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Abstract: Using eggshell powder (EP) to replace partial cement in cement-based materials can abate
pollution caused by eggshell discard and cement production. In this paper, the surface property of
EP and its influence on cement hydration were studied. Quartz powder (QP) and limestone powder
(LP) were used as references. First, the chemical composition of EP was characterized. Then, the
surface charge properties of these materials were analyzed using zeta potential measurement. The
interactions between EP surface and Ca2+ were discussed based on the zeta potential test. Afterward,
a scanning electron microscope (SEM) was applied to observe the morphology of hydrates on the
surfaces of these materials. The results indicated that, although the compositions of EP and LP are
similar, the surface charge properties are significantly different. This is likely due to the existence
of organic matter on the surface of EP and the difference in the atomic structure. As shown from
the zeta potential test, EP exhibits similar interaction with Ca2+ as QP. The interactions between EP
surface and Ca2+ are much weaker than that between LP and Ca2+. These weak interactions lead
to the growth of C–S–H on the surface of EP particles less than that of LP particles. The chemical
reactivity of EP can be improved by using heat treatment, electrical oven, etc. This study will provide
theoretical support for the better use of EP in cement-based materials.

Keywords: eggshell powder; surface chemical properties; zeta potential; hydration; cement paste;
C–S–H

1. Introduction

Cement production is one of the main causes of environmental problems due to the
high consumption of energy and non-renewable mineral resources, and high carbon dioxide
emission [1–8]. In order to promote the sustainable development of the cement industry, effective
measures to reduce the consumption of energy and non-renewable mineral resources have
become an important topic in the field of cement research. Therefore, the feasibility of replacing
part of the cement with various fillers, such as calcium-based stone powder, has been extensively
studied [9–14]. In considering these calcium-based stone powders, eggshell powder (EP) is
often overlooked. Millions of eggshells were discarded every day. Eggshell has been listed
as one of the environmental problems [15–17]. Furthermore, if the waste eggshell is simply
buried in landfills, the corrosion of the film on the eggshell will attract pests and lead to the
spread of disease [18,19]. Nandhini and Karthikeyan [20] state that the disposal of solid waste
is a challenging issue faced by developing countries. For instance, India generates about 3.8
billion kilograms of eggs annually. Moreover, the increase in domestic consumption would
further contribute to larger solid waste generation. Lately, Chen et al. [21] conducted a study to
demonstrate the feasibility of using bio-waste eggshell powder as a filler in cement. Different EP
amounts were tested to investigate its filler effect. The test results found that cement hydration
was visibly increased, which was also supported by the findings from decoupled cumulative
hydration heat curves and the microscopic observations. The sustainable assessment revealed
that a 5-percent EP replacement exhibited the best performance and reduced environmental
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pollution. As pointed out by Yang et al. [22], Eggshell powder has the potential to act as a partial
substitute for cement and fine aggregate. Thus, by using EP, it is expected to produce a more
environmentally friendly construction material. Substituting part of the cement with EP is of
great significance to the energy-saving and emission reduction of the cement industry and the
large-scale resource utilization of eggshells.

Eggshells have such great potential in the application of cement-based materials that
their use has attracted the attention of many researchers [23–29]. Jhatial et al. [30] reported
that the eggshell can be used as auxiliary cementitious material after being ground into
powder. The best cement replacement amount is 10% to achieve the maximum compressive
strength, regardless of the fineness of the eggshell powder. Jaber et al. [31] measured the
water absorption, thermal conductivity, compressive strength and hardness properties
of mortar specimens after curing for 28 d. It was found that adding EP can improve
the physical and mechanical properties of cement mortar. The mortar heated at 750 °C
for 1 h in an electric furnace has better performance. Ofuyatan et al. [32] reported that
partial substitution of cement with EP improves fluidity and workability. In addition,
microstructure analysis showed that partial substitution of cement with EP improves
the interface interaction between different components of concrete. Pliya and Cree [33]
tested the compressive strength and flexural strength of mortar specimens containing
limestone powder and eggshell powder. The results showed that limestone has a better
performance than eggshell powder. When 5 wt.% eggshell powder is added, its strength
is slightly lower than that of limestone and control mortar. Most recently, Yang et al. [22]
discussed the mechanical properties of cementitious materials containing EP by using a
scientometric analysis method, and the effects of EP on the performance of the cementitious
materials were investigated. The results suggested that 25% EP in cementitious materials is
beneficial for material performance. Dewangan et al. [34] proposed a novel approach to
using injectable macroporous apatite bone cement under physiological conditions. Its solid
phase consists of hydroxyapatite and β–tricalcium phosphate (derived from eggshell) and
the liquid phase contains the biopolymeric solution and disodium hydrogen phosphate.
The developed eggshell-derived apatite bone cement could act as a potential material for
repairing bearing defects in orthopedic applications. Amin et al. [35] considered both
sugarcane bagasse ash (SCBA) and nano eggshell powder (NEP) as cementitious materials
and added them to the cement. It was found that the setting time of high-strength concrete
was accelerated by adding NEP while delayed by increasing SCBA. The experimental
results showed that the optimum proportion of the mixture was 5% NEP with 15% SCBA.
Kumar et al. [36] conducted the replacement of cement with fly ash of 20%, while EP from
0 to 15% and properties of the cementitious material were evaluated at the ages of 1, 7
and 28 days. The findings indicated that a cement mixture with 10% eggshell and 20% fly
ash showed better performance. Grzeszczyk et al. [37] performed experimental studies of
adding EP instead of limestone in cement. Different ratios of EP (by weight) were added to
Portland cement (CEM I 42.5 R) and the phase composition of the eggshell was determined
using an XRD technique and IR/Raman spectroscopy. Because of the impact of eggshell
admixtures, the hydration of cement paste was delayed and the strength parameters of
mortar were reduced slightly.

Up to now, much research has been done on the eggshell powder used in cement-
based materials. The eggshell was widely perceived as a kind of limestone filler. It is worth
mentioning that most of the studies are focused on the macroscopic properties of cement-
based materials mixed with eggshell powder. However, the performance improvement of
cement filled with partial eggshell powders is not thoroughly understood and validated from
the micro level of the cement mixture. Thus, the surface property of eggshell and its effect on
cement hydration have rarely been addressed. Therefore, this research will explore the surface
property of the EP and its influence on cement hydration at the micro-nano scale.

In this study, quartz powder and limestone powder were used as reference materials.
First, XRD, TGA and FTIR were used to determine the composition of the eggshell powder.
Then, the zeta potential test was used to study the particle surface properties of the three
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powders. After that, the morphology of hydrates on the surfaces of eggshell powder, quartz
powder and limestone powder was observed with a scanning electron microscope. The
chemical properties of hydration products were studied. Finally, the mechanism of the
effect of surface characteristics of EP on cement hydration was investigated.

2. Materials and Methods
2.1. Materials

The cement used in this experiment is Portland cement type I (PC). Eggshell powder
(EP) is obtained by removing the eggshell membrane from the collected eggshell, then
drying it at a temperature of 45 ◦C in an oven for about 2 h and grinding it into powder, as
shown in Figure 1.
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Figure 1. Raw eggshells and eggshell powder.

Quartz powder (QP) was purchased from Heyuan Zhaochuan Quartz Calcium In-
dustry Co., Ltd., China. Limestone powder (LP) was purchased from Jingmen Shunzhan
Calcium Industry Co., Ltd., Jingmen, China. The particle sizes of PC, EP, QP and LP
powders were measured by a laser diffraction particle size analyzer (Malvern, Mastersizer
2000, Malvern, UK), as given in Figure 2. It can be seen that PC, QP and LP have similar
particle size while EP is slightly larger.
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The chemical compositions of EP, QP and LP are listed in Table 1. Note that the main
composition of QP is SiO2 while the chemical compositions of EP and LP are not; both EP
and LP contained more than 96% CaCO3.
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Table 1. Chemical composition of EP, QP and LP (% by mass).

Type CaCO3 SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O

EP 97.37 0.37 0.06 0.41 - 0.85 0.10 0.27

QP - 98.50 0.89 0.15 - - 0.45 -
LP 96.09 0.15 - 0.15 - - 0.01 0.02

Although the main compositions of EP and LP are similar, many studies have shown
that the organic matrix content of eggshells is about 2–3% [38–42]. As shown in Table 2,
the organic element content of EP was measured with an organic element analyzer (Vario
MACRO cube). It indicates that EP contains organic matter.

Table 2. Organic element composition of EP (%).

Type N C H S O

EP 0.1 12.31 2.52 0 -

Figure 3 gives the original morphology of EP, QP and LP particles. It can be seen that
there is no obvious difference in the original shape of the three kinds of particles. All three
are irregular polyhedrons. It is noteworthy that the difference between EP particles and QP
and LP particles is that the EP particles have many small holes at their surface.
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The typical production process of cement paste with various powders in the laboratory
is shown in Figure 4. Correspondingly, the mix proportion of cement pastes are listed in
Table 3. These samples were prepared in a Hobart mixer following the standard procedures
described in ASTM C305 [43]. The composite cementitious materials mixed with EP, QP
and LP are named EP40, QP40 and LP40, respectively.

2.2. X-ray Diffraction Analysis (XRD)

With the aim of studying the phase composition of EP, EP40, QP40 and LP40, XRD
analysis was applied with an X-ray powder diffractometer (PANalytical, PW3040/60,
Malvern, UK). About 5 g powder was taken to make a sample and then measured by CuKα

radiation (λ = 1.5418 Å). The scanning angle of the sample ranges from 2θ = 5◦ to 2θ = 80◦

and the step size is 0.02◦.

2.3. Thermogravimetric Analysis (TGA)

The TGA data of EP, EP40, QP40 and LP40 were measured from 50 ◦C to 800 ◦C using
a thermogravimetric analyzer (PerkinElmer, TGA4000, Waltham, MA, USA). The heating
rate is 10 ◦C/min, and the protective gas used in the test is N2.
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Table 3. Mix proportion of cement pastes.

Mixture Cement (%) EP (%) QP (%) LP(%) w/b

EP40 60 40 - - 0.4
QP40 60 - 40 - 0.4
LP40 60 - - 40 0.4

2.4. Fourier-Transform Infrared (FTIR) Spectroscopy Analysis

A FTIR spectrometer (Bruker, TENSOR II+ Hyperion2000, Billerica, MA, USA) was
used to measure the infrared spectrum data of EP, EP40, QP40 and LP40. The spectral
range is 450–4000 cm−1. The spectral resolution is 0.4 cm−1; the wavenumber accuracy is
0.01 cm−1; and the signal-to-noise ratio is 45,000:1.

2.5. Zeta Potential Test

The surface charge of particles in solution is affected by the number of ions adsorbed
on the surface of particles. Zeta potential can be used to measure the surface charge of
particles suspended in solution. Once contacted with water, the cement particles will
dissolve and release various ions. Particles in the solution adsorb the ions and the particle
surface presents a positive or negative charge. The surface chemical properties of EP, QP
and LP can be characterized with zeta potential measurement using a Zetasizer Nano
ZS (Malvern Instruments Ltd., Malvern, UK). To do the test, five sets of simulated solu-
tions are configured. The first group is a Ca(OH)2 solution with a concentration ranging
from 0.2 mmol/L to 20 mmol/L. The second and third groups are solutions composed of
Ca(OH)2 and NaOH or KOH. The concentration of Ca(OH)2 is 0.1–8 mmol/L, while that
of NaOH and KOH are 50 mmol/L, respectively. The fourth group is a mixed solution
of Ca(OH)2 and K2SO4. The concentration of Ca(OH)2 is 0.1–19.6 mmol/L, and K2SO4 is
classified into two concentrations: 10 and 50 mmol/L, respectively.

2.6. SEM Analysis

The morphology of hydrates on the particle surface was observed with a Phenom–
ProX electron microscope (FEI, Hillsboro, OR, USA). The mixtures of the sample are shown



Materials 2022, 15, 7633 6 of 16

in Table 3. The sample preparation process of the hydrated product morphology is as
follows: In the hydration time (15 min, 4 h, 7 h), a certain amount of cement paste (1 g)
was taken and put into absolute ethanol to stop the hydration. After the termination of
hydration, the sample was filtered and dried in a vacuum drying oven. Then, the samples
were stored in a vacuum box until used. SEM observation was performed on the samples
coated with gold. The acceleration voltage was 15 kV, and the SED model was used.

3. Results and Discussion
3.1. Chemical Compositions of EP
3.1.1. XRD Analysis

Figure 5 shows the XRD pattern of EP. It can be seen that the phases correspond-
ing to the diffraction peaks of EP are all CaCO3, which is similar to the XRD pattern of
limestone [44,45]. This indicates that the main component of EP is the same as that of LP.
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3.1.2. TGA Analysis

As shown in Figure 6, the thermal decomposition diagram of EP was obtained by
TGA–DTG analysis. It can be seen that a slight weight loss exists between 250 ◦C and
400 ◦C, corresponding to the decomposition of organic matter in EP. Calculated from the
TGA–DTG results, the organic content in EP is about 3%. The continuous severe weight
loss after 600 ◦C is the weight loss caused by the decomposition of a large amount of CaCO3
contained in EP.
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3.1.3. FTIR Analysis

Figure 7 gives the FTIR spectrum of EP. The three bands of carbonate-based asym-
metric stretching (ν3), out-of-plane bending (ν2) and in-plane bending (ν4) correspond to
1397 cm−1, 873 cm−1 and 713 cm−1, respectively. The two low-intensity bands are at 2508
and 1797 cm−1 [46]. The wide band at 1644 cm−1 refers to the amide-related carbonyl group
(-C=O stretching), and the band at 1085 cm−1 corresponds to the asymmetric stretching
of the phosphate group [47]. This is similar to the results obtained by XRD and TGA. The
results of XRD, TGA and FTIR show that the main component of EP is CaCO3 and contains
a small amount of organic matter.

Materials 2022, 15, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 6. Thermal decomposition of EP by TGA–DTG analyses. 

3.1.3. FTIR Analysis 
Figure 7 gives the FTIR spectrum of EP. The three bands of carbonate-based asym-

metric stretching (ν3), out-of-plane bending (ν2) and in-plane bending (ν4) correspond to 
1397 cm−1, 873 cm−1 and 713 cm−1, respectively. The two low-intensity bands are at 2508 
and 1797 cm−1 [46]. The wide band at 1644 cm−1 refers to the amide-related carbonyl group 
(-C=O stretching), and the band at 1085 cm−1 corresponds to the asymmetric stretching of 
the phosphate group [47]. This is similar to the results obtained by XRD and TGA. The 
results of XRD, TGA and FTIR show that the main component of EP is CaCO3 and contains 
a small amount of organic matter. 

 
Figure 7. FTIR spectroscopy analysis of EP. 

3.2. Zeta Potential Test 
3.2.1. Effect of Ca2+ Concentration 

The zeta potential of EP, QP and LP particles in Ca(OH)2 solution with concentrations 
from 0.2 to 20 mmol/L is shown in Figure 8. It is noted that the initial potential of LP is 
positive. With the increase of Ca(OH)2 concentration, the potential value increases gradu-
ally. Compared with LP, QP has a lower potential under the same concentration of 
Ca(OH)2 solution. The silanol group in QP powder began to dissolve after contacting with 
the solution [48,49]: 

Figure 7. FTIR spectroscopy analysis of EP.

3.2. Zeta Potential Test

3.2.1. Effect of Ca2+ Concentration

The zeta potential of EP, QP and LP particles in Ca(OH)2 solution with concentrations
from 0.2 to 20 mmol/L is shown in Figure 8. It is noted that the initial potential of LP
is positive. With the increase of Ca(OH)2 concentration, the potential value increases
gradually. Compared with LP, QP has a lower potential under the same concentration of
Ca(OH)2 solution. The silanol group in QP powder began to dissolve after contacting with
the solution [48,49]:

≡SiOH + H+ 
 ≡SiOH2
+ (1)

≡SiOH + OH− 
 ≡SiO− + H2O (2)

The initial potential of QP particles is negative due to the formation of SiO− ions in
the solution. With the increase of Ca2+ concentration in solution, more Ca2+ is adsorbed on
the surface of QP particles, which could compensate for the negative potential produced by
ionization. When Ca2+ concentration reached about 2 mmol/L, the QP reached the zero
potential point.

According to Table 1, EP and LP have similar chemical compositions. However, EP
exhibits a potential change characteristic similar to QP. The initial potential is negative and
reaches the zero potential point when the Ca2+ concentration is approximately 2 mmol/L.
This may be attributed to the organic matter on the EP particle surfaces, which is adverse
to the adsorption Ca2+.
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3.2.2. Effect of Na+ and K+ Concentration

The zeta potential evolution of EP, QP and LP in NaOH and KOH solutions with the
change of Ca2+ concentration is shown in Figure 9. As can be observed, with the same
concentration of Ca2+, the potential value of LP is higher than that of EP. The zero potential
point of EP reached a 4 mmol/L (Ca2+ concentration), which is larger than the zero potential
point in a Ca(OH)2 solution. Additionally, the zero potential of QP particles is also higher
than 2 mmol/L. This is because in a higher alkaline solution, the more SiO− is generated,
the more Ca2+ is needed to compensate for the negative potential. EP shows a potential
change trend similar to QP in NaOH and KOH solutions.
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3.2.3. Effect of SO4
2− Concentration

Figure 10 shows the zeta potential changes of EP, QP and LP in the mixed solution.
In 10 mmol/L K2SO4 solution, the zero potential point of QP is that the concentration of
Ca2+ reaches 10 mmol/L. However, EP has not reached the zero potential point in solution.
This indicates that the adsorption of EP to SO4

2− is slightly stronger than that of QP at
high Ca2+ concentration. In 50 mmol/L K2SO4 solution, the zeta potentials of EP and QP
are always negative, which is due to the higher concentration of SO4

2- in the solution than
that of Ca2+. As mentioned above, due to the strong adsorption capacity of LP for Ca2+,
in 10 mmol/L K2SO4 solution, the zero potential point of LP is about 1 mmol/L of Ca2+.
While in the case of concentration of K2SO4 up to 50 mmol/L, the LP needs 15 mmol/L
Ca2+ to reach the zero potential point.
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3.3. Morphology of Hydration Products on the Surface of EP, QP and LP

The appearance of surface hydration products of EP, QP and LP particles correspond-
ing to various hydration times (15 min, 4 h, 7 h) is shown in Figure 11. Figure 11a–c
respectively show the surface of EP, QP and LP particles after hydration for 15 min. Note
that there is no hydration product on the surfaces of EP and QP particles. However, a
small amount of needles like C–S–H grew on the surface of LP particles. Figure 11d–f
respectively give the surface morphology of EP, QP and LP particles after 4 h hydration.
The C–S–H on the EP and QP particle surfaces grew into needle shape gradually. The
hydration products on the surface of LP particles have grown into a layer covering the
surface of particles after 7 h of hydration, as shown in Figure 11g–i. The needle-shaped
C–S–H on the surface of EP and QP particles continues to grow. It is worth noting that
C–S–H on the EP and QP particle surfaces is disordered and not dense. The surface of LP
particles formed an orderly dense C–S–H layer after 7 h hydration. Moreover, the C–S–H
on the surface of LP particles is perpendicular to the particle surfaces. From the results of
the morphological characteristics of the surface hydration products on these three kinds
of particles at different hydration times, EP and QP showed similar hydration product
formation. Under the same hydration time, the distribution of hydration products on the
surface of LP particles is more orderly and denser than that of EP and QP particles. This
further shows that although the composition of EP is similar to that of LP, it shows similar
characteristics to QP.
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3.4. Chemical Properties of Hydration Products
3.4.1. XRD Analysis

Figures 12 and 13 give the XRD patterns of EP40, QP40 and LP40 after hydration for
7 and 28 d, respectively. Note that the main components of EP40 and LP40 are Ca(OH)2,
CaCO3 and C–S–H after 7 d of hydration. The main components of QP40 are SiO2, Ca
(OH)2, CaCO3 and C–S–H. With the hydration time up to 28 d, the composition of cement
paste remains unchanged, and the diffraction peak intensity of each substance does not
change significantly. The main components of QP40 are similar.

3.4.2. TGA Analysis

Figures 14 and 15 show the TGA–DTG analysis results of EP40, QP40 and LP40 after 7
and 28 d of hydration. The first weight loss was recorded at 50 ◦C to 150 ◦C, which was
attributed to the dehydration and evaporation of water in C–S–H. The second obvious
weight loss occurred between 410 ◦C and 490 ◦C due to the decomposition of Ca(OH)2. In
the range of 650–800 ◦C, the weight loss of EP40 and LP40 is obvious, which is caused by
the CaCO3 contained in EP and LP.
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4. Discussion

To characterize the chemical composition of EP, XRD, TGA and FTIR were used. Through
XRD analysis, it can be known that the main component of EP is CaCO3, which is the same as
LP. Furthermore, the results of TGA and FTIR showed that EP contained a small amount of
organic matter. The surface chemical properties of particles are closely related to the interaction
between particles and ions, which has an important influence on the formation of hydration
products on the particle surface [52–55]. The powder particles adsorb various free ions in the
cement pore solution, which makes the particle surface present positive and negative charges.
The surface chemical properties of the particles were examined by the zeta potential test. The
results of zeta potential show that in the four simulated solutions configured, the potentials of
EP and LP are very different, while EP and QP show similar potential results. This shows that
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even though EP and LP have similar chemical compositions, EP particles have similar surface
charge properties as QP particles.

As illustrated in Figure 7, the zeta potential of EP is lower than that of LP and is
similar to QP. The zero potential point of EP in Ca(OH)2 solution is about 2 mmol/L Ca2+,
which infers that the adsorption capacity of EP particles for Ca2+ is weaker than that of LP
particles. Studies [56] have shown that Ca2+ is closely related to the nucleation and growth
of C–S–H. Since the zeta potential results show that EP has a weaker Ca2+ adsorption
capacity than LP, the nucleation of C–S–H at the surface of EP particles is less than that
at the surface of LP particles, as indicated in Figure 11. The growth of C–S–H on the EP
particle surfaces is less than that of LP during all hydration times (15 min, 4 h, 7 h). After
7 h of hydration, the C–S–H on the surface of EP particles did not form the same dense
structure as the surface of LP particles. This may be due to the organic matter on the EP
particle surfaces and the difference in the atomic structure, which is unfavorable for Ca2+

absorption and thus the nucleation and growth of C–S–H.
It was reported that the addition of eggshell powder to Portland cement paste ac-

celerates hydration due to its chemical reaction and nucleation sites [18]. In our study, it
can be observed that the surface of EP can serve as the nucleation site, promoting cement
hydration, but with less effectiveness than LP. The results of XRD and TGA of the cement
paste incorporating fillers (i.e., EP, QP and LP) showed that the main hydration products of
EP40, QP40 and LP40 are similar and the amount of the hydrates are not obviously different.
It was suggested that the chemical reactions of EP in cement paste are not significant. It is
possible due to the different treatments for EP production. In our study, EP was obtained
by removing the eggshell membrane from the collected eggshell, then drying it at a tem-
perature of 45 ◦C in an oven for about 2 h and grinding it into powder. In some reported
studies [18,57,58], the eggshell was dried at a temperature of 120 ◦C, or higher temperature,
or using an electrical oven. These treatments would affect the chemical activity and the
surface properties of EP, thus its performance in cement hydration.

5. Conclusions

The chemical composition of EP was first analyzed in this study. Then, the surface
charge properties of EP particles were investigated through comparing with QP and LP. The
morphology of hydration products on the EP particle surfaces and the chemical composition
of long-term hydration products were studied. Through the analysis of the experimental
results, the main findings and conclusions can be summarized:

(1) The main components of EP and LP are more than 96% CaCO3. Although the
compositions of EP and LP are similar, the surface charge properties are significantly
different. This is likely due to the existence of organic matter on the surface of EP and the
difference in the atomic structure. The adsorption capacity of EP for Ca2+ is similar to that
of QP but weaker than that of LP.

(2) In different hydration times (15 min, 4 h, 7 h), the nucleation and growth of C–S–H
on the EP particle surfaces are less than that of LP. The formation of hydration products on
the surface of EP particles is similar to that of QP particles, which is in agreement with the
adsorption capacity for Ca2+.

(3) The main hydration products of EP40, QP40 and LP40 are similar and the amount
of the main hydrates are not obviously different. This indicates that the chemical reactions
of EP in cement paste are not significant.

(4) This study was performed using an EP with low chemical activity. The eggshell
treated with high temperature would affect the chemical activity and the surface properties
of EP, thus its performance in cement hydration. This needs to be addressed in future study.
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