ratio, and loss factor of the base
materials used in all simulations are listed in Table 1.

Table 1. Material properties of base material and the two different damping materials.

Material Density
(kg/m3)

Young’s
Modulus

(GPa)

Poisson’s
Ratio Loss Factor

Metal (Aluminum alloy) 2700 70 0.29
Material A (Rubber) 1500 0.05 0.4 1
Material B (Polymer) 1000 2 0.4 0.05

Several cantilever structures with different damping layers are modeled using the
proposed model and commercial finite element tool Altair Hyperworks. The dimension of
the plate is 80 × 60 mm, and the thickness of each layer is 2 mm. Three types of structures
are considered: the first is a plate fully covered with polymer, the second is a plate fully
covered with rubber, and the third is a plate full of microstructure shown in Figure 3b. In
the commercial tool, the full-scale model is established with 320 × 240 elements, which is a
single-scale analysis. In the proposed model, the elements of macrostructure are 8 × 6, and
the elements of microstructure are 40 × 40. The comparison results are shown in Table 2. It
can be found that both the modal loss factor and eigenfrequency have minor errors. The
errors of the eigenfrequency are no more than 1.82%, and the errors of the modal loss factor
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are no more than 8.38%. This demonstrated the computational accuracy of the proposed
multi-scale model. From the CPU time, it can be found that the multi-scale model can
dramatically decrease the computational cost. The displacement frequency responses of
the structures shown in Figure 3a,c are shown in Figure 3d. From the comparison result, it
can be found that the displacement of the proposed multi-scale model is nearly the same
as the result of commercial software, which demonstrates the accuracy of the proposed
multi-scale model.

Figure 3. Comparison of the proposed model and commercial finite element tool Altair Hyperworks.
(a) Full-scale model in Altair Hyperworks. (b) Microstructure. (c) The proposed multi-scale model.
(d) Comparison of the displacement frequency response.

Table 2. Comparison between the proposed model and commercial software Altair Hyperworks.

Properties Fully Covered with Polymer Fully Covered with Rubber The Structure in Figure 3

CommercialProposed Error CommercialProposed Error CommercialProposed Error

The first modal loss factor 0.01342 0.01412 5.21% 0.00973 0.00977 0.42% 0.01189 0.01288 8.38%
The second modal loss factor 0.01238 0.01310 5.83% 0.00870 0.00881 1.30% 0.01063 0.01151 8.26%
The third modal loss factor 0.01320 0.01395 5.68% 0.00955 0.00963 0.85% 0.01169 0.01258 7.60%

The first eigenfrequency (Hz) 265.2 266.8 0.60% 212.8 213.1 0.18% 238.7 237.9 0.35%
The second eigenfrequency (Hz) 796.0 810.5 1.82% 647.4 656.3 1.38% 718.7 730.4 1.62%
The third eigenfrequency (Hz) 1634.6 1654.7 1.23% 1313.9 1324.7 0.82% 1473.2 1479.9 0.46%

CPU time (s) 108 1.03 100 1.04 99 1.16

4.2. Numerical Examples

Having demonstrated the accuracy of the proposed model, we will present several
numerical examples to demonstrate the effectiveness of the proposed concurrent topology
optimization method in the rest of this paper. A composite plate composed of a thin-walled
metal panel and damping composite is chosen as the model system. In all the examples,
both thicknesses of the thin-walled metal panel and damping material layer are 2 mm. The
plate structures with different sizes and boundary conditions are studied. Three examples
will be demonstrated, including (1) a rectangular cantilever plate, (2) a rectangular plate
clamped with two opposite edges, and (3) a rectangular plate fixed at the four corner points.
In all the examples, different excitation frequencies at different excitation positions are
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studied. For macro-scale TO, a uniform density field is often used as the initial guess for the
gradient-based MMA optimization algorithm. However, in micro-scale design, this may
lead to a halt of the optimization procedure, this is because a uniformly distributed density
field often leads to a uniformly distributed sensitivity field under the periodic boundary
condition assumption [26,36]. In this paper, two different non-uniform density fields are
used as the initial guesses, as shown in Figure 4. Figure 4a show the initial guess 1 with
the density of four corners set to be 1.0, and Figure 4b show the initial guess 2 with the
density of the center point set to be 1.0. The other parts of the two initial guesses are set to a
uniform distribution with the given volume fraction. From the 3 × 3 assembly of the initial
guess microstructure, the two initial guesses are essentially the same. The structures in
both scales are discretized using Mindlin plate elements. For simplicity, the macrostructure
is discretized using the square element with a size of 5 × 5 mm. The microstructure meshes
feature 40 × 40 elements. A filter radius of two times the element size is used in macro-
and micro-scales.

Figure 4. Initial microstructures for topology optimization. (a) Initial guess 1 and (b) Initial guess 2.

4.2.1. Cantilever Composite Plate

Here we consider the concurrent topology optimization of a rectangular cantilever
plate, as illustrated in Figure 5. The dimension of the plate is 150 × 100 × 2 mm. To obtain
the vibration response of the plate, frequency response analysis is conducted, in which
a harmonically concentrated unit load is applied. Two different excitation locations, PA
(L, W/2) and PB (L, 0), are considered. Figure 6 shows the first three eigenmodes with
corresponding eigenfrequencies of 75, 255, and 467 Hz. The first eigenmode is bending, the
second eigenmode is torsion, and the third eigenmode is second-order bending.

Figure 5. A cantilever composite plate. (a) 3D view. (b) Top view of the composite plate.
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Figure 6. The first three eigenmodes of the cantilever composite plate. (a) The first eigenmode at
75 Hz. (b) The second eigenmode at 255 Hz. (c) The third eigenmode at 467 Hz.

First, the effects of the different initial microstructures and excitation positions are
studied. The excitation frequency range is set to 0~60 Hz. Four different cases are con-
sidered, including (a) the excitation position is at PA and the initial guess 1 is used for
the microstructure design, (b) the excitation position is at PA and initial guess 2, (c) the
excitation position is at PB and initial guess 1, and (d) the excitation position is at PB and
initial guess 2. In all the four test cases, the volume fractions in both scales are the same,
which are f MA = 0.5 and f MI = 0.6. When f MI = 0.6, the volume fraction of the damping
material A (rubber) is vMI,1 = 60%. Note that vMI,1+ vMI,2 = 1.0, thus the volume fraction
of the damping material B (polymer) is vMI,2 = 40%. The optimal solutions are shown in
Figure 7, in which, from left to right, is the damping composite layout in macro-scale, one
unit cell of the damping composite in micro-scale, and 3 × 3 assembly of the unit cell.
In the macro-scale, the blue domain is the damping composite material, and the white
represents the void. On the micro-scale, the black and the copper color represent the rubber
and the polymer, respectively. Figure 8 shows the iterative histories of the design cases
(a)–(d), respectively. Based on the iteration histories, it can be found that all the solutions
are convergent.

When the exciting position is at PA, the optimal material configurations are shown
in Figure 7a,b. Interestingly, the optimal macrostructures are the same. The damping
composite material is mainly located at the left half part of the plate. This is because the
excitation frequency range is set to 0–60 Hz, which is below the first eigenfrequency of
the base plate 75 Hz. As a result, this material layout is useful to resist the first bending
eigenmode. The microstructure of the composite material is similar. The corresponding
dynamic compliances of the optimal results shown in Figure 7a,b are 5.540 N·mm and 5.580
N·mm, respectively. When the exciting position is at PB, the optimal material configurations
are shown in Figure 7c,d. Likewise, the optimal macrostructures are the same. The
microstructure is the same as the results at excitation point PA. The dynamic compliances
of Figure 7c,d are 6.720 N·mm and 6.784 N·mm, respectively. These results imply that
the proposed methodology can mitigate the dependency on the initial guess. When the
excitation positions are different, the microstructures are similar, but the macrostructures
are different. The optimal macrostructures are obtained to resist the first eigenmode. To
show the optimized overall multi-scale composite structures, the result in Figure 7a is
shown in Figure 7e, and the result in Figure 7c is shown in Figure 7f.
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Figure 7. Optimal composite plates under different initial microstructures and excitation positions.
The excitation frequency range is 0–60 Hz. (a) Initial guess 1, excitation position PA, the dynamic
compliance of the optimal structure is 5.540 N·mm. (b) Initial guess 2, excitation position PA, the
dynamic compliance of the optimal structure is 5.580 N·mm. (c) Initial guess 1, excitation position
PB, the dynamic compliance of the optimal structure is 6.720 N·mm. (d) Initial guess 2, excitation
position PB, the dynamic compliance of the optimal structure is 6.784 N·mm. (e,f) are the overall
composite plates for the results shown in (a,c).
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Figure 8. Iteration histories. (a–d) are the iteration histories of design cases shown in Figure 7a–d,
respectively.

Next, we studied the effect of the excitation frequency range on the optimal solutions.
Two design examples with the frequency ranges of 90–200 Hz (between the first and second
eigenfrequency of the base plate, which is 75 Hz and 255 Hz) and 300–400 Hz (between
the second and third eigenfrequency of the base plate, which is 255 Hz and 467 Hz) are
studied. The design results for the case where the excitation frequency range is 90–200 Hz
are shown in Figure 9, and for the case of 300–400 Hz are shown in Figure 10. Compared
with the results of 0–60 Hz shown in Figure 7, the optimal material configurations in
both macro- and micro-scales vary with the excitation frequency. For those test cases
where the excitation position is placed at PA when the frequency range is 100–200 Hz,
the damping material is located at the left side, and they are concentrated around the
excitation position to resist the second torsion eigenmode. The composite microstructures
and the dynamic compliance of the optimal multi-scale structure obtained by the different
initial guesses 1 and 2 are the same, as shown in Figure 9a,c. When the frequency range
is 300–400 Hz, the damping material is located at both left and right sides of the plate to
resist the third eigenmode, which is second-order bending. The resultant microstructures
are shown in Figure 10a,c. For those test cases where the excitation point is placed at PB,
when the frequency range is 90–200 Hz, the results are shown in Figure 9b,d. The damping
material is mainly distributed at the left half and upper right corner of the plate. This is
quite different from the solutions obtained when the excitation point is placed at PA. This
material configuration can resist the torsion eigenmode. The microstructure is similar to
the ones shown in Figure 9a,c. When the frequency range is 300–400 Hz, the results are
depicted in Figure 10b,d. Similar conclusions can be obtained. From Figures 7, 9 and 10, we
can find that when the excitation position is different, the material layouts in both scales are
different. This is because the response at position k corresponds to the excitation position
j and excitation frequency ω, as given in Equation (9), which means that if the excitation
position changes, the response of the whole structure will be changed, which in turn, leads
to different material layouts.
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Table 3 summarizes the dynamic stiffness and mass comparison of the different results.
The mass ratio of the damping layer is defined as the ratio of the mass of the damping layer
to the total mass of the base plate. Compared with the base panel, the structures which
are fully covered with rubber or polymer have higher mass increasing rates, which are
55.56% and 37.06%, respectively. When covered with rubber, the structural eigenfrequency
decreases. When covered with polymer, the structural eigenfrequency is close to that of the
base plate. Compared with the base plate, the multi-scale optimized results have a lower
mass ratio, and the average mass ratio is approximately 22%. The dynamic stiffness has a
minor decrease, and the maximum decrease is 9%. For all the six design results in the table,
the average eigenfrequency decreasing rate at the first, second, and third eigenfrequencies
are 5.9%, 5.8%, and 4.7%, respectively. For the optimal structures, the damping material
is distributed in the most efficient position for vibration reduction. High stiffness, high
damping, and lightweight composite structures are obtained.

Figure 11 shows the dynamic compliance of the optimal multi-scale structures when
the excitation position is placed at PA, as shown in Figures 7a, 9a and 10a. Figure 11(a2)
show the dynamic compliance from 0 Hz to 60 Hz, and Figure 11(a1) show the sum of
dynamic compliance from 0 Hz to 60 Hz. The optimal structure in Figure 7a has the
minimum dynamic compliance in the frequency range of 0–60 Hz. This is because the
result of Figure 7a is obtained to minimize the dynamic compliance from 0 Hz to 60 Hz.
Figure 11(b2) show the dynamic compliance from 90 Hz to 200 Hz, Figure 11(b1) is the sum
of dynamic compliance from 90 Hz to 200 Hz. The figures show that the result of Figure 9a,
which is obtained to minimize the dynamic compliance from 90 Hz to 200 Hz, has the
minimum dynamic compliance in the frequency range of 90–200 Hz. Figure 11(c1,c2) are
the dynamic compliances at 300–400 Hz; the design result of Figure 12a has the minimum
dynamic compliance in the frequency range of 300–400 Hz. A similar conclusion can
be drawn from Figure 12. They can be summarized as follows: the optimal multi-scale
structure obtained with the objective of minimizing the dynamic compliance from ωmin to
ωmax (i.e., 0–60 Hz, 90–200 Hz, or 300–400 Hz in this paper) has the minimum dynamic
compliance in the same frequency range ωmin~ωmax. This demonstrates the effectiveness
of the proposed method.

For all microstructures, though different initial guesses are used, we can obtain similar
optimal solutions. This further demonstrates that the proposed concurrent topology method
is robust for obtaining an optimal solution with different initial guess microstructures. In
the rest of this paper, we will use only the initial guess 1.

Figure 9. Design results with different initial guesses and exciting positions. The excitation frequency
range is 90–200 Hz. (a) Initial guess 1, excitation position PA. Dynamic compliance 1.720 N·mm. (b)
Initial guess 1, excitation position PB. Dynamic compliance 3.207 N·mm. (c) Initial guess 2, excitation
position PA. Dynamic compliance 1.724 N·mm. (d) Initial guess 2, excitation position PB. Dynamic
compliance 3.211 N·mm.
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Figure 10. Design results with different initial guesses and excitation positions. The excitation
frequency range is 300–400 Hz. (a) Initial guess 1, excitation position PA. Dynamic compliance 4.757
N·mm. (b) Initial guess 1, excitation position PB. Dynamic compliance 6.755 N·mm. (c) Initial guess
2, excitation position PA. Dynamic compliance 4.751 N·mm. (d) Initial guess 2, excitation position PB.
Dynamic compliance 6.732 N·mm.

Table 3. Dynamic stiffness and mass comparison of different results.

Examples Natural Frequency (Hz) Total Mass
(g)

Mass of Damping
Layer (g)

Mass Ratio of the
Damping LayerFirst Second Third

Base plate 75.1 254.7 467.4 81.00 0.00 0.00%
Fully covered with Rubber 60.5 205.1 376.6 126.00 45.00 55.56%

Fully covered with Polymer 75.7 253.1 470.1 111.02 30.02 37.06%
Figure 7a 75.3 248.9 425.3 101.76 20.76 25.63%
Figure 7c 74.3 244.4 432.8 101.43 20.43 25.22%
Figure 9a 68.1 244.3 450.7 95.75 14.75 18.21%
Figure 9b 69.6 238.6 450.9 96.36 15.36 18.96%
Figure 10a 69.0 235.4 462.8 96.17 15.17 18.73%
Figure 10b 67.7 228.7 450.0 101.08 20.08 24.79%

To further demonstrate the effectiveness of the proposed optimization method, the
excitation frequencies of the external force at fixed frequencies are discussed. Three test
cases under different excitation frequencies are studied hereinafter. The excitation fre-
quencies are set to 60 Hz, 200 Hz, and 400 Hz, which are lower than the first, second,
and third eigenfrequencies of the base panel. Figure 13 shows the design results for the
case where the excitation position is placed at PA, and Figure 14 shows the results for the
case of PB. It can be found that with the changes in the excitation frequency, the macro
and microstructures are different. From the macrostructure results, when the excitation
frequency is 60 Hz, similar material topologies are obtained as the excitation frequency
ranges 0–60 Hz. Similar conclusions can be drawn when the excitation frequencies are set
to 200 Hz or 400 Hz. Distinct topologies are obtained in both scales for all the test cases.

From all results, we can find that the optimized topologies in microscale look similar
to “X” or “�”. This is mainly because of the isotropic constraint. The “X” or “�” types are
the basic shapes that have isotropic characteristics. Though some similar topologies have
been obtained, the optimized microstructures have some minor differences in detail. From
the sensitivity analysis Equations (32) and (40), we notice that the sensitivity corresponds
to the structural response; different excitation frequencies can lead to different structural
responses and lead to minor differences.

The proposed methodology, in which the excitation frequency can be set according to the
design requirement, can facilitate the development of practical solutions that meet engineering
requirements to effectively reduce vibration levels in real-world engineering structures.
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Figure 11. Dynamic compliance of the results shown in Figures 7a, 9a and 10a when thr excitation
point is at PA. (a1) the sum of dynamic compliance 0–60 Hz, (a2) dynamic compliances vary with
frequency 0–60 Hz. (b1) the sum of dynamic compliance 90–200 Hz, (b2) dynamic compliances
vary with frequency 90–200 Hz. (c1) the sum of dynamic compliance 300–400 Hz, (c2) dynamic
compliances vary with frequency 300–400 Hz.
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Figure 12. Dynamic compliance of the results is shown in Figures 7c, 9b and 10b when the excitation
point is at PB. (a1) the sum of dynamic compliance 0–60 Hz, (a2) dynamic compliance in the
frequency range 0–60 Hz. (b1) the sum of dynamic compliance 90–200 Hz, (b2) dynamic compliance
in the frequency range 90–200 Hz. (c1) the sum of dynamic compliance 300–400 Hz, (c2) dynamic
compliance in the frequency range 300–400 Hz.
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Figure 13. Comparison of three different designs by varying the excitation frequency. (a) Excitation
frequency 60 Hz. (b) Excitation frequency 200 Hz. (c) Excitation frequency 400 Hz.

Figure 14. Comparison of three different designs by varying the excitation frequency. (a) Excitation
frequency 60 Hz. (b) Excitation frequency 200 Hz. (c) Excitation frequency 400 Hz.

4.2.2. Composite Plate Clamped with Two Opposite Edges

Figure 15 shows a rectangular plate that is fixed at two opposite sides. The dimension
of the plate is L = 300 mm, W = 100 mm. Three different loading conditions are considered
in this example: (1) the excitation position is located at PA (L/2, W/2), (2) the excitation
point is located at PB (L/3, W/2), and (3) the excitation point is located at PC (L/2, 0). The
excitation frequency ranges of all three cases are 50–100 Hz. Figure 16 shows the first three
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eigenmodes associated with eigenfrequencies of 122, 263, and 336 Hz, which are bending,
torsion, and second-order bending, respectively.

Figure 15. A composite plate clamped on two opposite edges. (a) Three-dimensional view. (b) Top
view of the composite plate.

Figure 16. The first three eigenmodes of the plate clamped on two opposite edges. (a) The first
eigenmode at 122 Hz. (b) The second eigenmode at 263 Hz. (c) The third eigenmode at 336 Hz.

The optimal macrostructures and their associated microstructures are shown in Figure 17.
The optimal macrostructures depend on the excitation position. When the excitation position
is located at PA, the damping material is mainly concentrated in the middle part of the plate.
When at PB, the damping material is mainly distributed at the two ends of the plate. When
at PC, the damping material is concentrated around the excitation position. All the optimal
solutions in macro-scale are deemed to resist the dominant deformation of the plate in the first
bending eigenmode. For the microstructure, all the design results are similar, with only a slight
difference at the corner of these microstructures.

We further consider three test cases under an excitation frequency of 300 Hz. The
optimal results are shown in Figure 18. The optimal topologies of the macrostructure
depend on the excitation position and frequency. However, the microstructure is similar
when the excitation frequencies are the same, except that there are some inconsiderable
differences for the reasons of different objectives and load conditions being used.
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Figure 17. Design results for different excitation positions. (a) Excitation position PA. (b) Excitation
position PB. (c) Excitation position PC. The excitation frequency range is 50–100 Hz.

Figure 18. Design results are obtained by varying the excitation positions. (a) Excitation position PA.
(b) Excitation position PB. (c) Excitation position PC. The excitation frequency is 300 Hz.

4.2.3. Composite Plate with Four Corners Fixed

To further verify the effectiveness of the proposed method, here we consider a composite
plate that is fixed at the four corners (Figure 19). The dimension of the plate is 360× 250 mm.
Two different excitation positions are prescribed: PA is located at (L/2, W/2), and PB is located
at (L/3, W/2). Figure 20 shows the first three eigenmodes with eigenfrequencies of 64, 137, and
171 Hz, respectively. The first eigenmode is bending, the second eigenmode is torsion along the
length direction, and the third eigenmode is torsion along the width direction.
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Figure 19. A rectangular plate clamped with four corners. (a) Three-dimensional view. (b) Top view
of the plate.

Figure 20. The first three eigenmodes of the plate with four corners fixed. (a) The first eigenmode at
64 Hz. (b) The second eigenmode at 137 Hz. (c) The third eigenmode at 171 Hz.

Figure 21 shows the optimal design results with excitation frequencies of 50 Hz, 100 Hz,
and 140 Hz at excitation position PA. Figure 22 shows the results at excitation position PB.
All optimal structures have clear binary layouts in both macro- and micro-scales. From
the macrostructure topologies, the damping composite is mainly distributed at the center
of the plate to resist the deformation around the excitation position PA. The material
layout of excitation frequency 140 Hz is placed at the center, top and bottom of the plate.
This is because the first and second eigenmodes dominate most of the deformation of the
structures. When the excitation point is placed at PB, the composite material differs from
the case where the excitation point is placed at PA; they are mainly distributed at the center
of the plate to resist the deformation of the plate. For the microstructure topologies, all
design cases are similar. The “X” type microstructures are obtained, except for a slight
difference at the corner.
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Figure 21. Design results obtained by varying the excitation frequency at the excitation position PA.
(a) Excitation frequency 50 Hz. (b) Excitation frequency 100 Hz. (c) Excitation frequency 140 Hz.

Figure 22. Design results obtained by varying the excitation frequency at excitation position PB. (a)
Excitation frequency 50 Hz. (b) Excitation frequency 100 Hz. (c) Excitation frequency 140 Hz.

We further consider several test cases with two different excitation frequency ranges,
which are 0–50 Hz and 70–110 Hz. The optimization results for the case where the excitation
point is located at PA and PB are shown in Figures 23 and 24, respectively. When at position
PA, the optimal macrostructures are shown in Figure 23a,b, which are similar to the results



Materials 2022, 15, 538 25 of 30

shown in Figure 21a,b. This is because the dominant vibration modes are the same. The
optimal microstructures are also similar. For the case where the excitation position is
located at PB, the macrostructures shown in Figure 24a,b are different from those shown in
Figure 22a,b. Notably, the layout shown in Figure 24a is the most efficient one to resist the
first bending eigenmode. The microstructures are similar for the excitation frequency in the
range of 0–50 Hz but are different in the range of 70–100 Hz.

Figure 23. Design results obtained at the same excitation position PA and different excitation fre-
quency ranges. (a) Excitation frequency 0–50 Hz. (b) Excitation frequency 70–100 Hz.

Figure 24. Design results obtained at excitation position PB and different excitation frequency ranges.
(a) Excitation frequency 0–50 Hz. (b) Excitation frequency 70–100 Hz.

4.2.4. Composite Plate with Non-Design Domain

In this section, several design models, including the non-design domain, will be
considered. For all the test cases, the initial guess 1 is used. The design model for the first
test case is shown in Figure 5, and the design results are shown in Figure 25. In these test
cases, on a macro-scale, the blocks in red color are the non-design domains. Comparing the
obtained results with those shown in Figures 7, 9 and 10, they have similar macrostructures
with the only exception in the non-design domain(s). However, there are some differences
in the microstructure. The design model for the second test case is shown in Figure 15, and
the design results are shown in Figure 26. The design model for the third test case is shown
in Figure 19, and the design results are shown in Figure 27. Similar conclusions can be
drawn as the first design case. For the reason of the existence of the non-design domains,
the composite material layouts in macro-scale have some differences near the region of the
predefined non-design domains.
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Figure 25. Design results of the cantilever composite plate shown in Figure 5. (a) Excitation frequency
0–60 Hz, excitation point PA. (b) Excitation frequency 0–60 Hz, excitation point PB. (c) Excitation
frequency 90–200 Hz, excitation point PA. (d) Excitation frequency 90–200 Hz, excitation point PB. (e)
Excitation frequency 300–400 Hz, excitation point PA. (f) Excitation frequency 300–400 Hz, excitation
point PB.

Figure 26. Design results of the composite plate clamped with two opposite edges are shown in
Figure 15. (a–c) correspond to the excitation points PA, PB, and PC, respectively. The excitation
frequency is 50–100 Hz.



Materials 2022, 15, 538 27 of 30

Figure 27. Design results the composite plate with four corners fixed shown in Figure 19.
(a,b) correspond to the excitation points PA and PB, respectively. The excitation frequency is
0–50 Hz.

4.2.5. Composite Plate with Instrument Installed on It

Here we present the last design example in this paper, which is shown in Figure 28.
The dimension of the plate is 400 × 300 mm. The four sides of the plate are fixed. There is
an instrument (100 × 60 mm) being placed at the center of the plate, and its mass is 200 g.
We assume that the mass of this instrument is uniformly distributed on the contact area
between the instrument and the plate.

Figure 28. Composite plate with an instrument installed at the center.

The excitation frequency range is 0–50 Hz, and the excitation point is located at the
center of the plate. The design results are shown in Figure 29. Four different reference
cases are used to compare the performances: (1) fully covered with rubber, (2) fully covered
with polymer, (3) macro-scale result with rubber, in which the macrostructure is the same
as Figure 29a, and the microstructure is fully covered with rubber, and (4) macro-scale
result with polymer, in which the macrostructure is the same as Figure 29a, and the
microstructure is fully covered with polymer. From the results, it can be found that, in
the specified frequency range of 0–50 Hz, the response of the multi-scale design is lower
than the cases of (1) and (3), but a little higher than the cases of (2) and (3). This is because
stiffness plays an important role in the low-frequency range. From the results of 0–80 Hz,
the multi-scale design result has the minimum response at the first eigenfrequency. This
example further demonstrates the effectiveness of the proposed design methodology.



Materials 2022, 15, 538 28 of 30

Figure 29. The design result. (a) The macrostructure. (b) The microstructure and unit cell. (c) The
frequency response.

5. Conclusions

A concurrent topology optimization method has been proposed to support the design
of the composite plates with optimal dynamic performance under harmonic loading. The
optimal structures are obtained by performing topology optimization in both macro- and
micro-scales simultaneously. In the macroscale, finite element analyses were performed
to calculate the structural performance, while in the microscale, the effective material
properties were extracted. Based on this two-scale analysis, the microstructure information
is integrated into the macrostructure analysis. In turn, the micro-scale sensitivity makes
use of the macrostructure displacement field so that the global dynamic compliance is
considered in the microscale topology change. The MMA is used to update the design
variables, and finally, the optimal multi-scale structures are obtained in both scales.

Numerical examples indicated that the optimal solutions in both scales depend on the
loading conditions and boundary conditions. For microscale optimization, the soft rubber
damping material in the optimal microstructure unit cell is interconnected. The strong
structural connectivity imparts high stiffness and damping to optimal damping composite,
which is useful to mitigate undesired vibration. For the macroscale optimization, the
excitation frequency range and positions have a significant effect on optimal configurations.
The optimal macrostructure has the largest resistance against the deformation of the eigen-
modes below and around the excitation frequency. The numerical results demonstrate the
effectiveness of the proposed method to obtain efficient macrostructural and microstruc-
tural solutions with minimum dynamic compliance. Meanwhile, some general design rules
for the design of the composite structures with improved vibration performance can be con-
cluded as follows: (1) at the microscale, the most efficient damping composite architecture
should have an interconnected soft phase. In most cases, the “X” type microstructure is
efficient and useful for vibration reduction, and (2) at the macroscale, the optimal material
layout depends on the eigenmodes. For example, the damping material should be placed at
positions such that the resulting structures can resist the deformation of eigenmodes, and
at the same time, can improve the structural stiffness. The proposed optimization method
can be extended to the design of the constrained-layer damping composite structure or
other types of structural components with optimal dynamic performance.
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