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Abstract: Controlling the variability in mat structure and properties in bamboo scrimber (BS) is key to
producing the product for structural applications, and wide strip scrimber (WBS) is an effective approach.
In this study, the effects of scrimmed bamboo bundle morphology and product density on the properties
of WBS were investigated. WBS panels were manufactured and tested using wide (200 to 250 mm)
bamboo strips with different fiberization intensity. Maximum strength properties (flexural, compressive,
and shear strength), and lowest thickness swelling and water absorption were achieved with three or
four passes due to the higher resin absorption by strips. For balanced product cost and performance, we
recommend 1–2 fiberization passes and a panel density of 0.9–1.0 g/cm3. Panel mechanical properties
were compared with other common bamboo composites. Bamboo scrimber products were highly
variable in properties due to differing manufacturing processes, element treatments, and suboptimal mat
structure. Products including laminated bamboo lumber and flattened bamboo made from nonfiberized
elements show markedly different relationships between strength and elastic properties mostly due to
inadequate bonding between the laminae, which causes premature bond-line failure. This study helped
improve the understanding of the structure–property relationship of engineered bamboo products while
providing insights into process optimization.

Keywords: bamboo composites; wide-bundle bamboo scrimber; engineered bamboo products;
fiberization; mechanical properties; dimensional stability

1. Introduction

Bamboo is one of the strongest, fastest-growing plants in the world. Bamboo forests
are widely distributed across the subtropical regions of Asia, Africa, and Latin America [1].
According to the International Network of Bamboo and Rattan (INBAR), the total area of
global bamboo forests was more than 35 million hectares in 2020 [2]. Bamboo has a shorter
growth/harvest cycle than trees and can be harvested within 5 years. Bamboo products are
extremely versatile and can be manufactured to high strength and stiffness for potential
use in sustainable construction development [3].

In North America and Northern Europe, timber has been traditionally and widely
used for construction [4,5]. As lumber prices increase, developing engineered bamboo
materials may help supplement timber building materials. Engineered bamboo uses wood
adhesives and hot pressing to convert round, hollow, and variable bamboo culms into di-
mension ‘lumber’ and panels for construction giving a wide range of properties suitable for
different applications. Engineered bamboo is promising as a rapidly renewable, bio-based
construction material that can also offer enhanced and uniform mechanical performance.
Research and development of engineered bamboo are essential for regions in countries
such as China and India with abundant bamboo but low timber resources. Engineered
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bamboo for building construction needs to be lower in density than some existing products
such as scrimber (for fastening); more standardized, uniform, and predictable in density
and properties; and lower in cost. Understanding the factors contributing to the high vari-
ability in bamboo composite properties and manufacturing products with better-controlled
and standardized properties and performance is crucial for their acceptance as structural
materials in the building and construction industry.

Engineered bamboo products can be generally classified into two groups: (1) products
with laminated structures such as laminated bamboo lumber (LBL); and (2) strand and
fiber-based products with more random their structure, such as bamboo oriented strand
board (OSB) and scrimber. Most structural wood composites used in building framing are
laminated, including plywood, laminated veneer lumber (LVL), cross-laminated timber,
and glued-laminated timber. These are multilayer products with continuous glue lines,
but failure to adhere to standardized manufacturing and quality control protocols such as
ANSI PRG 320 (developed for softwood glulam and CLT) can lead to premature bond-line
failure and reduced modulus of rupture (MOR) [6]. Strand and fiber-based products have a
higher degree of randomness in their mat structures and discontinuous glue lines. This
paper deals with a fiberized bamboo scrimber (BS) product called wide bundle scrimber
or WBS, designed to fit the laminated structure category to overcome the limitations and
deficiencies caused by random mat structure.

BS adapts the crushing and flattening technology developed in Australia to convert
small diameter pine thinnings to bundles of splinters that are coated in resin and hot-
compressed back into solid composite lumber [7,8]. BS is made from crushed or ‘fiberized’
bamboo bundles soaked in water-soluble phenol-formaldehyde (PF) resin and compressed
to billets or panels with the required density and thickness [9]. BS has a high utilization rate
of raw bamboo, high density, and good physical and mechanical properties [10,11]. It also
has a high PF resin solids content (15 to 17%) compared with most other wood and bamboo
composites and is very heavily compacted at >10 MPa, giving it a tight grain texture
suitable for high-wear flooring and decking applications as well as garden construction
and certain civil engineering applications [12–14]. Approximately 60 bamboo scrimber
manufacturing enterprises presently exist in China, with an annual production rate of
600,000 m3 [15]. The earliest recorded research on bamboo scrimber materials dates back to
the 1980s [16]

The fabrication process consists of cold molding and hot curing, or, for panels, of a
lengthy cool-in and cool-out pressing procedure. Products range in density from about 0.85
to 1.25 g/cm3, with high variability in mechanical properties [17–19]. Many studies have
investigated in depth the mechanical properties [20–23], flame retardant properties [24],
dying properties [25], anticorrosion and antimildew properties [26], and supplementary
element heat treatments for bamboo scrimber [27]. Various processing equipment such as
flattening and fiberization devices, cold-compress machines, special curing kilns, multilayer
hot-presses with water cooling systems, and hot-press molds with movable stops have
been developed to suit BS fabrication [28].

Bamboo scrimber can be made with high mechanical properties but at the expense
of heavy processing—mechanical culm flatting, cracking requiring much resin usage to
‘repair’, heavy compaction, and lengthy press times to consolidate. The high densification
leads to excessive thickness well. Conventional BS is made from narrow flattened bamboo
strips which have had the inner and outer skins, or ‘cortex’, removed to improve impedi-
ments to resin bonding [29], but this also reduces the culm utilization rate. Narrow strips,
randomized strip placement in mats, and lack of standardization of the manufacturing
process result in an overly densified product with a wide range of properties which limits
its application as a structural building material. Narrow strips do not align as well in the
mat and create more random gaps and overlaps within each layer, or ‘laminate’, requiring
excessive compaction to provide adequate contact pressure between elements.

Wide bundle scrimber (WBS) and stitched bundle scrimber or bamboo laminated
veneer lumber (BLVL) are more recent and effective approaches to convert BS to more
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of a plywood or LVL-type laminated mat structure and therefore reduce the compaction
required for adequate element contact. The objective of this study was to examine the
effects of fiberization extent (number of passes through toothed rollers) on resin absorption
by strips as well as associated panel density on mechanical properties including flexural
strength, shear strength, and thickness swell. Modifications to the manufacturing process
to enhance dimensional stability and mechanical properties within a suitable density
range are discussed. The study also aims to contrast the properties of WBS with those of
traditional BS and other engineered bamboo products to gain broader understanding of
the processing-structure-property relationships of bamboo-based composites.

2. Materials and Methods
2.1. Materials

Fresh 4–5-year-old Moso bamboo (Phyllostachys pubescens) culms were obtained from
Yingtan city, Jiangxi province, China. The bamboo trees were 20 m in height with a culm
diameter of 80 to 100 mm and wall thickness of 7 to 11 mm. The moisture content of the
raw bamboo was 35% to 45%, and density was between 0.5 g/cm3 and 0.6 g/cm3. The
harvested bamboo was delimbed and cut to 2-meter-long culms which were then split
longitudinally into two to four sections for flattening and fiberization.

2.2. Experimental Design

Two factors were tested in the study: (Experiment a) extent of fiberization—four levels;
and (Experiment b) board density—five levels, as shown in Table 1. Three replicate panels
were made for each level. The different levels of board density were achieved by adjusting
the weight of resin-soaked fiberized bamboo layers used in the mat and compressing them
to the same thickness. The extent of fiberization for the board density variation was 3
passes through the rollers which were considered to be the optimum fiberization extent to
balance resin usage with panel properties.

Table 1. Experiment design for fiberization frequency and density sampling.

Expt. Experimental Factors Level

a
Board density (g/cm3) 1.00

Fiberization frequency (times) 1 2 3 4

b
Fiberization frequency (times) 3

Board density (g/cm3) 0.90 1.00 1.10 1.20 1.30

2.3. Fiberization

The culm halves were flattened and decorticated into fiberized bundles (Figure 1) mea-
suring between 200 and 250 mm in width while in the fresh green state using a multi-purpose
fiberization machine [30] and then cut into 460 mm segments. The fiberized strips were dried
in an oven at 85–90 ◦C for 3 h to a moisture content of 6–7% and kept at room temperature
for 1 week before testing and panel fabrication. During the fiberization process, a series of
parallel cracks were formed in the culm wall which separates the wall tissue into a series of
larger or smaller interconnected fiber bundles. The rollers have discontinuously dislocated
convex teeth to generate cutting and peeling forces in the longitudinal direction of the bamboo
wall. Linear and point cracks were formed longitudinally along the bamboo culm, while
extrusion forces were applied to the radial section resulting in the loosening and stretching of
the broomed strip in the transverse (across the grain) direction [31]. Several pieces of fiberized
bamboo veneer were randomly selected, and the diameter of the thickest bundle of fibers in
each piece was measured using vernier calipers. Information on bundle sizes and utilization
rate of different groups is given in Tables 2 and 3). Utilization rate was estimated from the
mass of the culm sections before and after passing through the rollers. The green removal rate
(also given in Table 3) was estimated from a randomly cut 5 cm × 5 cm specimen and imaged
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under a depth-of-field 3D super-deep-scene microscope. The lasso tool in Photoshop software
was used to identify and measure the remaining green skin area seen in Figure 1.
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(1.54) 92
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Table 3. Morphological characteristics of WBS bundles with different fiberization frequency.

Fiberization
Frequency

(Times)

Outer Green
Removal Rate

(%)

Diameter of
Bamboo
Bundles

(mm)

Resin Loading
(%)

Specific Surface
Area

(1/mm)

Cross-Sectional Photo of Bamboo
Fiber Bundles (5 mm Scale Bar)

1 34.23 (4.75) 4.21 (0.32) 26.45 (4.32) 1.74

1 
 

 

2 56.76 (8.37) 3.13 (0.21) 47.21 (5.13) 2.41

1 
 

 

3 79.11 (10.88) 2.54 (0.13) 58.17 (4.55) 3.32

1 
 

 4 94.23 (13.23) 1.89 (0.15) 72.44 (6.73) 3.54

1 
 

 
Numbers in parentheses are coefficients of variation. Data summarized from experiments at the Wood-based
Panel and Adhesive Laboratory of the Chinese Academy of Forestry and the laboratory of the Institute of Forest
Industry, Jiangxi Academy of Forestry.

2.4. Calculation of Specific Surface Area (SSA)

The concept of specific surface area was proposed here to quantify the extent to which
the bamboo strips are fiberized. Pictures of the cross-section of the bundles were taken for
each level of fiberization, and their average thicknesses were measured. The pictures were
then cropped to enclose only the cross-section and then binarized to obtain black-and-white
images using the image processing and analysis library available in MATLAB® R2019b.
The number of white pixels was counted and divided by the total pixel area to obtain the
occupied portion. The white portion was also divided into non-touching regions, and the
perimeter of each region was calculated. The value of SSA was calculated as the sum of
the perimeters of all regions divided by the total occupied area. Since the units of the SSA
results are 1/pixel, the thicknesses of each photographed bundle were measured and used
as a scale to convert the results from pixels to mm. The average resolution of the pictures is
80 pixel/mm.

2.5. Panel Fabrication

The dried bundles were dipped in liquid phenolic resin for 3–4 min and drained for
4 min to remove excess resin for reuse. The phenolic resin was supplied by Beijing Taier
Chemical Co., Ltd. (Beijing, China), with a solids content of 46.56%, viscosity of 42 CPs,
and pH of 10–11. The resin dosage (of liquid resin in Table 3) was estimated by measuring
the increase in mass. The resin-coated strips were then oven-dried to an MC of 10–12%.
The resinated, dried strips were hand-laid into a mold with side pressure baffles with the
inner face of the strips facing the core and the outer faces facing the surfaces for uniform
symmetry in the vertical direction [32]. To adjust density, between 6 and 8 strips were used
per panel, which resembled unidirectional LVL in configuration. The 460 mm × 200 mm
mats were hot-pressed to a 20 mm target at 145 ◦C under 5 MPa compaction pressure for 30
min (1.5 min/mm hot press time) using a cold-in–cold-out (water-cooled) schedule. Note
the compaction pressure is less than half that of traditional BS due to the uniform laminates
and there being no gaps or overlaps between strips within the mat. The implications of this
are discussed further in Section 3.4. Total panel pressing time was over an hour, accounting
for precompaction and postcooling to 60 ◦C before removal. The laboratory press was
supplied by Shanghai Wood-based Panel Machinery Factory Co., Ltd. (Shanghai, China).
The panel was further cooled to ambient temperature then and conditioned before cutting
for density and mechanical properties specimens.
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2.6. Physical and Mechanical Properties Testing

The physical and mechanical properties of the WBS panels were tested according to Chinese
national standards GB/T 30364 and GB/T 20241. For dimensional stability, the thickness
swelling rate (TS), width swelling rate (WS), and water absorption rate (WA) after immersion in
boiling water for 4 h was followed by oven drying at 63 ◦C for 20 h then reimmersion in boiling
water for 4 h. Specimen size was 20 mm × 50 mm × 50 mm, with 12 specimens measured
and averaged per group. Flexural strength, parallel-to-grain compressive strength, and shear
strength were measured using a Jinan Meters microcomputer-controlled wood-based panel
universal testing machine (MWD-w10). Test specimen size was 20 mm × 20 mm × 450 mm
(MOR), 20 mm × 40 mm × 120 mm (SS), and 60 mm × 20 mm × 20 mm (CS). The average
of 6 specimens was taken for each group. The internal morphology of each type of panel was
observed in 10 mm× 10 mm blocks using a scanning electron microscope (SEM, S-3400, Hitachi,
Tokyo, Japan) after sputter-coating with gold.

3. Results
3.1. Structural Characteristics of WBS

The difference between WBS strips and earlier iterations of BS scrimmed strips is
shown in Table 2. WBS has much wider fiberized strips of up to 250 mm, whereas traditional
and narrow bamboo scrimber strips are between 30 and 60 mm wide. Narrow BS is
characterized by variability in planar panel density caused by poorly controlled mat lay-up
which creates overlaps and gaps requiring very high compaction pressures to achieve
adequate contact and bonding of elements [19,33–35]. WBS allows for more controlled
mat lay-up—an intermediary between haphazardly-laid traditional BS and well-aligned
bamboo bundle LVL (see Figure 2). The method also permits lower compaction pressures
(~5 MPa) used here, leading to more uniform density and improved panel properties and
performance. From BS factory production data, the production efficiency of WBS is about
5–6 times higher than that of traditional BS. The utilization rate of WBS was estimated to
be 92% since the inner and outer cortex layers are not removed. The method leads to a 40%
increase in the utilization rate compared to traditional BS.
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The percentage weight of liquid resin absorbed by the WBS strips with different
brooming passes is shown in Table 3. Liquid resin absorption after one pass was about
26.5% but increased to 72.4% with four passes due to the larger extent of cracks, higher
specific surface area [33] (see estimates in Table 3), and greater damage and removal of
inner and outer cortex. While the resin absorption increased 2.7 times, the value of SSA
was more than doubled after four passes, with a majority of cracks occurring during the
early rounds of brooming. More fiberization passes decrease the fiber bundle diameter
and increase the SSA. Greater SSA also leads to higher-bonded surfaces and resin-infused
mechanical interlocking networks. The average diameter of the fiber bundles after four
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passes through the fiberization rollers was 1.89 mm, giving an estimated contact surface
area of about twice that of strips with one pass.

The fiberization extent must be balanced with the correct amount of resin uptake to
‘repair’ the cracks and provide adequate properties without becoming uneconomic in terms
of resin consumption. Excessive fiberization requires greater energy consumption and
cost and reduced utilization rate to balance the need to mechanically flatten and create
supple, conformable strips with excessive fiberization. The mechanical properties’ results
also indicate no further gains from more than three passes, suggesting that only up to two
or at most three passes are needed.

3.2. Effect of Fiberization on the Scrimber Properties

Strength properties for each fiberization level are shown in Figure 3, and thickness and
width swelling and water absorption rate of WBS after 4 h and 28 h are shown in Figure 4.
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rupture (MOR), modulus of elasticity (MOE), (b) parallel shearing strength (SS||), perpendicular
shear strength (SS⊥), and (c) compressive strength (CS).
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Figure 4. Dimensional stability at 4 h and 28 h of WBS with different fiberization frequency:
(a) thickness swelling rate (TS), width swelling rate (WS), and (b) water absorption rate (WA).

Flexural properties (modulus of rupture, MOR, and modulus of elasticity, MOE)
increased between one and three passes, with no further gain at four passes. Compression
strength (CS) and shear strength (SS) showed a steady increase with the number of passes
up to three, as this is governed by the interface strength between two laminated faces. More
passes mean more fissures in the adherend surfaces and more resin in the panel, creating
stronger and better resin-interlocking between adherends and stronger bond interfaces.
However, more than three passes likely compromises the structural integrity of the bamboo
tissue to the extent that it starts to degrade composite mechanical properties and become
uneconomic in terms of resin usage required to ‘repair’ accompanied by loss of strength
properties. Fiberization with few passes retains larger and solid bamboo tissue in the length
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direction, with the resin coating ensuring minimal loss of mechanical properties compared
to unbroken tissue.

The dimensional stability indicators thickness swell (TS), width swell (WS), and water
absorption (WA) were significantly reduced with fiberization frequency from one to three
with a further small gain after four passes. The greater resin uptake and content in panels
with more intensively fiberized strips (i.e., greater resin-to-bamboo ratio) explain the trend,
as PF resin is water-resistant compared with the hydrophilic bamboo tissue. From the
results, no more than two to three fiberization passes are needed for optimal mechanical
and dimensional properties.

3.3. Effect of Density on the Scrimber Properties

Flexural properties MOR and MOE both increase with density, as shown in Figure 5.
The greatest increase was from 0.9 g/cm3 to 1.1 g/cm3. Ideally, for minimizing processing
costs and time, engineered bamboo should be not much greater in density than the bamboo
parent tissue, and results from this study suggest high-recovery, resin-bonded BS products
could be manufactured to 0.9–1.0 g/cm3 density. If mat layering is carefully controlled, as
discussed in Figure 2, then the minimum required product densification can be reduced
and still maintain adequate element contact and bonding [36].
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The shear and compression strength (SS and CS) with board density are shown in
Figure 6a,b. Unlike the flexural properties, the increase in SS and CS with panel density
is linear. This is likely due to the fact that both shear and compressive strengths are more
directly related to bonding strength, which in turn correlates to density through its impact
on interelement contact development. On the other hand, bending MOE and MOR are
more dependent on inter-element contact and bonding when the density is low. As the
density increases, sufficient bonding develops, and the MOE and MOR will be governed
by other factors such as fiber length and orientation.
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The thickness swell at 4 and 28 h with panel density are shown in Figure 7. TS
increased with density up to 1.1 g/cm3, then decreased as the ratio of water-resistant resin
was high enough to hamper absorption and tissue swelling. The lowest 28 h TS was at
0.9 g/cm3 (6.5%), since the extent of cell compaction and internal stress is the lowest.
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Lower board density and higher void volume fraction allow easier penetration by
water during soaking treatment. At a panel density of 0.8–1.0 g/cm3, there are still some
open pores conducive to more rapid penetration and absorption of water. However, despite
the increased liquid uptake, there is also less compacted tissue per unit volume of the panel
to absorb moisture and swell, resulting in lower overall irreversible TS in the low-density
panels. At the other end of the density range, the very high tissue compaction restricts
moisture ingress and swelling during the limited moisture exposure time. Given unlimited
water exposure time, the highest density panels would be expected to have the highest TS.

Board density increases with higher volumes of bamboo bundles pressed to the same
thickness due to a higher compaction rate. During hot-pressing and material softening,
the vessels mostly undergo buckling and collapse, as seen in Figure 8b,c, which occurs
during the viscoelastic softening and tissue relaxation during hot-pressing. If compaction
and deformation occur rapidly at the beginning of hot-pressing before the material has
heated sufficiently to plasticize and absorb the stress, then localized microfractures can
occur, weakening the bamboo parent tissue. Similarly, if compaction is too slow and the
resin heats and precures, then bond integrity is compromised. The fundamentals of BS hot-
pressing, which should be similar to the consolidation behavior of wood composites [37–40],
are under investigation and will be published in a future paper.
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After pressing, some internal stress remains within the panel. With exposure to
moisture, the compressed cells absorb water via diffusion and restore their original shape
causing swelling, delamination, and internal flaws. After continuous water boiling, elastic
deformation continues to increase as internal stress is gradually released [41]. Rupture
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of internal bond lines may occur, caused by the heavy compaction, which exacerbates
deformation and swelling, causing increased irreversible thickness swell rate. Such high-
density and low-dimensional stability have in the past greatly limited the cost-effectiveness
and commercial applications of BS. One reason for the high resin requirement and low
cost-effectiveness of BS is to help contain TS caused by high compaction. Panels in this
study had relatively low TS due to the high ratio of water-resistant resin coating the tissue
and reduced free void space restricting water entry.

One strategy for reducing moisture uptake and swelling without needing more resin
is to adjust the resin formulation. For example, Zhu et al. [42] discussed the ability of low-
molecular phenolic resin to provide more uniform and effective penetration into bamboo
tissue, and it was believed to be the primary contributor to the dimensional stability of BS
that was made at different density levels. Higher dimensional stability may result from
small resin molecules entering, polymerizing, and occupying smaller voids and more of the
hydrophilic functional groups in the tissue. More frequent deposits of low molecular weight
resin on bamboo cell walls and their internal pits can effectively decrease the swelling
properties of testing specimens when immersed in water. The deposit of polymers on the
bamboo cell wall is the fundamental contributor to the improvement of the dimensional
stability of the scrimber board.

3.4. Impact of Densification on the Microstructure of Scrimber

Figure 8 compares the transverse section of raw bamboo (density = 0.65 g/cm3) and
WBS at both ends of its density range of between 0.9 g/cm3 and 1.3 g/cm3 At the lower
densification, localized deformations occurred in the parenchyma cells. As the densification
increases, the deformation extends to vascular bundles, especially in the vessels as seen in
the high-magnification image in Figure 8c. The reduction of large lumen space influences
water absorption and TS. At excessive densification levels, cracks and debonding (Figure 8c)
start to develop due to localized shear failures, particularly if the tissue has not sufficiently
heated and softened during compaction and/or the resin has precured and become brittle.
These failures do not necessarily weaken the global strength properties as observed in
MOR and SS, but could negatively impact other structural properties such as fatigue and
duration of load.

Compaction reduces the between- and within-strip void fraction, creating more ef-
fective contact and adhesion of the resin. The strength of the bamboo fiber in the length
direction and the bonding strength between fiber bundles largely determine the strength
properties of the scrimber. At the same panel thickness, higher density is achieved by
adding more layers, resulting in a higher degree of element compaction ratio and densifica-
tion during hot pressing. At too low a density, the weak bonding cannot provide sufficient
stress transfer between elements and hence become the weakest link in the composite. As
density increases element surface contact and pressure, the bond quality increases to the
point where it exceeds the strength of the bamboo tissue, and tissue strength becomes
the limiting factor. High compaction forces more resin into smaller pores and voids in
the tissue, creating better mechanical interlocking. High-density panels contain fewer
voids, resulting in many more bond contact points for stress transfer between the elements.
Properties must be balanced with increased panel weight and the time, energy, and resin
required to press higher-density BS and the reduced dimensional stability that accompanies
very high compaction of BS products. The results from this study with wide strips favor
minimal passes through the rollers (1 to 2) to reduce tissue break-up and resin consumption,
and densification to no more than 0.9 to 1 g/cm3 to achieve adequate strength properties
for structural purposes. Wide strips are recommended for BS to help reduce the number of
elements per mat, the problems associated with mat heterogeneity, and flaws caused by
misalignment and random overlaps and gaps between narrow strips, as illustrated and
discussed earlier in Figure 2.
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3.5. Performance Comparison of WBS with Other Engineered Bamboo Materials

To further understand the structure–property relationships of bamboo composites, the
MOR and MOE of different engineered bamboo materials reported from past studies in
the literature are compared using Ashby plots in Figure 9 and reported values in Table 4.
Bamboo products may be classified into five product types: natural raw bamboo (RB),
laminated bamboo lumber (LBL), flattened bamboo (FB) bamboo scrimber (BS and WBS),
and bamboo bundle laminated veneer lumber (BLVL). Figure 9 shows mechanical properties
are generally positively correlated with product density.
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Figure 9. Density-flexural property relationships of bamboo products. (a) MOR, (b) MOE. Notes:
BS—bamboo scrimber, WBS—wide bamboo scrimber, RB—raw bamboo, BLVL—bamboo bundle
laminated veneer lumber, LBL—laminated bamboo lumber, and FB—flattened bamboo. All bam-
boo composites use Moso (Phyllostachys pubescens Mazel.) and RB includes Moso, Guadua and
Dendrocalamus asper.
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Table 4. The mechanical properties of different engineered bamboo products.

Products Density
(kg/cm3)

Modulus of Rupture
(MPa)

Modulus of Elasticity
(GPa) Reference

WBS 1.02–1.3 253.23–398 26.35–32.3
Yu et al. [30]
Yu et al. [43]

BS 0.85–1.3 119–398 13–32.3

Huang et al. [31] Yu et al. [15]
Sharma et al. [44] Shang et al. [27]

Wei et al. [45] Zhang et al. [46]
Yu et al. [17] Kumar et al. [47]

RB 0.68–0.87 69.1–122.46 3.6–13.5

Lorenzo et al. [48] Yu et al. [17]
Ribeiro et al. [49] Sharma et al. [44]
Chung et al. [50] Huang et al. [51]
Dixon et al. [52] Yu et al. [30]

BLVL 0.98–1 121.31–280 15.83–24.61
Zhou et al. [53] He et al. [54]
Chen et al. [55] Deng et al. [56]
Deng et al. [57]

LBL 0.62–0.78 67.7–88 7.4–17.3
Andy et al. [58] Yu et al. [30]

Rittironk et al. [59] Sharma et al. [60]

FB 0.62–1.01 74–115.13 4.49–12.1
Andy et al. [58] Huang et al. [31]

Rittironk et al. [59] Sharma et al. [44]
Wenji Yu et al. [30] Nugroho et al. [61]

Raw bamboo (RB) is natural bamboo without any treatment or densification and
therefore has baseline density and strength properties for the bamboo type. RB has lower
strength properties than most engineered bamboo products, especially BS and BLVL, due to
the densification and large resin addition to these products. Different species of raw bamboo
exhibit a large range in density but relatively low correlation with strength properties.

Laminated bamboo lumber (LBL) has a low densification ratio, just enough to com-
press and bond the flat smooth strips together, and is most similar to that of RB, as it
requires little densification for bonding [29]. LBL is made by stacking and gluing uniformly
milled bamboo elements, producing a uniform element shape, size, and orientation in
the product. The average strength of structural LBL is similar to flattened bamboo and
hardwoods [62]. Several studies have demonstrated the unique properties of structural
LBL [62–66]. Structural members made of LBL can be created in any cross-section and shape
and are adaptable to different heights and spans of members. Of particular note is that
while the MOE of LBL increased with density, the MOR did not show a significant increase
with density because MOR was governed more by glue-line strength, which could fail
prematurely, rather than transferring stress to the tissue. Unlike BS, which is a composite
mixture of fiber bundles encased in large amounts of resin that can withstand loading even
when its structure begins to fail, the stress transfer capability of LBL collapses, resulting
in a masked density effect on bending strength. In contrast, the MOE of LBL increases
with increasing density because the MOE reflects the material’s ability to resist elastic
deformation, i.e., the linear portion gradient of the stress–strain curve before the glue line
becomes affected.

Similarly, laminated FB has comparable properties and lack-of-density effect on MOR
to RB. The product is produced by glue-laminating whole or half culms that have been
softened under high heat and steam and progressively opened out flat through a series of
custom-designed rollers [18,67]. Most engineered bamboo products have a low utilization
rate of bamboo biomass and/or high content of adhesive, which can obscure the texture
and grain of the original bamboo surface. Advantages of FB technology include its high
recovery rate and maintenance of the original grain texture of bamboo without cracking,
which makes it suited to appearance flooring and wall paneling applications. If the outer
cortex is retained, then the utilization rate of flattened bamboo increases to around 90% [29].
Adhesive requirements are also greatly reduced compared with most other engineered
bamboo products [68]. FB sheets are generally not heat-treated or heavily densified beyond
about 1 g/cm3, giving them similar mechanical properties to RB, and can be glued into
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LBL-type products. Note that the MOR of RB, LBL, and FB ranges from 69.1–122.46 MPa
and MOE from 3.6–17.9 GPa. The mechanical properties of these products are low and may
only be suitable for lower structural performance requirements.

Bamboo scrimber (BS) is mostly denser and stronger than both the RB and LBL due to
its higher densification ratio and required resin content. Note that BS and WBS have the
highest variation in mechanical properties, with MOR ranging from 119–398 MPa and MOE
from 13–32.3 GPa. Their strength properties are comparable to other structural building
materials. From Figure 9, it can be seen that BLVL is notably less variable in properties than
BS. Its mechanical properties are similar to BS but at a lower density. Other research shows
BLVL is more uniform, allowing for better control and standardization properties [53]. BLVL
is a relatively new product designed to improve the automation of the production process
and the performance of the product. It also enhances material utilization to some extent.
Its success lies in the use of stitched bamboo bundle mats to increase the laminate size and
uniformity and hence achieve better bonding with less compaction requirement [36,69].
The greater uniformity of these elements effectively reduces variation in properties.

The width and extent of fiberization of BS strips also have a large impact on strength
properties (as demonstrated here), as they affect both mat lay-up (see Figure 2) and resin
content. BS currently lacks uniform manufacturing and quality standards that adequately
account for the variation in density and mechanical properties of these products [70]. The
use of wide strips and stitched veneer go a long way toward controlling axial alignment
and the frequency of overlaps within layers, which requires greater compaction to achieve
adequate surface contact and bonding than if there are no overlaps between layers, much
like plywood or LVL [36].

Furthermore, the bamboo bundles used in BS often undergo a modification treatment
such as carbonization prior to manufacture. Heat and steam treatments are used to improve
the corrosion and mildew resistance, adjust product color, and improve dimensional
stability. However, such treatments, particularly at higher temperatures, also contribute to
variability in the mechanical properties of BS. It can be seen from Figure 9 that MOR and
MOE of BS materials that had undergone saturated steam treatment (SST) and hot dry air
treatment (HDAT) are in the range of 86–166.5 MPa and 4.43–29 GPa, respectively.

4. Conclusions

This study investigated the fiberization–density–property relationships of wide-bundle
bamboo scrimber (WBS). The outer cortex of the culm was partially retained during fiber-
ization, resulting in a utilization rate for WBS above 90% compared with 55% for normal
scrimber. Fiberization creates cracks and exposes fiber surfaces in the bamboo strips. As
such, the specific surface area (SSA) increased by 100%, and the resin absorption rate went
up 2.7 times after four brooming passes. Upon consolidation and curing, the induced cracks
were more-or-less “repaired”, forming a resin-infused mechanical interlocking network
that enhanced water absorption, dimensional stability, and mechanical properties of the
resulting composites. To balance product cost and performance, strips with 1–2 brooming
passes and a panel density of 0.9–1.0 g/cm3 is recommended. This fiberization and density
level yielded properties of MOR = 163.96–210.73 MPa, MOE = 16.11–20.9 GPa, and 28 h
TS = 6.54–6.97%. These properties are, on average, better than regular BS, representing a sig-
nificant improvement in product quality at lower compaction if wide strips (200–250 mm in
width) are used. This was believed to be largely due to improved mat layering with better
strip alignment and fewer random edge overlaps within layers compared with normal BS.
The properties could be further enhanced by using strip stitching and continuous lay-up,
leading to laminated structures such as bamboo laminated veneer lumber (BLVL).

The flexural properties (MOR and MOE) of WBS were compared with other engineered
bamboo products. Those that use crack-free elements such as flattened bamboo (FB) or
laminated bamboo lumber (LBL) have lower variations in density and flexural properties
and are more similar to the bamboo parent tissue. While the MOE of LBL and FB increased
with density, the MOR failed to show a significant increase with density, which is contrary
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to scrimber and counter-intuitive. This discrepancy can be attributed to the lack of sufficient
bonding in the laminated products, causing premature failures in the glueline rather than
inter-element stress transfer. The high densification of ‘fiberized’ element products such
as bamboo scrimber or BLVL can improve mechanical properties due to high resin usage
and mechanical interlocking. Further work will focus on the performance analysis of
low-density and low-fiberization bamboo scrimbers to obtain a more accurate balance
between material performance, bundle morphology, and product density.
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