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Abstract: In recent years, interest in the liquid-phase exfoliation (LPE) of layered crystals has been
growing due to the efficiency and scalability of the method, as well as the wide range of practical
applications of the obtained dispersions based on two-dimensional flakes. In this paper, we present
a comparative study of as-grown and liquid-phase exfoliated GaSe1−xSx flakes. Bulk GaSe1−xSx

crystals with x ~ 0, 0.25, 0.5, 0.75, 1 were synthesized by melting stoichiometric amounts of gallium,
selenium, and sulfur particles in evacuated ampoules. X-ray diffraction analysis showed that the
crystal structure does not change considerably after LPE, while the analysis of the Raman spectra
revealed that, after liquid-phase processing in IPA, an additional peak associated with amorphous
selenium is observed in selenium-rich GaSeS compounds. Nevertheless, the direct and indirect
transition energies determined from the Kubelka-Munk function for LPE crystals correlate with the
band gap of the as-grown bulk GaSeS crystals. This finding is also confirmed by comparison with the
data on the positions of the photoluminescence peak.

Keywords: layered gallium selenide/sulfide crystals; stoichiometric melt; liquid-phase exfoliation

1. Introduction

Today, two-dimensional (2D) materials attract tremendous research interest due to the
promising properties that they exhibit after exfoliation from the bulk form. Recently, the
method of liquid-phase exfoliation (LPE) of layered crystals is becoming more and more
popular since liquids with 2D flakes can be easily deposited on any surface using printers
or spray coating devices [1–4]. Various 2D nanomaterials, such as graphene, transition
metal dichalcogenides (TMDs), and black phosphorus (BP) have been obtained via this
method. It is reported that the advantages of devices based on liquid-exfoliated Van der
Waals crystals include not only cost-effectiveness and scalability but also high flexibility,
which facilitates their application in wearable electronics [5].

Recently, the properties of LPE dispersions of gallium selenide (GaSe) and gallium
sulfide (GaS) have been investigated and some of their photoelectrochemical (PEC) applica-
tions have been demonstrated [6–9].

It is known that 2D GaSe layers are active in visible light, while GaS flakes are more
active in the UV region due to the energy band gap, which is ~2 eV and ~2.58 eV for GaSe
and GaS crystals, respectively. According to the data in the literature, GaSe mainly exhibits
p-type conductivity, while GaS is an n-type semiconductor [10–12]. It is interesting that
the corresponding transition ternary crystals also have a layered structure with predomi-
nantly n-type conductivity [13,14]. Depending on the Se/S ratio, the band gap of GaSeS
compounds varies between that of GaSe and GaSe. All of these crystals demonstrate the
same structure with Y-Ga-Ga-Y alternation, where Y = S or Se. Depending on the stacking
of layers, different polytypes (α, β, ε, and δ) can exist. Similar to the other two-dimensional
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(2D) Van der Waals nanomaterials, GaSeS crystals exhibit thickness-dependent electronic
properties that become significant in the case of a few numbers of layers.

Usually, GaSe and GaS crystals along with their ternary compounds are synthesized
by the Bridgman-Stockbarger (BS) method [15–19]. In this technique, the growth of a
single crystal is carried out in a two-zone furnace with a sharp temperature gradient.
Certainly, this method gives the opportunity to obtain various compositions of GaSe1−xSx
crystals with a controlled crystal quality, suitable for nonlinear optical applications [20,21].
Nevertheless, the use of GaSeS crystals grown by the BS method for LPE is not rational from
an economic point of view because of the lengthy and rather expensive synthesis process.

It is important to note that, despite all the above-mentioned advantages of the method
of liquid-phase exfoliation, the properties of the resultant LPE crystals strongly depend
on parameters such as the type of sonication (bath or tip) and especially the liquid media.
For example, Kang et al. reported that the LPE InSe film prepared using an ethanol-water
mixture demonstrated several orders higher conductivity compared to the film based on
InSe exfoliated in the liquid media of sodium dodecylsulfate–water [22]. Moreover, a pho-
todetector formed by the spray-coating of InSe exfoliated in isopropanol [23] exhibited the
highest broad-range photoresponsivity among similar devices. However, comprehensive
studies of such LPE monochalcogenides as GaSe, GaS, and, especially, GaSe1−xSx ternary
compounds are still few.

In this work, we have chosen a simpler and faster way of synthesizing layered
GaSe1−xSx crystals, which consists of melting stoichiometric amounts of Ga, Se, and S
particles in an evacuated ampoule using a single-zone furnace with a controlled tempera-
ture change. This method is often used for the preliminary preparation of a polycrystalline
alloy for BS technology and is known as the first stage of the BS synthesis technique. The
initial as-grown crystals were characterized by Raman spectroscopy and X-ray diffraction
analysis. Next, the crystals were exfoliated via the liquid-phase method in an ultrasonic
bath using isopropanol and characterized by standard measurement techniques to identify
possible changes in properties after the LPE treatment.

2. Materials and Methods
2.1. GaSe1−xSx Crystal Growth

The layered GaSe1−xSx crystals (where x = 0, 0.25, 0.50, 0.75, 1) were grown by the
stoichiometric melting of mixed particles of high-purity gallium (Ga), selenium (Se), and
sulfur (S) inserted into an evacuated ampoule. Melting was carried out in the single-zone
vertical furnace with temperature monitoring systems. For the production of GaSe crystals,
an ampoule with Ga and Se particles was heated up to 980 ◦C for 30 minutes. Then the
ampoule with the molten material was cooled at the rate of 2–3 ◦C/min to 550 ◦C, and
the subsequent further cooling was natural. The GaS and ternary GaSe1−xSx crystals were
grown under the same conditions but at a higher temperature of 1040 ◦C.

2.2. Characterization of GaSe1−xSx Crystals

The study of the elemental composition and microstructure of GaSe1−xSx crystals
was carried out by the method of energy dispersive analysis (EDS) on a Quanta 3D 200i
scanning electron microscope (SEM). The structure and photoluminescence spectra of the
obtained crystals were investigated using X-ray diffraction analysis (Rigaku) with a CuKα
monochromator and Raman spectroscopy (NT-MDT) with a 473 nm laser excitation source.
Diffuse reflection measurements were carried out on a Shimadzu UV-3600 spectrophotome-
ter. The thicknesses of the LPE GaSeS flakes were measured by atomic force microscopy
and SEM.

2.3. Photoconductivity Measurements

To study the spectral dependences of photoconductivity, planar photodetectors were
created based on micromechanically exfoliated thick (~300–350 nm) GaSe1-xSx flakes trans-
ferred onto the pre-deposited Au electrodes. The distance between electrodes was 50 µm
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and was the same for all prepared samples. The spectral dependence of the photoconduc-
tivity was measured using a monochromator with a 1200 mesh diffraction grating with
a step of ~5 nm, and a 300 W tungsten filament lamp was used as a light source. The
intensity of monochromatic light was calibrated using a UV-enhanced diode-type power
meter Newport 818-UV (Newport Corporation, Irvine, CA, USA). The photoconductivity
was measured at a constant voltage of 1 V for all samples. The photocurrent value was
recorded using a Keithley 6485 picoammeter (Cleveland, OH, USA).

2.4. Exfoliation of GaSe1-xSx Crystals

The liquid-phase exfoliation of GaSe1−xSx crystals was carried out in anhydrous
2-propanol (IPA, Sigma Aldrich, St. Louis, MO, USA, 99.8%). To obtain a dispersion with a
concentration of 1 mg/mL, 10 mg of GaSe1−xSx crystals were mixed with 10 ml IPA and
underwent sonication for 2 hours with a power of 150 W and a frequency of 35 kHz.

3. Results
3.1. Characterization of As-Grown GaSe1−xSx Crystals

The optical image presented in Figure 1a shows that the synthesized GaSe1−xSx
crystals (where x = 0, 0.25, 0.50, 0.75, and 1) have corresponding colors that are typical
and inherent to them. SEM studies of the synthesized samples confirmed the layered
structure of the GaSe1−xSx crystals. The SEM images of the cross-sections of the crystals are
illustrated in Figure 1b. The composition of the GaSe1−xSx crystals, according to the EDS
analysis, indicates their good stoichiometry. The data of the average elemental composition
of GaSe1−xSx crystals are represented in Table 1. To confirm the crystal quality of the
GaSe1−xSx crystals, X-ray diffraction analysis was carried out. The XRD pattern of the GaSe
crystal shown in Figure 2 corresponds to a hexagonal structure with lattice parameters
a = b = 3.76 Å, c = 15.94 Å. This crystal structure belongs to the P63/mmc space group.
The analysis of the XRD pattern of the GaS crystal also indicates its hexagonal structure,
but with smaller lattice parameters: a = b = 3.65 Å and c = 15.44 Å. In the case of ternary
GaSe1−xSx compounds, the lattice parameters decrease with increasing sulfur content. The
determined values of the d-spacing corresponding to the (004) plane are given in Table 1.
Peak analysis was carried out in accordance with the powder diffraction file with cards
01-089-2885 and 01-074-0227 for GaSe and GaS, respectively.
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Figure 1. Optical (a) and SEM (b) images of the synthesized GaSe1−xSx crystals (scale bar 10 μm). 

Table 1. Elemental composition and the d(004)—spacing of GaSe1−xSx crystals. 

Crystal Name Ga, at.% Se, at.% S, at.% d(004)—Spacing, Å 

GaSe 49.9 50.1 - 3.98 

GaSe0.75S0.25 49.7 38.7 11.6 3.95 

GaSe0.50S0.50 50.1 25.2 24.7 3.93 

GaSe0.25S0.75 49.5 12.1 38.4 3.91 

Figure 1. Optical (a) and SEM (b) images of the synthesized GaSe1−xSx crystals (scale bar 10 µm).

Table 1. Elemental composition and the d(004)—spacing of GaSe1−xSx crystals.

Crystal Name Ga, at.% Se, at.% S, at.% d(004)—Spacing, Å

GaSe 49.9 50.1 - 3.98
GaSe0.75S0.25 49.7 38.7 11.6 3.95
GaSe0.50S0.50 50.1 25.2 24.7 3.93
GaSe0.25S0.75 49.5 12.1 38.4 3.91

GaS 49.1 - 50.9 3.87
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Figure 2. X-ray diffraction (XRD) patterns of the as-grown GaSe1−xSx crystals.

Figure 3a represents the Raman spectra of GaSe1−xSx crystals. The Raman spectrum
of the exfoliated GaSe flakes has three typical peaks at 134, 212, and 307 cm−1, which
correspond to the A1

g1, E2g, and A1
g2 vibrational modes, respectively. In the case of GaS,

the Raman spectrum also shows the three dominant peaks at 188, 294, and 359 cm−1

corresponding to the same vibrational modes. Modes A1
g1 and A1

g2 refer to the compres-
sion/stretching out-of-plane vibrations of atoms, and E2g corresponds to shear modes
of in-plane vibrations. The ternary GaSe1−xSx crystals demonstrate Raman peaks that
shifted proportionally to the sulfur content and can be considered as a superposition of the
corresponding GaSe and GaS Raman bands. Thus, according to the structure of ternary
alloys, the three-component GaSe0.50S0.50 crystal demonstrates the two main peaks cor-
responding approximately to the average value of the Raman bands of GaSe and GaS:
(134 + 188)/2 = 161 (calculated) versus 169 cm−1 experimental and (307 + 360)/2 = 333.5
(calculated) versus 340 cm−1 experimental. The observed discrepancy between the exper-
imental and the calculated average values may indicate a slight predominance of sulfur
or selenium concentration in the GaSe1−xSx composition. At the same time, the first peak
at 135 cm−1 in the case of GaSe0.50S0.50 crystal indicates the presence of the initial GaSe
structure, while the peak at 156 cm−1 can be attributed to Ga2Se3, which can appear as
a transition phase due to the doping process, and/or to elemental sulfur with a typical
Raman peak at 153–154 cm−1, which can be partly intercalated between GaSeS layers. It
is assumed that the peak at 216 cm−1 represents a slight deformation of the initial GaSe
structure which leads to a shift of E2g mode to 212 cm−1, and this peak disappears with a
further increase in the sulfur content.

In contrast to TMDs such as WS2 and MoS2, which exhibit an intense PL signal only
at monolayer or several layers, GaSe and Se-rich compounds emit light efficiently at the
bulk state due to the pseudo-direct optical band gap, and there is a dramatic decrease
in PL intensity at small thicknesses due to the transition to an indirect band gap for
monolayers [24,25]. There are also several reports claiming that the observed PL signal
in GaSe is close to the energy band gap of the crystal, but it emerges due to the defects
induced by a slightly broken stoichiometric ratio. In addition, there are some articles that
explain the quenching of PL in thin layers of GaSe by non-radiative processes associated
with the surface states [26].
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Figure 3. Raman (a) and PL (b) spectra of the as-grown GaSe1−xSx crystals.

In this work, the PL spectra of as-grown GaSe1−xSx crystals were measured for bulk
crystals with thicknesses not less than 300 nm at room temperature. As shown in Figure 3b,
all crystals except GaS demonstrate a luminescent peak that blueshifts from 620 nm for
GaSe to 519 nm for GaSe0.25S0.75 as S content increases. It should be noted that, according
to the data in the literature, a layered GaS crystal demonstrates a PL peak at 485–490 nm.
However, we are unable to observe it due to device limitations [27].

As mentioned in the introductory section, the energy band gap of the ternary GaSe1-xSx
crystals depends on the sulfur/selenium ratio in the mixture. To verify this, the spectral
dependence of the photoresponsivity of the GaSe1−xSx crystals was studied. Figure 4 shows
the spectral dependences of the normalized photocurrent of Au/GaSe1−xSx/Au planar
structures. As can be seen, the sensitivity of all produced photodetectors increases with
increasing photon energy. This observation confirms the possibility of using GaSe1−xSx
crystals for photodetector production. The photon energy, determined by the exact linear
interpolation of these curves, shows that the energy gap for GaSe crystals is 1.94 eV and for
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GaS crystals is about 2.52 eV. For the ternary GaSe1−xSx crystals, the determined photon
energy is 2.13, 2.22, and 2.38 eV for GaSe0.75S0.25, GaSe0.50S0.50, and GaSe0.25S0.75 crystals,
respectively. The obtained values of the photon energy are close to the values of band gap
reported in the literature for the corresponding crystals and correlate with the observed
positions of the PL peaks, which are shown in Figure 3b.
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3.2. Characterization of Liquid-Phase Exfoliated GaSe1−xSx Flakes

After the characterization of the as-grown bulk GaSe1−xSx compounds, small amounts
of all the crystals were exfoliated in anhydrous isopropanol (IPA) solvent using an ultrasonic
bath. The optical images of the prepared IPA solutions with dispersed GaSe, GaS, and
ternary GaSe1−xSx crystals flakes (1 mg/mL) are illustrated in Figure 5a. These solutions
contain flakes with a wide range of crystal sizes. The average lateral size of flakes is a
few µm2, and the thickness of flakes varies from ~5 nm to ~500 nm. The results of the
statistical analysis are presented in the Supplementary Materials. To check the quality of
the obtained crystals after liquid-phase exfoliation, they were also investigated by SEM
(and EDS analysis) measurement, XRD analysis, and Raman spectroscopy. Figure 5b shows
SEM images of typical LPE GaSe1−xSx flakes. The EDS mapping represented in Figure 5b
indicates that the elemental composition of GaSe1−xSx flakes is not significantly changed
after LPE and is close to the initial values represented in Table 1.
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Figure 6 shows the Raman spectra of the LPE GaSe, GaS, and GaSeS ternary compo-
sitions. As can be seen, there are no significant changes in the structure of crystals after
exfoliation. In the Raman spectra of selenium-rich GaSe and GaSe0.75S0.25 flakes, an addi-
tional peak appears at 250 cm−1 and 242 cm−1, respectively, which apparently corresponds
to amorphous selenium. It should be noted that, according to the Raman spectra, the
crystal structure of individual flakes remains unchanged with increasing sulfur content.
The photoluminescence spectra of the same flakes do not show any noticeable changes in
the PL peak position.
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Further analysis was carried out using films based on LPE GaSe1−xSx flakes deposited
by the drop method onto the surface of graphitic paper in an amount of 30 mg/cm2 (see
Figure 7a). SEM images of the film surface presented in Figure 7b show that all films have
randomly-arranged flakes with a wide range of sizes and shapes.
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Figure 7. Optical (a) and SEM (b) images of the prepared LPE GaSe1−xSx films (scale bar 5 µm).

The XRD analysis of GaSe1−xSx films shows that the LPE crystals also have a predom-
inantly layered structure. The full-range XRD pattern represented in Figure 8 indicates
the presence of peaks typical for GaSe/S layered crystals that correspond to the (00x)
planes, x = 2, 4, 6 . . . As can be seen from the figure, an increase in the sulfur content in the
GaSe1−xSx films leads to a slight shift of the peak corresponding to the (004) plane, which
correlates with the XRD results of the as-grown crystals (see Figure 2). The XRD patterns in
the range of angles from 30 to 90 degrees are shown in Figure 8b.
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Figure 9 shows the result of the determination of the energy band gap of GaSe1−xSx
films by the Kubelka-Munk (K-M) method from diffuse reflection spectra. The linear
interpolation of the plots of (F(R)×hν)2 vs. hν for the quadratic approximation shows that
direct transition photon energy is ~1.97 eV for GaSe and ~2.79 eV for GaS LPE films. For
the films of ternary GaSeS compounds, this value is equal to ~2.14, ~2.32, and ~2.56 eV for
GaSe0.75S0.25, GaSe0.50S0.50, and GaSe0.25S0.75, respectively. The defined values of the energy
of direct transition are consistent with the data in the literature for the corresponding
GaSe1−xSx crystals, as reported in [27]. The energy of the indirect transition has lower
values. The determined photon energy is ~1.92 eV for GaSe films and ~2.52 eV for GaS
films. Analogous to the trends in direct transition energy, the value of the energy of indirect
transitions for the GaSeS ternary films increases with the increasing sulfur content and
equals ~2.04, ~2.12, and ~2.28 eV for the GaSe0.75S0.25, GaSe0.50S0.50, and GaSe0.25S0.75
compounds, respectively.
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Figure 9. K-M plots of GaSe1−xSx films. (a) indirect transition ((F(R)hν)1/2 vs. hν) and (b) direct
transition energy ((F(R)hν)2 vs. hν).

The PL spectra of the LPE GaSe1−xSx films recorded in the moving scanning regime
and shown in Figure 10 demonstrate the redshift of the peaks by ~5–10 nm from the
corresponding positions for as-grown crystals. This can be explained by the complex effect
of the different sizes and alignments (orientations) of the flakes, as well as defects at the
edges and the bending of the flakes in the films, which, in turn, can affect the integrated
properties of the material. In order to demonstrate this statement, changes in the position
and intensity of the PL peak for a bended GaSe flake are shown in Figure 11. One can see
that the flat areas of the flake have a lower wavelength value of the PL peak position in
contrast with the bended areas with the redshifted PL signal, which correlates with the
trend in the PL spectra of the LPE GaSe1−xSx films.
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Figure 11. PL mapping of the GaSe flake (a) optical image; (b) map of PL peak position; (c) map of
PL peak intensity.

Figure 12 shows the values of the energy of the PL peak positions and the energies of
direct and indirect transitions, determined from the interpolation of the Tauc plots of the
K-M function. As can be seen in the case of selenium-rich films, i.e., GaSe and GaSe0.75S0.25,
the PL peak positions and the corresponding transition energy exactly coincide with the
energies of direct K-M transition. As sulfur content increases, a strong deviation from the
quadratic law is observed, and these values began to differ. On the contrary, the energy band
gap of the GaS flakes is successfully described by indirect transition energy. The energy
band gap of GaS flakes, determined from the linear interpolation of the photoconductivity
spectra, and the indirect transition energy of the films are the same. The energy values for
the GaSe0.50S0.50 and GaSe0.25S0.75 films are generally in the range of errors.

According to the rules of the ternary alloys, GaSe1−xSx crystals are expected to demon-
strate linear changes in the parameters such as energy band gap, lattice parameters, and
the PL peak position. However, in this contribution, the slight deviation from the linear
law could be due to the possible lack of the stoichiometry associated with the non-uniform
distribution of the sulfur/selenium in the GaSe/GaS host crystals. Nevertheless, GaSe1−xSx
crystals maintain their main semiconducting properties, which makes them promising
for various practical applications. To confirm this, we have studied the photoresponsivity
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of a two-electrode photoelectrochemical cell with working electrodes based on the LPE
GaSe1-xSx films. These results are presented in the Supplementary Materials.
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Figure 12. Dependence of band gap values of GaSe1−xSx determined by different methods on
sulfur content.

It is important to note that all LPE crystals tend to degrade in IPA after a long period
of time. In the Raman spectra of the flakes being dissolved in IPA for a half year, additional
peaks of the amorphous selenium and sulfur have been observed. It is known that the
appearance of elemental selenium and sulfur in GaSe1−xSx crystals is usually accompanied
by the formation of Ga2O3 [28].

4. Conclusions

In this work, the properties of the GaSe, GaS, and ternary GaSeS crystals, obtained by
the simple melting of stoichiometric amounts of the Ga, Se, and S particles in a vacuum,
were systematically studied. From the analysis of XRD patterns, it was found that all
the synthesized crystals have a layered hexagonal structure. The structure of GaSe1−xSx
crystals did not change sufficiently after liquid-phase exfoliation in IPA, which is confirmed
by the analysis of Raman spectra and XRD patterns. In addition, a comparative analysis of
the band gap values determined by different methods shows that the GaSe1−xSx LPE films
demonstrate properties that are rather close to those of initial as-grown crystals.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15207080/s1. Figure S1. Typical (a) and contrast-adjusted
(b) SEM images of the GaSeS flakes (a,b); The lateral size distribution (c–g) of the LPE GaSe1-xSx
flakes. Figure S2. Typical AFM image of the GaSeS flakes (a) and the cross-section illustrating the
height changes (b). The thickness distribution (c–g) of the LPE GaSeS flakes according to the series
of AFM measurements. Figure S3. Schematic illustration of the PEC photodetectors working in the
short current regime. Figure S4. Light sensitive performance of the PEC photodetectors based on
GaSeS crystals.
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