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Abstract: Fire and extreme heat environmental changes can have an impact on concrete performance,
and as climate change increases, new concrete structures are being developed. Nano-silica and nano-
calcium carbonate have shown excellent performances in modifying concrete due to their large specific
surface areas. This review describes the changes in concrete modified with nano-silica (NS) and
nano-calcium carbonate (NC), which accelerate the hydration reaction with the cementitious materials
to produce more C-S-H, resulting in a denser microstructure and improved mechanical properties
and durability of the concrete. The mechanical property decay and visualization of deformation of
mixed NS and NC concrete were tested by exposure to high temperatures to investigate the practical
application of mixed composite nanomaterials (NC+NS) to concrete. The nano-modified concrete
had better overall properties and was heated at 200 ◦C, 400 ◦C, 600 ◦C and 800 ◦C to relatively
improve the mechanical properties of the nano concrete structures. The review concluded that high
temperatures of 800 ◦C to 1000 ◦C severely damaged the structure of the concrete, reducing the
mechanical properties by around 60%, and the dense nano concrete structures were more susceptible
to cracking and damage. The high temperature resistance of NS and NC-modified nano concrete was
relatively higher than that of normal concrete, with NC concrete being more resistant to damage at
high temperatures than the NS samples.

Keywords: composite nanomaterials; high-temperature environment; concrete structures; perfor-
mance decay

1. Introduction

Cement concrete has long been a structural material in civil engineering and continues
to give rise to concepts such as Ultra-High-Performance Concrete (UHPC) [1,2], Recycled
Aggregate Concrete [3] and Fibre-Reinforced Concrete [4,5], proposing 3D Printed Concrete
Technology [6] for new types of construction and driving high-quality development in the
engineering industry [7–11]. Although concrete is a durable material, the internal structure
and materials are subject to various environmental extremes over time [12], such as high-
temperature environments caused by warming [13], especially dense nano concrete, and
these damages have important implications for today’s sustainable development [14–18].
Peninsular Malaysia and East Malaysia are closer to the equator in latitude and are ex-
posed to high-temperature environments year-round [19]. In the past decade, the ambient
temperature has shown an increasing trend [20]. The long-term average temperature in
Malaysia has increased by 0.5–1.5 ◦C over the past three decades and 0.5–1.0 ◦C in the past
decade [21]. As a result of climate change, significant temperature increases are expected in
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Peninsular Malaysia and East Malaysia over the next 100 years [22]. Maps of the global
temperature zone are shown in Figure 1, dated 27 April 2022 and 17 July 2022.
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NS and NC are common nanomaterials in the market and are used in a wide variety of
applications [23]. NS has a multi-stage hydration reaction within the cementitious material
and acts mainly in the pre-concrete phase [24,25]. In contrast, NC materials are inert, with
smaller particles filling the tiny voids within the concrete and having a long-term effect on
concrete properties [26–28]. The market pricing of NS is higher than NC due to differences
in preparation and source [29]. To some extent, nanomaterial concrete applications raise
the economic cost of the project [30]. By exploring the performance benefits of nano
concrete and justifying the decay in extreme temperature environments, a balance line
can be identified to promote the durable and sustainable development of the engineering
industry [23,31].

The addition of NS improves the performance of concrete and can significantly im-
prove the defects that exist in the concrete itself [32]. NS accelerates the hydration within
the concrete cementitious material, generating additional hydration products, and the
dense microstructure increases the strength of the frictional bond between the fibres and the
matrix, improving the mechanical properties of the concrete matrix [27,33]. The transition
zone between the concrete aggregate and the cement matrix is usually the weakest. NS
micronises the concrete interface transition zone and reduces the width of wear cracks at
the interface transition zone [34]. By reducing the water–cement ratio of concrete, a portion
of the hydration products between the aggregate and the cement matrix will overlap each
other. The denseness of the interfacial transition zone is more pronounced with the addi-
tion of nano-silica [35]. NC can be used as a filler to make the microstructure of concrete
denser. The study of NC and fibrous concrete in combination with 3D printer technology
found that the addition of fibres and NC enhanced shape retention and resulted in better
buildability [36]. NC reduced the fluidity of the concrete, but the samples with NC added
improved the mechanical strength [37].

The effect of nanoparticles on the hydration of cement depends not only on the type of
material but also on the temperature [38]. A certain amount of nanomaterials can effectively
improve the mechanical properties of concrete, and when nano concrete is exposed to high
temperatures, its internal structure and mechanisms are relatively altered. Under the
temperature conditions studied of 40 ◦C to 70 ◦C, nano-SiO2 and nano-C-S-H shortened
the induction period and the arrival time of the peak heat release rate of hydration, and
nano-C-S-H also increased the peak heat release rate. The addition of nanoparticles and
high temperatures led to the early production of hydrate layers [39]. Emerging concepts
propose inorganic insulation nanomaterials to reduce energy use and consumption and to
plan and design green buildings [40]. The science and engineering of nanotechnology have

https://www.foreca.com/
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improved the high-temperature performance of concrete. The addition of nano-SiO2 can
improve the role of the thermal insulation capacity of concrete, due to the dense internal
structure, increasing the specific heat capacity and reducing the thermal diffusivity [41].

Concrete in high-temperature areas is prone to structural damage and these damages
seriously affect the service life of buildings. There is a need to conduct research and develop
new nanomaterial-modified concrete with good mechanical properties and durability
at high temperatures. An overview of many articles found that nanomaterial concrete
technology continues to be researched and developed; NC and NS-modified concrete
have a good evaluation in terms of economy and performance, because the constant
deterioration of extreme high-temperature environments on concrete is a long-term impact,
while whether nano concrete has a lot of resistance is based on the effects of fire and internal
ambient temperature. By reviewing the latest prospective research on nano concrete, it is
hoped that the argumentation will provide directional guidance for future research, give a
characterisation of nano concrete, make concrete structures more sustainable and promote
the development of concrete technology and industrial revolution. In the future, more
applications of nano concrete will be seen.

2. Research Methodology

An overview of the microstructural changes, mechanical properties and durability of
concrete mixed with NS and NC materials, as well as the mechanical decay and deformation
in high-temperature environments is provided. Microscopic analysis techniques such
as Scanning Electron Microscopy (SEM) and Differential Thermal Analyses (DTA) are
used to reveal the internal morphology of the concrete. The paper reviews the changes
in the mechanical properties of nano concrete in terms of compressive strength, flexural
strength and durability properties such as water permeability, depth of carbonation and self-
shrinkage. The final section further demonstrates the residual macro-mechanical properties
and visualisation of the decaying deformation in the appearance of nano concrete after a
high temperature, visualising the colour change and crack expansion of nano concrete after
heating by means of content inference and picture synthesis. This review aims to investigate
the effects and patterns of composite nanoparticles on the overall properties of concrete and
to promote experimental research on nanocomposites (NC+NS). The following Figure 2
shows the flow chart of the research methodology for this literature review.
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3. Nano-Modified Concrete

A certain amount of nanomaterials are mixed into concrete instead of cement to
accelerate the hydration and heat of the hydration reaction of cement, which helps to fill the
pores in concrete. This reduces the increase in the volume and denseness of the tiny pores in
concrete [42]. NS can react with the cement clinker and hydration products of cementitious
materials. HSiO2

−4 reacts with Ca2+ to produce C-S-H seeds, which undergo secondary
hydration with Ca(OH)2 to form C-S-H gels. NC is a modifier that increases the order of
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CH arrangement, filling tiny voids to produce a denser cement matrix. Figure 3 shows
the model of hydration of cement matrix mixed with different nanomaterials at different
stages [43]. NC and fly ash blended with concrete, the seeding effect, filling effect and
volcanic ash effect of the composite material contribute greatly to the mechanical properties
and durability of the concrete [44].

Materials 2022, 15, x FOR PEER REVIEW 4 of 24 
 

 

A certain amount of nanomaterials are mixed into concrete instead of cement to ac-
celerate the hydration and heat of the hydration reaction of cement, which helps to fill the 
pores in concrete. This reduces the increase in the volume and denseness of the tiny pores 
in concrete [42]. NS can react with the cement clinker and hydration products of cementi-
tious materials. HSiO2−4 reacts with Ca2+ to produce C-S-H seeds, which undergo second-
ary hydration with Ca(OH)2 to form C-S-H gels. NC is a modifier that increases the order 
of CH arrangement, filling tiny voids to produce a denser cement matrix. Figure 3 shows 
the model of hydration of cement matrix mixed with different nanomaterials at different 
stages [43]. NC and fly ash blended with concrete, the seeding effect, filling effect and 
volcanic ash effect of the composite material contribute greatly to the mechanical proper-
ties and durability of the concrete [44]. 

 

Figure 3. Hydration model for different nanomaterials [43]. 

Microscopic Analysis 
A microscopic SEM examination of the composite concrete specimens after curing 

indicated the internal microstructure and the degree of hydration reaction [45,46]. From 
the microstructure analysis, when micron calcium carbonate (MS) and NS have been 
added alone, a number of smaller sized crystals were formed, and the microstructure was 
denser. The porosity was effectively reduced with the enhanced pore size distribution 
when MS and NS were added into the concrete at the same time. When NS and MS were 
added to the concrete at the same time, a large number of smaller crystals fused with 
larger crystals, the texture of the mix was more closed and dense and MS and NS showed 
a better complementary effect on the solidification of the microstructure of the hardened 
cement mix, which is beneficial for durability [47]. The addition of NS and carbon nano-
tubes in the cement matrix provided good corrosion and water penetration resistance and 
showed strong resistance to carbonation in liquids with strong alkalis. The dense micro-
structure enhanced the performance of the durability properties [48]. 

Z. hang Wang et al. [49] concluded that NC can improve the denseness of concrete, 
optimise the pore size distribution of concrete and improve weak areas in concrete; that 
NS alone can cause significant weak areas within the concrete and degrade the pore struc-
ture; and that compounding NS and NC can have a synergistic effect on nanomaterials. 
This is different from the conclusions reached by other researchers: comparing the micro-
graphs in Figure 4, the microstructure of the added NC is denser than that of normal ce-
ment concrete, and the SEM shows a disorganised microstructure with NS alone (see Fig-
ure 4b NS). The authors described that NS destroys the pore structure of the concrete and 
affects the static and dynamic mechanical properties of NS. Comparing Figure 4c with 
Figure 4b, the NS admixture levels of 1.5% and 2.0%, respectively, do not differ signifi-
cantly. During the experiments, the authors used ultrasonic dispersion for 15 min, and the 
activity and internal structure of NS may be destroyed, reducing or changing the hydra-
tion reaction with the cementitious material [50–52]. In addition, the correlation with the 

Figure 3. Hydration model for different nanomaterials [43].

Microscopic Analysis

A microscopic SEM examination of the composite concrete specimens after curing
indicated the internal microstructure and the degree of hydration reaction [45,46]. From
the microstructure analysis, when micron calcium carbonate (MS) and NS have been added
alone, a number of smaller sized crystals were formed, and the microstructure was denser.
The porosity was effectively reduced with the enhanced pore size distribution when MS
and NS were added into the concrete at the same time. When NS and MS were added
to the concrete at the same time, a large number of smaller crystals fused with larger
crystals, the texture of the mix was more closed and dense and MS and NS showed a better
complementary effect on the solidification of the microstructure of the hardened cement
mix, which is beneficial for durability [47]. The addition of NS and carbon nanotubes in
the cement matrix provided good corrosion and water penetration resistance and showed
strong resistance to carbonation in liquids with strong alkalis. The dense microstructure
enhanced the performance of the durability properties [48].

Z. hang Wang et al. [49] concluded that NC can improve the denseness of concrete,
optimise the pore size distribution of concrete and improve weak areas in concrete; that NS
alone can cause significant weak areas within the concrete and degrade the pore structure;
and that compounding NS and NC can have a synergistic effect on nanomaterials. This is
different from the conclusions reached by other researchers: comparing the micrographs in
Figure 4, the microstructure of the added NC is denser than that of normal cement concrete,
and the SEM shows a disorganised microstructure with NS alone (see Figure 4b NS). The
authors described that NS destroys the pore structure of the concrete and affects the static
and dynamic mechanical properties of NS. Comparing Figure 4c with Figure 4b, the NS
admixture levels of 1.5% and 2.0%, respectively, do not differ significantly. During the
experiments, the authors used ultrasonic dispersion for 15 min, and the activity and internal
structure of NS may be destroyed, reducing or changing the hydration reaction with the
cementitious material [50–52]. In addition, the correlation with the brand of nanomaterials,
the activity and the application of water-reducing agents, etc., should further increase
or decrease the NS admixture, as concluded after extensive experimental comparative
studies [53–55].
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Guler, Türkmenoğlu et al. [31] analysed the SEM microstructure at high temperatures.
The NS-doped and nano-Al2O3(NA) were heated to 300 ◦C, 500 ◦C and 800 ◦C. After
heating at 300 ◦C, the internal microstructure deteriorated but still retained the compressive
strength; at 800 ◦C the internal structure was largely destroyed, and the greatest loss of
strength was observed. Many microscopic cracks and increased voids appeared inside the
concrete after heating at 500 ◦C, as shown in Figure 5. The addition of nanomaterials at
0.5%, 1.0% and 1.5% all significantly improved the microstructure of the concrete matrix
and enhanced cement paste bonding and reaction, with equivalent strength at different
temperatures being higher than that of the plain samples without nanomaterials.

The incorporation of NS particles at optimum dosing levels improved the structural
and mechanical properties of concrete. The addition of NS increased the hydration of the
cementitious material and reduced and depleted the CH content; the extent of the change
can be seen in the X-ray Diffraction (XRD) patterns in Figure 6 [25,56–59]. The intensity
of the CH crystal-related peaks in the nano concrete samples was reduced or disappeared
compared to the conventional concrete samples. It can be concluded that CaO and CaCO3
were weaker in the samples with the NS addition, due to the higher volcanic ash activity,
resulting in the elimination of the unhydrated phase CaO etc., from the cement [60]. The
analysis of the infrared spectra in Figure 7a shows that NS possessed excellent properties,
and that appropriate NS had a positive effect on the hydration properties of the cement
paste. Figure 7b’s thermal gravimetric and heat flow analysis of cement and NS shows
that below 500 ◦C, the heat flow of NS was higher than that of normal cement; at heating
temperatures between 500 and 800 ◦C, the heat flow of NS was lower than the normal
cement. The TGA results show that 1% silica nanoparticles additive led to low cement
weight loss up to 800 ◦C due to the interaction of NS with cement particles in the hydrated
composite and mixing the results for 1% cement + NS showed smoother results, as shown
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in Figure 7 [61]. The SEM-EDX of hydrated paste samples at 7 and 28 day curing ages was
analysed by Snehal et al. [62]. The Ca and Si atomic content of the samples varied according
to the elemental composition obtained from the EDX analysis. The SEM-EDX images of the
control sample and the binary composite 3% NS are given in Figure 8. A comparison of the
SEM images shows that the 3% NS replacement cement was denser. The authors used the
increased Ca(OH)3 depletion in the 3% NS and cement binary composite samples.
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4. The Effect of Nano-SiO2and Nano-CaCO3on the Properties of Concrete
4.1. Rheological Properties

The rheological properties of concrete have been evaluated accordingly by many
scholars in the configuration of concrete. As NS and NC are in the nanoscale (0–100 nm)
range, very small nanoparticles fill the pore structure of concrete. Nano concrete exhibits
greater water absorption and a larger specific surface area, which reduce compatibility and
flowability [63]. NS and NC mixed with cementitious materials produce new hydration
products that fill the tiny internal voids, thus affecting the workability of the concrete.
Yassoub Ahmed et al. [64] proposed that increasing the NS admixture reduced the slump
results due to the extremely small particle size of NS, significantly affecting the workability
of nano concrete, with higher admixture levels causing high internal agglomeration. This
author utilised the use of dry mix and wet mix methods’ conclusion consistently. Nooruddin
et al. [65] found that the initial and final setting times of cement mortars decreased with
increasing and decreasing NS; the author used a 0.5% water–cement ratio without any
type of water-reducing agent. Experiments were carried out by Mugilvani et al. [66] using
a water–cement ratio of 0.45, with NS replacing cement up to 20%, 30% and 50% of the
mix. To control the flow of the concrete, 20 mL of ultra-high performance water reducing
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agent was added during the experiments, as did the authors Danielraj et al. [67], but in
the experiments, 0% to 2% NS and 10% micron-silica were used. Increasing the particle
size of NS particles will inevitably change the rheological properties of nano concrete.
R. Liu et al. [34] investigated the effect of changing the interfacial transition zone for
different water–cement ratios on the durability properties of concrete. By reducing the
experimental water–cement ratio from 0.5 to 0.35, the interfacial transition zone of the
modified cementitious material of NS overlapped the reaction, which is the main reason
for the reduced fluidity of the concrete. The NS modification consumed more water and
also increased the water retention and cohesion to a certain extent, making the concrete
more viscous in appearance. R. Liu et al. [68], comparing the durability performance of
0.4 water–cement ratio with 0.3 water–cement, found the filling and water absorption
of NC caused the state of concrete to be altered. Atis et al. [69] found the reduction in
the fluidity of NC concrete was due to the increase in alkali activator (NaOH) and due
to the high specific surface area that NC possesses, reducing the concrete’s compatibility.
There is some similarity between the filling of NS and NC particles on the alteration of
rheological properties, by reducing the workability, but improving the mechanical and
durability properties of the concrete with the incorporation of nanomaterials. There is a
functional relationship between these properties, and according to scholarly research, it
is noted that increasing the admixture of concrete increases its mechanical properties and
resistance to chloride ion corrosion [70–72].

4.2. Mechanical Properties

The dynamic mechanical properties of concrete were tested by the compressive
strength test, flexural strength test and splitting strength test, etc. The test process of
casting cubic, rectangular and cylindrical samples can visualize the trend of a strength
change of different kinds of nanomaterials in different shapes of concrete after different tem-
peratures [73]. The incorporation of certain amounts of NC and NS materials significantly
improved the mechanical properties of concrete [74,75].

As shown in Figure 9 [76], the mechanical properties changed at 28 days for different
NS admixtures, with a gradual increase in compressive strength for 1%, 2% and 3%. The
compressive strength of the NS material replacing 4% cement started to decrease as the
nano-doping increased. Yassoub Ahmed et al. [64] concluded that NS mixed at 1.5% had the
best performance, increasing the compressive strength, flexural strength and modulus of
elasticity by 28%, 57% and 62%, respectively, over the normal concrete samples. Nooruddin
et al. [65] reported that mixing a small amount of NS reduced the initial and final setting
time of cement mortar, and that concrete mixed with 3% NS had higher compressive
and splitting tensile strengths, with increases of 22.09% and 32.19%, respectively, over
the control samples. NS content greater than 3% resulted in a gradual reduction in the
mechanical new properties of concrete. AlKhatib, Maslehuddin et al. [77] used cement kiln
dust and electric arc furnace dust within the two industrial waste-mixed NS to develop
high-performance concrete. Using 10%, 15% and 20% cement kiln dust and 10% electric arc
furnace dust to replace cement, respectively, the results showed that the compressive and
flexural strengths of concrete decreased, while the flexural and compressive strengths of
concrete mixed with NS increased.

T. Wang et al. [78] concluded that the 1-day combined strength of UHPC increased
significantly with increasing amounts of Li2CO3 and NC, and that NC was effective in
mitigating the loss of the 28-day combined strength of UHPC. After modification, the UHPC
combined strength and flexural strength increased by about 68% and 38%, respectively,
over the control sample. The optimum dosages of 3–4% NC were obtained, and 2% and
3% of NS and NC, respectively, influenced the heat of hydration and compressive strength
of the cementitious material. The addition of 2% NS had the most significant effect on the
mechanical properties of the concrete [79]. The mechanical properties of concrete such as
compressive strength, flexural strength and splitting strength were improved by mixing
NC alone or by combining NS and NC. Mixing NS alone reduces the compressive strength,
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flexural strength and splitting tensile strength of concrete and can increase the modulus
of elasticity of concrete [49]. The combination of NS and NC can improve the static and
dynamic mechanical properties of concrete, and the effect is reduced compared to NC
alone, confirming that the activity of NS is lower at this point.
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According to many studies, there was no significant difference in the amount of NS
and NC replacement cement, with an overall range of 0% to 3%. The findings in Table 1
below found that the use of nanomaterials mixed with different media is beneficial to the
mechanical properties of concrete, with the addition of nanomaterials promoting the inter-
nal hydration of the concrete matrix, making the concrete denser and having a significant
effect on the mechanical properties. The review found that the addition of nanomaterials
needs to be strictly controlled in terms of optimum admixture, as excessive nanoparticle
agglomeration occurs, resulting in a gradual decrease in mechanical properties, as reflected
by compressive, splitting and flexural strengths. Excessive nano-doping has a detrimental
effect on the structure of the concrete. Some authors suggested that the hydration effect of
NS is concentrated at 7D and 28D, and that the later effect is not significant, mainly due to
the volcanic ash effect and hydration reaction of the material [80,81]. On the contrary, some
authors suggested that the role of NC is to enhance the mechanical properties after filling
the microstructure, and its hydration effect is not strong [82], and the experimental effect of
mixing NC and NS is more neutral. The authors of Z. hang Wang et al. [49] showed that
mixing NC and NSC significantly improved the dynamic and static mechanical properties
of nano concrete while mixing NS alone weakened them. A mixture of both was also used
for both economic and performance reasons.

Table 1. Findings of mechanical properties of nano concrete.

Author Year Nanomaterials
Optimum
Dosage
(%)

Advance Medium
Compressive
Increase
(%)

Splitting
Increase
(%)

Flexural
Increase
(%)

Influence Factor

[83] 2020 NC 2.0 Compressive,
Flexural NC 57.1 - 58.7

In total, 2.0% of NC particles
have good cohesion to make
the concrete denser, and 3.0%
of NC agglomeration is severe
and can lead to cracks.

[74] 2021 NC, NS 3.2 Compressive,
Flexural

NS/NC +
Steel
fibres

10 - 21

The nucleation effect of
nanomaterials and the
development of an optimised
internal organisation enhance
the strength of concrete. The
agglomeration of particles can
occur in excessive amounts,
weakening the interfacial
transition zone.
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Table 1. Cont.

Author Year Nanomaterials
Optimum
Dosage
(%)

Advance Medium
Compressive
Increase
(%)

Splitting
Increase
(%)

Flexural
Increase
(%)

Influence Factor

[84] 2021 NC 1.5 Compressive,
Splitting NC 25 20 -

NC dosing above 1.5% will
produce excessive hydration
layers reducing strength.

[82] 2018 NC 0.5
Compressive,
Splitting,
Flexural

NC + Fly
ash 57.2 36.9 45.2

NC reacts chemically with the
elements in the cement paste,
resulting in a significant
increase in mechanical
strength at 7 and 28 days.
Greater modifying effect than
the addition of fly ash.

[85] 2018 NS 2.5 Compressive,
Splitting NS 8.4 104.2 -

NS instead of cement mix
concrete, smaller size fills the
void of concrete to enhance
the mechanical properties of
the strength.

[81] 2020 NS 2.0 Compressive,
Flexural NS 9.7 - 17.1

Fine NS particles produce a
hydration reaction that can be
used for the restoration of
old buildings.

[59] 2021 NS 2.0 Compressive,
Splitting

NS +
Silica
fume

15.7 31.5 -

The volcanic ash effect of NS
produces more C-S-H, making
the interface transition zone
dense and inhibiting the
development of small cracks
in concrete.

[86] 2019 NS 1.5 Compressive,
Splitting

NS +
Cellulose
nano
fibres

39 49 -

Transition zone between
NS-modified cellulose
nanofibres and
gelling materials.

[87] 2018 NS 1.5 Compressive,
Flexural

NS +
Graphene
oxide

43.2 - 42

NS particles are well
dispersed and the hydration
products resulting from the
volcanic ash effect form a
reticulated mix.

[58] 2019 NS 3.0
Compressive,
Splitting,
Flexural

NS +
Polyethy-
lene
tereph-
thalate

30.0 27.0 9.0
NS improves the interface
transition zone between
cement and PET aggregates.

[88] 2020 NS 1.5
Compressive,
Splitting,
Flexural

NS - - 14.82
Ultra-fine NS particles tighten
the structure to produce more
gel material.

[89] 2020 NS 3.0 Compressive
NS +
Nano-
CaO

23.4 - -

NS modification has a denser
microstructure and is
accompanied by a
self-healing ability.

[80] 2019 NS 3.0 Compressive NS 38 - -

The increase in strength is
related to the water to glue
ratio and the size of the NS
particles, with the optimum
range being between 2% and
5%. The hydrocolloid ratio
increases as the voids become
larger and the NS fills
in the gaps.
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Table 1. Cont.

Author Year Nanomaterials
Optimum
Dosage
(%)

Advance Medium
Compressive
Increase
(%)

Splitting
Increase
(%)

Flexural
Increase
(%)

Influence Factor

[90] 2020 NS 2.0 Compressive,
Flexural NS 23.1 - 14.91

Promotes the hydration
reaction of the cement, mixing
2.0% mass fraction of NS
alone is the best result of
the study.

[49] 2022 NS + NC 2.0
Compressive,
Splitting,
Flexural

NC, NS,
NSC 8.8 4 9.3

NS optimises the void
structure, NC makes the
concrete structure denser and
the effect of the two blends
can synergistically improve
dynamic and static
mechanical properties.

4.3. Durability

NS and NC contribute significantly to the improvement of the durability properties of
concrete. The addition of 1%, 2%, 3% and 4% of the cement admixture of both NS and NC
can reduce the water absorption of concrete. NC makes the cement matrix microstructure
denser and produces more hydration products to improve the compressive strength and
durability of concrete [91–93]. NS has better water absorption than NC, and a more
neutral mixture of composite NS and NC is the most effective [94]. This reduction is
due to the presence of nanoparticle size in the pores, resulting in reduced porosity and
permeability, and the optimum admixture of NS and NC mixed with blended concrete at
3% each can minimise water absorption [95]. Singh et al. [96] used concrete mixes blended
with different amounts of fly ash, 3% NS particles and 6% silica fume to investigate the
mechanical properties and durability of the new concrete. Compared to conventional
concrete, the mixes mixed with NS showed a significant reduction in a carbonation depth of
73% after 180 days of exposure, a reduction of 39% after 180 days of erosion containing NS
in sulphate and a combined specimen of fly ash and NS showed a 30% reduction. Mixing NS
in concrete improved the durability and service life of the concrete. A. Zhang et al. [97] had
some research results on the durability performance of NS-modified concrete. The drying
process and water absorption process perspectives were investigated to test the chloride
ion permeability and resistivity of concrete. Single-doped NS and compound-doped
NS+nano-Al2O3 can reduce the weight loss during drying and the capillary permeability
coefficient during water absorption. By increasing the nanomaterial content, the amount of
charge passing through the sample is increased and the resistivity is subsequently reduced.
Nanomaterial contents greater than 1% tend to agglomerate during hydration with the
cementitious material, making the concrete less durable. Smaller admixtures allow for
more uniform dispersion of nanoparticles and 0.5% nano concrete has better durability. In
addition, the addition of NC also reduces the shrinkage of the concrete to a large extent.
Figure 10 compares the change in shrinkage values between micron calcium carbonate and
NC at 7 days and 28 days.



Materials 2022, 15, 7073 12 of 24

Materials 2022, 15, 7073 12 of 24 
 

 

to a large extent. Figure 10 compares the change in shrinkage values between micron cal-

cium carbonate and NC at 7 days and 28 days. 

 

Figure 10. Changes in shrinkage properties of concrete after incorporation of NC [98]. 

Based on the durability studies carried out by many scholars, the water absorption, 

hazardous material permeability and freeze-thaw resistance of nano concrete are demon-

strated, and Table 2 below shows the findings for NS and NC-modified concrete. The vol-

canic ash effect and microfilling effect of a certain amount of NC and NS replacement 

cement incorporated into the concrete results in a more dense concrete, reduced water 

absorption and hazardous material permeability, and improves freeze-thaw resistance. 

Authors Nejad et al. [82] used fly ash composite-modified concrete at only 1% admixture, 

where nanomaterials and fly ash were used in combination, while authors H. Liu et al. 

[87] used NC alone to increase the testing of hydrochloric acid resistance experiments to 

increase the admixture of NC modification to 3% in order to obtain a better durability 

performance response. It is advisable to use between 2.0% and 3.0% nano-doping for bulk 

concrete. The review found that NS has a better ability to modify the durability properties 

of concrete than NC, which refines the crystalline form and enhances the structure of the 

interface. The modification of NS depends on the level of activity, and hydration is prom-

inent. In addition, there is a significant difference with the water–cement ratio of the con-

crete, where a relatively higher ratio facilitates the hydration of NS [68]. 

Table 2. Findings of durability of nano concrete. 

Author Year Nanomaterials 
Optimum 

Dosage (%)  
Advance Influence Factor 

[49] 2019 NC 3.0  

Water absorption and 

hydrochloric acid 

resistance 

NC reacts with the aluminate phase to produce more hydration 

products, reducing the water absorption of the concrete and 

increasing the hydrochloric acid resistance. 

[82] 2018 NC 1.0  
Water absorption and 

depth of penetration 

NC increases the microscopic nucleation during hydration and thus 

reduces the void ratio of the concrete. Used together with fly ash, it 

results in a denser microstructure. Compared to the previous author, 

no hydrochloric acid resistance experiments are tested and the 

dosing of NC can be reduced to 1.0%. 

[99] 2020 NC 1.0  

Water absorption, 

chloride penetration 

and drying shrinkage 

The addition of 1% NC interfacial bonding is better, mixed with a 

certain amount of slag and fly ash, and hydration increases to obtain 

excellent durability properties. 

[100] 2020 NC 1.5  Impermeability 

The high activity of nanoparticles, the increased surface effect and 

the hydration reaction make the concrete dense and improve the 

impermeability. 

[96] 2019 NS 3.0  Depth of carbonation 

The additional hydration products reduce the depth of carbonation 

of the concrete and resist penetration and attack by harmful 

substances. 

Figure 10. Changes in shrinkage properties of concrete after incorporation of NC [98].

Based on the durability studies carried out by many scholars, the water absorption,
hazardous material permeability and freeze-thaw resistance of nano concrete are demon-
strated, and Table 2 below shows the findings for NS and NC-modified concrete. The
volcanic ash effect and microfilling effect of a certain amount of NC and NS replacement
cement incorporated into the concrete results in a more dense concrete, reduced water
absorption and hazardous material permeability, and improves freeze-thaw resistance.
Authors Nejad et al. [82] used fly ash composite-modified concrete at only 1% admixture,
where nanomaterials and fly ash were used in combination, while authors H. Liu et al. [87]
used NC alone to increase the testing of hydrochloric acid resistance experiments to increase
the admixture of NC modification to 3% in order to obtain a better durability performance
response. It is advisable to use between 2.0% and 3.0% nano-doping for bulk concrete. The
review found that NS has a better ability to modify the durability properties of concrete
than NC, which refines the crystalline form and enhances the structure of the interface.
The modification of NS depends on the level of activity, and hydration is prominent. In
addition, there is a significant difference with the water–cement ratio of the concrete, where
a relatively higher ratio facilitates the hydration of NS [68].

Table 2. Findings of durability of nano concrete.

Author Year Nanomaterials Optimum
Dosage (%) Advance Influence Factor

[49] 2019 NC 3.0
Water absorption
and hydrochloric
acid resistance

NC reacts with the aluminate phase to produce
more hydration products, reducing the water
absorption of the concrete and increasing the
hydrochloric acid resistance.

[82] 2018 NC 1.0
Water absorption
and depth of
penetration

NC increases the microscopic nucleation during
hydration and thus reduces the void ratio of the
concrete. Used together with fly ash, it results in
a denser microstructure. Compared to the
previous author, no hydrochloric acid resistance
experiments are tested and the dosing of NC can
be reduced to 1.0%.

[99] 2020 NC 1.0

Water absorption,
chloride
penetration and
drying shrinkage

The addition of 1% NC interfacial bonding is
better, mixed with a certain amount of slag and
fly ash, and hydration increases to obtain
excellent durability properties.
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Table 2. Cont.

Author Year Nanomaterials Optimum
Dosage (%) Advance Influence Factor

[100] 2020 NC 1.5 Impermeability

The high activity of nanoparticles, the
increased surface effect and the hydration
reaction make the concrete dense and improve
the impermeability.

[96] 2019 NS 3.0 Depth of
carbonation

The additional hydration products reduce the
depth of carbonation of the concrete and resist
penetration and attack by harmful substances.

[101] 2020 NS 3.0 Water absorption

The volcanic ash effect and microfilling effect
of NS reduce the water absorption of concrete.
NS is a good promoter of the modification of
basalt fibre concrete.

[102] 2020 NS 3.0
Porosity and
chloride ion
permeation

NS with ultra-fine fly ash reduces chloride ion
permeability from 53.83% to 71.45%. Both
increase the density of the concrete due to the
smaller particles. The authors set NS
admixture levels from 0% to 4.5% and tests
yield an optimum value of 3.0% for resistance
to chloride ion permeation.

[103] 2020 NS 1.0 Water absorption
and porosity

NS is used as a filler to fill the density of the
concrete and to fill the voids in the internal
matrix. A 1.0% replacement cement will
achieve the required result.

[104] 2021 NS 0.75 Hydrochloric acid
resistance

The gel produced by NS with the gelling
material contributes to the development of
durable properties. The Zn(OH)2 produced in
the hydration reaction is able to resist the
ingress of moisture.

[105] 2021 NS 2.5
Porosity and
freeze-thaw
resistance

The authors confirm through microscopic
experiments that NS reflects with calcium
hydroxide, producing a large number of C-S-H
gel structures, densifying the microstructure
and reducing the void fraction. Compared to
the previous authors’ conclusions, the
NS-doping is increased to 2.5% in order to
obtain the best freeze-thaw resistance.

[68] 2020 NS + NC 1.0+3.0 Impermeability

The addition of NS and NC gives the carbon
fibre concrete greater durability and a lower
water–cement ratio of 0.4 for water penetration
properties.

[106] 2022 NS, NC 2.0, 3.0
Water absorption
and chloride ion
penetration

In total, 2% NS reduces the water absorption of
concrete to 58% and 2% NS can reduce the
water absorption of concrete to 65–70%. The
main reason for this action is the hydration of
the nanoparticles filling the tiny voids.

5. Influence of Nano Concrete Properties under High-Temperature Environment

Experiencing a fire or extreme high-temperature weather, through a series of reflec-
tions, the internal properties of concrete may change dramatically, by setting different
high-temperature environments and simulating the state of concrete structure analysis, to
derive the excellent medium difference of different nanomaterial admixture concrete, so as
to develop the analysis [40,107]. Many experts and scholars have devoted themselves to the
study of the fire resistance of nano concrete [108], which provides an important contribution
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to human production and life [109]. A comparison of the effects of geopolymers containing
2% NC and 2% NS exposed to temperatures of 60 ◦C and 90 ◦C follows. The cumulative
heat-indicated reaction levels measured for 80 h at 60 ◦C and 90 ◦C show opposite results, as
shown in Figures 11 and 12. At a curing temperature of 90 ◦C, the addition of SiO2 nanoparti-
cles resulted in a lower cumulative heat of reaction than the addition of NC until 40 h into the
reaction, with the results showing a higher heat of reaction by the end of 80 h. The relative
increase in the cumulative heat of reaction for NS addition can be seen in Figure 12, which
shows peaks in the corresponding reaction rate curves between 35 and 45 h [69].
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5.1. Residual Properties

Nanomaterials mixed with other media, such as fibres, will have different mechanical
property degradations in high-temperature environments. L. Wu et al. [110] investigated
the residual properties of carbon fibre-reinforced concrete after high temperatures with dif-
ferent NS-doping levels. The residual mechanical properties of NS carbon fibre-reinforced
concrete after high temperatures were higher than those of ordinary concrete. After heating
at 775 ◦C, the residual compressive strength, splitting strength and flexural strength of
0.25% carbon fibre and 1% NS concrete were 5.2%, 10.9% and 8.9% higher than those of
ordinary concrete, respectively. The authors concluded that NS could effectively improve
the mechanical properties of concrete after a high temperature and that the synergistic
effect of NS and carbon fibre is the main factor for the improved mechanical properties of
NS carbon fibre-reinforced concrete after a high temperature. A similar study was carried
out by the authors Polat et al. [105], here using the singular material NS to improve the
high-temperature resistance of the concrete, even when heated to 750 ◦C. The samples
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showed a 54% increase in compressive strength over the original concrete: a more striking
finding than that of the previous author. The NS concrete specimens showed a faster
loss of residual compressive strength of the concrete from 500 ◦C to 750 ◦C, with a 24%
loss of compressive strength for the 500 ◦C samples: using a cement-mortar mixture, the
temperature loss results were even more pronounced, as also reflected by the authors of
Shah et al. [111]. In addition, for the different mechanical properties’ experiments, the
loss of strength was also highly dependent on the size of the cement mixture, i.e., cubic
(150 × 150 × 150), rectangular (10 × 10 × 40) and cylindrical (Ø150 × 300), etc.

Yonggui et al. [38] studied the compressive and splitting strengths of basalt fibre
and NS in different temperature environments. By testing a large number of samples,
it was concluded that the mechanical properties of concrete gradually decreased as the
temperature continued to rise, and the authors concluded that the residual compressive
strength of concrete between 25 ◦C and 600 ◦C was a quadratic function of temperature, with
the compressive strength decreasing in the range of 400–600 ◦C to between 40–60%. The
splitting tensile strength decreased significantly up to 400 ◦C, with decreases ranging from
20% to 60%, and smaller decreases above 400 ◦C. When the temperature was between 25 ◦C
and 200 ◦C, the relative residual splitting strength increased linearly with temperature,
confirming that the mechanical effect on nano fibre concrete is minimal in the 200 ◦C
range. When the temperature exceeded 200 ◦C, the relative residual splitting strength was
quadratic as a function of temperature. The splitting strength of concrete was less able to
resist higher temperatures due to changes in the internal microstructure. Elsayd et al. [112]
investigated the changes in mechanical and fire resistance properties using different nano-
combinations for a room temperature environment of 25 ◦C and different high-temperature
environments (200 ◦C, 400 ◦C, 500 ◦C, 600 ◦C, 700 ◦C and 800 ◦C). In the 200 ◦C range, both
NS and nano-clay improved the mechanical properties of the concrete, gradually decreasing
the residual compressive strength as the temperature increased. Exposure to 800 ◦C for
2 h resulted in a loss of up to 60% of the concrete’s strength. Compared to normal concrete,
concrete configured with 3% NS and composite material (1% NS + 4% nano-clay) replacing
cement, heated at 800 ◦C for 2 h after standard curing, increased the strength of the concrete
by 19.8% and 14.7%, respectively, which can be used as an optimum percentage for the fire
resistance properties of concrete. From a microscopic analysis, NS and NC-modified concrete
specimens can still preserve better mechanical properties under different high-temperature
environments, even when heated up to 800 ◦C. In response to the conclusions given by various
scholars, the strength loss of nano concrete was not the same when heated to different high
temperatures. No major differences were found between NS and NC in terms of the effect
of mechanical properties in high-temperature environments. In addition to the mechanical
compressive experimental tests and the splitting experimental tests, the review further expands
on the flexural properties of nano concrete in a high-temperature environment.

NS and NC can improve the flexural properties of concrete in different temperature
environments. By comparing 25 ◦C and 600 ◦C high temperatures, mixing NS improved
the flexural strength and energy absorption capacity of the material. The flexural strength
of NS mixed with 1.5% increased by 27% over the control sample in a room temperature
environment, and by 21% after 600 ◦C high temperature. Unlike the NS modification,
the addition of 3.0% NC was better at high temperatures than at room temperature. The
flexural strength of concrete at an ambient temperature of 25 ◦C increased by 9% over the
control sample and could be increased by 23% at 600 ◦C [113]. It is worth noting that the
NS admixture at this point was only half of NC and the NS-modified concrete was able to
provide better flexural performance results than NC. Cao et al. [114] compared the effect
of NC and mixed micron calcium carbonate (MC) on the high-temperature properties of
concrete. NC had the best high-temperature properties of the concrete samples, indicating
that NC improved the high-temperature properties of the cement paste more significantly
than MC, and NC particle size was beneficial to the development of high-temperature
resistant mechanical properties. An overview of many articles found that many scholars
are happy to start studies using NS to improve the high-temperature properties of concrete
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based on the activity and excellent modification ability of nano. From a durability point of
view, the use of composites with different degrees of reaction, NC and NS, can result in a
more neutral concrete with long-lasting performance excellence to meet the needs of the
construction market.

5.2. Deformation Attenuation

The ambient environment of NS and NC makes the interfacial transition zone of con-
crete denser and holds with the aggregates to form higher mechanical properties [115]. In
contrast, in high-temperature environments, these voids gradually increase being amplified,
creating micro-cracks until the interfacial state of the concrete is destroyed [31,116,117].
When concrete samples mixed with 3% NS and 15% alccofine were heated between 400
and 800 ◦C, the compressive strength of the concrete generally decreased, with the most
significant loss of strength at 800 ◦C, and the surface colour changing from grey to white
and finally to brown. The microscopic voids in the concrete became larger with increasing
temperature [118]. Due to the fire and the increase in temperature, the residual compressive
strength of NS and alccofine concrete at 200 ◦C lasting 4–8 h was higher than the strength
of room-temperature concrete samples, and with no significant change in the surface of
the concrete at 200 ◦C heated for 4 h and extended burning time, the surface of concrete
became light grey. At 400 ◦C at 4 h of heating, the NS and alccofine concrete samples
and control samples showed a light grey surface; at 8 h and 12 h of heating, the concrete
surface turned dark grey; at 600 ◦C at high temperatures, the concrete surface also changed
colour to brownish red. As the temperature increased to 800 ◦C, more significant numbers
and widths of cracks appeared on the concrete surface. As the heating time continued to
increase, the concrete colour changed from grey to white. From 600 ◦C to 1000 ◦C, aggre-
gate decomposition was detected and the colour eventually turned red [119]. It increased
linearly with increasing nano-doping and increasing temperature. Kantarci et al. [120]
reported no significant change in the surface of concrete heated to 300 ◦C, which still
contained a small amount of gloss, and gradually turned grey when heated from 500 ◦C to
700 ◦C, as shown in Figure 13. Cao et al. [114] investigated the effect of high-temperature
environments from 200 ◦C to 1000 ◦C on the appearance of cracking of micron and NC-
modified cement pastes. A visual analysis of the concrete surfaces showed that both NC
and micron calcium carbonate (MC) affected their high-temperature properties. Within
600 ◦C, NC concrete samples and MC concrete samples produced less microcracking, while
surface microcracking in the control concrete samples developed faster. At 800 ◦C high
temperature, NC concrete samples produced more significant cosmetic microcracking than
MC and the control concrete. The change in the appearance of cracks in the concrete
exposed to different temperatures for 2 h is shown in Figure 14. Figure 15 shows SEM
images after high-temperature heating: comparing the change in appearance for different
NS dosages, the concrete shows a decrease in surface breakage after high-temperature
heating. Temperatures reached 800 ◦C and the concrete was generally damaged, producing
irregular cracks. NS had a positive effect on improving the high-temperature resistance of
the concrete.
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6. Discussion

Based on the effects of changing global climatic extremes and fire on concrete struc-
tures, NS and NC modified the concrete microscopically, with the microfilling of pores,
volcanic ash and hydration resulting in a more dense internal structure. The mechanical
properties of the modified concrete were analysed by a nano-analysis and the compressive
properties, splitting properties and flexural properties were improved, respectively. The
durability performance varied slightly with the tested parameters, and where environmen-
tal conditions were harsh, the NS and NC admixtures needed to be increased to achieve a
good balance. Based on the existing basic research, the review article derives the residual
properties and decay deformation of NC and NS-modified concrete after high-temperature
environments. Based on the review, it was found that the mechanical properties of NS and
NC-modified nano concrete after high-temperature effects were not significantly affected at
200 ◦C, the mechanical properties decreased at 400 ◦C and the strength loss of the concrete
accelerated as it continued to increase. Some authors such as Khan et al. [122] evaluated the
suitability of basalt fibres in both high-temperature and room-temperature environments,
with the fibres of the composites retaining good mechanical properties under the influence
of 850 ◦C and the basalt fibres preventing the spalling behaviour of the concrete. The effect
of the mechanical properties of plain concrete of different grades at 925 ◦C ambient, as
summarised by the authors Mathews et al. [123], decreased in the range of 39% to 46%. This
shows that the added basalt fibres are an important way of stopping the behaviour change.
Invoking the effects of nano-modification, the authors [110] used 0.25% carbon nano fibres
in combination with 1% NS and obtained a very good high-temperature stability response.
The NS and NC used alone required a certain amount of doping to be raised at the 200 ◦C
to 800 ◦C studied, with the large number of scholars mixing NS alone at around 2% to 3%
reflected in the review paper. This view is also reflected by the authors Polat et al. [105],
where a single number of 2.5% nanomaterials improved the mechanical properties by 7%
and 3% over normal concrete at 250 ◦C and 500 ◦C. Cao, Ming, et al. [124] studied the
residual compressive properties of high-temperature calcium carbonate whisker concrete,
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with high temperatures causing CaCO3 and hydration products to decompose as a major
factor in strength loss until 600 ◦C. The use of calcium carbonate whisker concrete from
600 to 700 ◦C had a complementary effect on the compressive and flexural properties of
concrete [125]. NS acted to control C-S-H and hydrates more strongly, and compounding
NS and NC into concrete will result in better high-temperature resistance and residual me-
chanical properties. After high-temperature heating the appearance, the experimental study
of Kantarci et al. [120] found that the NS-modified appearance changed colour significantly
more than that of Cao et al. [114]. In terms of high-temperature crack damage, NS concrete
specimens changed more significantly than NC specimens, which was also confirmed by
the authors Shah et al. [111]. From the nano-modification point of view, NS was more
active than NC, which is a subjective modification. Analysed from a high-temperature
performance point of view, NS concrete samples had more cracks in appearance above
400 ◦C than NC samples. NC had a relatively strong high-temperature stability. From an
economic and application point of view, the use of composite NC and NS reduced the cost
of engineering applications.

7. Conclusions

By reviewing this research for the properties of nanomaterial in concrete, the decay
deformation pattern of NC and NS in a high-temperature environment was obtained and
the following conclusions can be drawn:

• Both NC and NS cause a hydration reaction within the concrete and at the same time
fill the voids in the concrete, making the internal structure denser, as can be seen from
the SEM, TGA and Infrared Spectroscopy Analysis.

• The mechanical properties of the concrete incorporated with the composite nanomate-
rial NC+NS are significantly enhanced, with a corresponding increase in mechanical
properties under different high-temperature environments. The results of the review
study show that concrete samples heated at different high temperatures such as 200 ◦C,
400 ◦C, 600 ◦C and 800 ◦C have higher strengths than the control concrete. The me-
chanical strength of the concrete does not change significantly in the 200 ◦C range,
and the strength decreases from 200 ◦C to 600 ◦C. After high-temperature heating at
800 ◦C, the mechanical strength of concrete loses about 60%.

• The dense NC and NS materials reduce the water permeability, depth of carbonation
and self-shrinkage of the concrete, contributing to the development of durability.

• Mixing of NC and NS materials can improve the thermal insulation of concrete struc-
tures, with NS having a more pronounced effect than NC. This facilitates the develop-
ment and application of special insulation features for concrete.

• After continuous high temperatures, from 200 ◦C to 600 ◦C, the surface colour of NC
and NS concrete gradually changes from grey to white, and from 600 ◦C to 1000 ◦C
the colour gradually darkens to brown. The surface of the concrete starts to show
obvious cracks at 600 ◦C and the concrete is more severely damaged at 800 ◦C, with
the phenomenon of peeling of the skin. Concrete mixed with NC and NS has more
severe appearance damage than normal concrete due to being denser and more closed,
with temperatures exceeding 600 ◦C. In addition, the structural damage to the concrete
is more severe as the time at high temperatures increases.

8. Future Research

Mixed nanomaterials have been shown to be effective in improving the mechanical
strength of concrete, and long-term mechanical property changes in concrete are worth
tracking using NC and NS studies. The durability of nano concrete structures after high
temperatures necessitates further research as concrete is exposed to high temperatures
for long periods of time through global warming. New properties of nanostructures are
being developed to withstand the sustained high temperatures of fires, shielding against
radiation, and nanomaterials are expected to be used in critical structures. An overview
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drives the experimental research on composite nano (NC+NS) concrete and some new
conclusions will be drawn.
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