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Abstract: The passivation engineering of the hole transport layer in perovskite solar cells (PSCs) has
significantly decreased carrier accumulation and open circuit voltage (Voc) loss, as well as energy
band mismatching, thus achieving the goal of high-power conversion efficiency. However, most
devices incorporating organic/inorganic buffer layers suffer from poor stability and low efficiency. In
this article, we have proposed an inorganic buffer layer of Cu2O, which has achieved high efficiency
on lower work function metals and various frequently used hole transport layers (HTLs). Once the
Cu2O buffer layer was applied to modify the Cu/PTAA interface, the device exhibited a high Voc of
1.20 V, a high FF of 75.92%, and an enhanced PCE of 22.49% versus a Voc of 1.12 V, FF of 69.16%, and
PCE of 18.99% from the (PTAA/Cu) n-i-p structure. Our simulation showed that the application of
a Cu2O buffer layer improved the interfacial contact and energy alignment, promoting the carrier
transportation and reducing the charge accumulation. Furthermore, we optimized the combinations
of the thicknesses of the Cu2O, the absorber layer, and PTAA to obtain the best performance for
Cu-based perovskite solar cells. Eventually, we explored the effect of the defect density between
the HTL/absorber interface and the absorber/ETL interface on the device and recommended the
appropriate reference defect density for experimental research. This work provides guidance for
improving the experimental efficiency and reducing the cost of perovskite solar cells.

Keywords: perovskite solar cells; Cu2O; energy level alignment; carrier accumulation; SCAPS-1D

1. Introduction

Organic-inorganic perovskite solar cells (PSCs) have exhibited an exciting tendency,
with high performance from 3.8% to nearly 26.0% in power conversion efficiency (PCE) [1],
motivating great research interest in the field of photovoltaics. Although PSCs can achieve
higher energy conversion efficiency, there is a long way to go regarding its theoretical
limitation of PCE. One apparent reason is the charge accumulation between the metal elec-
trode and functional layers. With the charge accumulated at the interface, the energy level
mismatch and potential barrier effect were enhanced because of the reversed electric-field
attached by the charge accumulation. Therefore, optimizing interfacial contact and improv-
ing interfacial energy level alignment is an important way to reduce charge accumulation
and promote hole extraction, which has drawn the attention of the scientific community
regarding PSCs.

The performance of an optoelectronic device critically depends on the transport ability
of carriers between interfaces inside of PSCs. Charge accumulation or recombination would
occur if the charge carriers encounter a higher barrier or a high interface-state density [2]. To
address this problem, buffer layers have frequently been used to enhance carrier injection,
decrease trap-states, and decrease contact resistance in various solar cells [2]. Specifically,
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the buffer layer between the hole transport layer (HTL) and the anode has a main function
of blocking the migration of electrons towards the metal electrode, reducing interfacial
recombination, and promoting hole transportation [3]. Several attempts have been made to
modify the HTL/electrode in PSCs using organic interlayers to improve the interface and
interlayer properties to overcome the interface loss. For instance, Arora et al. concluded
that the instability of PSCs mainly originates from the CuSCN/Au interface contact and is
not related to the degradation of the CuSCN/perovskite interface, so they introduced a
thin conductive rGO (reduced graphene oxide) modified layer between CuSCN and Au to
effectively alleviate the problem of interface degradation [4]. Zhou et al. introduced a poly-
TPD ultra-thin layer to modify the HTL/Ag interface, thereby improving the efficiency
of the solar cell (from 5.95% to 10.36%) because it can smooth the barrier between the
HTL and electrode to promote the transmission of holes and passivate the surface defects
to improve the interface contact [5]. However, for organic materials, the stability is a
deadly point when they are employed in a complex environment. Therefore, researchers
are exploiting transition metal oxides (TMOs) as interfacial buffer layers for extracting
photogenerated holes; the metal oxides were demonstrated to exhibit good processability,
transparency, and charge transport properties, as well as excellent stability [6]. Cai et al.
found that the addition of NiO nanoparticles (as both the HTL and buffer layer) between
the perovskite film and the carbon electrode can effectively promote the separation and
extraction of photogenerated carriers and inhibit the charge recombination at the perovskite
layer/carbon electrode interface, and they achieved the highest efficiency of 13.6% [7].
Zhao et al. demonstrated that the efficiency (11.4%) of a perovskite solar cell obtained by
adding MoOx between the HTL and Al electrode is comparable to that of a cell using a
standard Ag top electrode, which is due to the effectiveness of the hole extraction using
MoOx [8]. On the downside, NiOx is often grown by sputtering, which may destroy the
organic charge transport and perovskite layer [9]. MoOx reacts strongly with the lead
halide perovskite, hampering its long-term stability [10,11]. Nevertheless, NiO and MoOx
both show obvious disadvantages that limit the improvement of their efficiency because
of their lower hole mobility of about 1.6 × 10−4–1.6 × 10−3 cm2/(V·s) and 7.8 cm2/(V·s),
respectively [3]; thus, there is still significant room for exploration concerning HTL/electrode
interface optimization. Overall, these issues continue to motivate further research to explore
efficient buffer layers with relative stability and good interfacial contact. A recent theoretical
study proposed that Cu2O might outperform other TMOs [12]. Moreover, Cu2O has been
studied for decades as a typical p-type semiconductor due to its unique physical properties
and applications in areas ranging from photo electrochemistry to magneto electrics and
superconductors [13]. Apart from its natural p-type conductivity, Cu2O also possesses a
high carrier mobility of over 100 cm2/(V·s) and a long carrier diffusion length ranging
up to several micrometers [14]. Moreover, Cu2O can be grown at temperatures below
200 ◦C through soft growth methods using chemical vapor deposition (CVD) or atomic
layer deposition (ALD) [15]. The unique characteristics of Cu2O make it a promising
candidate for solar cell applications, and rare investigations have been carried out using
Cu2O as a buffer layer to modify the HTL/electrode interface.

Thus, in this paper, we reported Cu2O as buffer between metal electrode/hole trans-
port materials (HTMs) based on using a solar cell capacitance simulator (SCAPS-1D) to help
understand the beneficial effect of Cu2O on device performance. The basic model structure
of PSC we built is: metal electrode/Cu2O (with/without buffer layer)/HTL (multiple hole
transport materials in model)/MAPbI3(perovskite absorber layer)/SnO2 (electron transport
layer)/FTO (transparent conductive oxide). Initially, we employed Spiro-OMeTAD as the
HTM and investigated the effect of Cu2O on different metal electrodes and found that
Cu2O can effectively improve the performance of Cu-based devices. Then we compared the
performance of the device, with and without a Cu2O buffer layer, based on a Cu electrode
to vary different HTM, and the results showed that the device with PTAA-HTL showed
the most enhanced performance (without Cu2O—PCE:18.99%, with Cu2O—PCE: 22.49%).
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Finally, we explained the optimization of the thickness combinations of the buffer layer for
achieving the highest PCE.

2. Device Structure and Simulation Parameters

In this work, we use the key platform SCAPS-1D to simulate the MAPbI3-based
heterojunction perovskite solar cells. The software SCAPS (version 3.3.10) is a superb and
powerful tool for helping us to clearly understand the physical behavior of the different
optoelectronic properties of any solar cell [16]. The principle of SCAPS software is based
mainly on two basic equations: the Poisson equation and the continuity equation of
electrons and holes under a steady-state condition.

The Poisson equation can be given by:

d2

dx2 ψ(x) =
e

ε0εr
(p(x)− n(x) + ND − NA + ρP − ρN) (1)

where ψ is electrostatic potential, ε0 and εr are relative and the vacuum permittivity, e is elec-
trical charge, p and n are hole and electron concentrations, ND and NA are charged impuri-
ties of the donor and acceptor type, and ρP and ρN are hole and electron
distribution, respectively.

The continuity equations of electrons and holes can be described by:

dJn

dx
= G − R (2)

dJp

dx
= G − R (3)

where Jn and Jp are electron and hole current densities, G is the generation rate, and R is the
recombination rate.

In this simulation work, the structure of the solar cell model is: metal electrode/Cu2O
(with/without buffer layer)/Spiro-OMeTAD (HTL)/MAPbI3 (perovskite absorber layer)/SnO2
(ETL)/FTO (transparent conductive oxide), as shown in Figure 1. The parameters (thickness,
band gap, dielectric permittivity, electron affinity, electron/hole mobility, electron/hole
thermal velocity, defect density, etc.) used for the solar cell structure in this simulation are
shown in Table 1. Values of the input parameters are taken from the references given in the
tables. The parameters of the interface defect layers are given in Table S1. The parameters
of the back and front electrodes are given in Table S2 (the work function of FTO set to
4.4 eV). The list of work functions of the back metal electrodes used are given in Table S3.
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Table 1. Primary input parameters used for the simulation of perovskite solar cells.

Parameters FTO ETL(SnO2) MAPbI3
HTL

(Spiro-OMeTAD)
Buffer Layer

(Cu2O)

Thickness (µm) 0.5 0.07 0.5 0.15 0.03
Band gap (eV) 3.5 3.5 1.55 2.9 2.17

E Affinity 4 4 3.9 2.2 3.2
Permittivity 9 9 30 3 7.1

Effective density of states at CB 2.2 × 1018 2.2 × 1018 2.2 × 1018 2.2 × 1019 2.5 × 1020

Effective density of states at VB 1.8 × 1019 1.8 × 1019 1.8 × 1019 2.2 × 1019 2.5 × 1020

Mobility of e− 20 20 2 1 × 10−4 200
Mobility of h+ 10 10 2 1 × 10−4 8600

Density of n-type doping 2 × 1019 1 × 1017 0 0 0
Density of p-type doping 0 0 1 × 1013 1 × 1018 1 × 1018

Thermal velocity of e− 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107

Thermal velocity of h+ 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107

Density of defects Donor-1 × 1015 Donor-1 × 1015 Neutral-2.5 × 1013 Acceptor-1 × 1015 Acceptor-1 × 1015

References [17] [18,19] [20] [21] [19,22]

In SCAPS, the data for the absorption coefficient (α) versus the wavelength (λ) can be
imported from an external source; the absorption data used in this paper are taken from
the literature, as shown in the Supplementary Information (see Figure S1). The simulation
is carried out under the AM 1.5G solar spectrum, with an incident power density of
1000 W/m2 at room temperature (300 K).

3. Result and Discussion
3.1. Reference Device Performance

Solar cell harvest photons and then convert energy to electric energy for output.
Generally, the complex energy conversion process can be approximately summarized into
three steps: (1) the photon absorption and electron excitation [23], in which the perovskite
material absorbs the incident photons with energy greater than its band gap, and is excited
to generate excitons; (2) the charge transportation [24], in which the excitons separate and
transfer to the hole transport layer and the electron transport layer, respectively; (3) the
charge extraction [25], in which the carriers drift to the electrodes and eventually form
a current through the external circuit. Note that the recombination process is also an
important step not mentioned here. Then, based on the above-mentioned conversion
process, the selections of an absorber, transportation material, and electrodes, as well as the
structural design, are crucial to PSCs. Methyl lead triiodide (MAPbI3) was applied in the
model as the absorber layer because of its high absorption coefficient in the visible range,
leading to excellent photoelectronic properties [26]. According to previous research [27],
the thickness design was set in the 0.5 to 0.6 µm range for balancing the light absorption
and charge extraction. Meanwhile, to simplify the model, we have chosen the most-used
SnO2 as the ETL in this article because of its unique advantage in high electron extraction
capability compared to other ETLs [28]. After referring to other works relating to SnO2
ETL, we determined that the device shows better performance when the SnO2 thickness
is 0.07 µm, which inspired our model [20,29]. Simultaneously, the application of HTL is
equally important to the device performance; the selection and the thickness optimization
of the HTL are also hot research topics in the scientific community [30,31]. Particularly
when using SnO2 as the ETL, most articles have found that the best thickness of the HTLs
was around 0.15 µm. Finally, the metal electrode used to extract the charge also has a great
influence on the solar performance. Based on the short summary above, MAPI3 perovskite
devices based on SnO2 (ETL), Spiro-OMeTAD (HTL), and Ag (electrode) were initially
applied in our model to check the simulation accuracy. The PCE of the simulated model
was 20.13%, which is in accordance with Zhao’s report [32].
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3.2. Effect of Cu2O Buffer Layer on Various Metal Electrodes

It was found that in HTL-free perovskite solar cells, iodide ions and methylamine ions
at the grain boundaries easily diffuse and react with the Ag electrode surface, which will
degrade the performance of the device [33]. Thus, to improve device stability, there is an
urgent need to find materials that can replace Ag electrodes. With the proposed model, we
can explore the effect of Cu2O on different metal electrodes by comparing the two cases,
with or without the Cu2O buffer layer, to find the metal electrode that best matches Cu2O.
Generally, Cr (4.5 eV), Cu (4.65 eV), Ag (4.7 eV), Au (5.1 eV), Ni (5.15 eV), and Pt (5.65 eV)
(Table S3) are the most frequently used electrode materials.

First, we clearly observed changes in the Jsc, Voc, FF, and PCE values by changing the
work function of the back electrode without adding a Cu2O buffer layer. Jsc was almost
unchanged, and Voc showed a brief promotion with a decreasing work function, then
remained almost the same for a work function greater than 4.65 eV (work function of Au
electrode) (Figure 2a,b). However, for both FF and PCE, the work function increased signifi-
cantly and then reached a maximum at 5.1 eV (work function of Au electrode) (Figure 2c,d).
These conditions are caused by the Schottky barrier between the HTL/electrode, which
is inversely proportional to the back electrode work function, and the high energy barrier
hinders the carrier transportation. For p-type semiconductors, a good ohmic contact is
easily formed with a high metal work function [34]. Therefore, under the typical n-i-p
structure, to obtain sufficient photovoltaic performance, it is required to select an expensive
metal (such as Au), with a work function higher than 5.1 eV, for the back electrode, which
is not conducive to the industrialization of perovskites.
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Figure 2. (a–d) The photovoltaic parameters (Jsc, Voc, FF, PCE) for the reference n-i-p devices with
Spiro-OMeTAD-HTL and different electrodes.

After inserting the Cu2O buffer layer between the HTL/electrode, most of the parame-
ters showed an increasing trend at the beginning, maintaining stability after 5.1 eV, and
the change of Jsc is only slight (Figure 3). However, by comparing the FF, PCE before and
after inserting the Cu2O (Figure 3c,d, it can be clearly seen that the Cu2O buffer layer can
effectively improve the FF of Cu electrode devices (from 66.07% to 77.03%), thus improving
its PCE (from 18.92% to 21.46%), even for other devices with lower work function electrodes
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(Cr, Ag), the buffer layer can also have a similar effect. The Schottky barrier will form
between the HTL and the low work function metal electrode, and the Schottky contact may
lead to the decrease in Voc of the device [35]; this is the reason why the Cu electrode device
is not efficient when the Cu2O buffer layer is not added. In similar research, Lin et al. added
a CuOx interlayer between the carrier transport layer and Ag or Al and found that the CuOx
film, which mainly consists of Cu2O, can effectively reduce the barrier height between this
interface, transforming the Schottky contact into an excellent ohmic contact [36]. Moreover,
Table 2 shows a photovoltaic parameters table showing different HTL devices, with and
without a Cu2O buffer layer, using an Au electrode, and our simulated device results are
compared with recently published reports. We can see that for these HTMs with wide
bandgap (Table 2), the addition of a Cu2O buffer layer did not change the photovoltaic
parameters (Jsc, Voc, FF, PCE) while using an Au electrode device. For the remaining
HTMs with a narrow bandgap, the addition of Cu2O only marginally improved the device
performance. The few slightly increased PCEs may be attributed to the high hole mobility
and wide band gap of Cu2O. Thus, we speculated that the addition of Cu2O can effectively
reduce the Schottky barrier between the HTL and Cu, as well as the low work function of
the metal, and facilitate hole transportation from the HTL to the electrode. However, for
metals such as Au, in which the energy barrier between the high work function electrode
is already small, the role of Cu2O in reducing the energy barrier appears to be minimal.
Furthermore, according to previous research, the introduction of a trace amount of AgI at
the HTL/Ag interface can effectively increase the work function of Ag, which eliminates the
downward band bending between the HTL and the Ag electrode [37]. From another point
of view, inserting a Cu2O buffer layer between HTL/Cu may increase the work function of
the Cu electrode in a disguised form. Nevertheless, for an Au electrode, if the Cu2O also
increases its work function, the performance of the device will not increase because all PV
parameters have approached the maximum saturation value at 5.1 eV.
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Table 2. Photovoltaic parameters obtained using different HTMs by using an Au electrode (with and
without Cu2O).

HTL Cu2O Buffer
Layer

Jsc
(mA/cm2)

Voc
(V)

FF
(%)

PCE
(%)

CuI

without 23.56 1.25 81.63 24.10
with 23.56 1.25 81.63 24.10
[38] 33.88 1.13 51.78 19.63
[39] 21.89 1.27 83.12 23.14

CuSCN

without 23.63 1.25 81.73 24.23
with 23.63 1.25 81.73 24.23
[19] 25.62 1.19 87.81 26.74
[38] 33.58 0.86 73.21 21.04

CuSbSe2
without 23.48 0.74 79.97 13.97

with 23.72 0.76 78.66 14.16

Spiro-OMeTAD

without 23.55 1.25 81.32 23.99
with 23.55 1.25 81.32 23.99
[19] 25.59 1.13 81.54 23.55
[40] 21.74 1.15 80.90 20.23

PTAA
without 24.67 1.26 80.61 25.10

with 24.67 1.26 80.61 25.10
[41] 41.03 0.78 74.14 23.58

PEDOT: PSS

without 26.29 0.94 83.84 20.80
with 29.42 0.96 82.91 23.45
[38] 28.66 1.06 62.21 18.85
[39] 21.89 1.27 71.43 19.88

P3HT

without 23.92 1.07 81.50 20.92
with 26.76 1.08 74.69 21.49
[19] 25.56 0.97 86.52 21.52
[39] 21.89 1.27 74.05 20.61

Therefore, inserting a Cu2O buffer between the HTL/electrode interface is an excellent
strategy to improve solar cell performance with a Cu electrode. At the same time, J Huang
et al. found that Cu metal was stable compared to other metals when MAPbI3 is used as
the absorber layer [42]. As a low-cost and stable electrode, the application of Cu is an idea
candidate for simulation, as well as further industrialization. In the following section, we
will demonstrate the superiority of the Cu2O buffer layer over different HTLs.

3.3. The Effect of a Cu2O Buffer Layer with HTLs

To enhance the performance of perovskite solar cells, the HTL has a crucial impact
on the device PCE by transporting holes and suppressing recombination after exciton
dissociation [43]. The existing commercial hole transport material Spiro-OMeTAD exhibits
disadvantages such as long synthesis cycle, complicated processing, high cost, and low
stability, and the photoelectric conversion efficiency (PCE) of PSCs with Spiro-OMeTAD
basically reaches the upper limit of 24.8% [44]. Therefore, finding low-cost and stable HTMs
is urgently needed to realize the large-scale practical applications of PSCs.

Next, different HTMs (CuI, CuSCN, CuSbSe2, Spiro-OMeTAD, PTAA, PEDOT: PSS,
P3HT) were used to optimize the simulation and guide the experimental research. The input
parameters of the mentioned HTLs are listed in Table 3. The obtained J–V characteristic
curves (with and without Cu2O) for all mentioned HTL devices are presented in Figures 4
and S2. The photovoltaic parameters obtained using different HTL-based devices are shown
in Table 4. We found that for most HTLs we used, the J–V curve of the reference device
exhibited an S-shape around the Voc site, resulting in low FF. Meanwhile, once the Cu2O
buffer layer was inserted, the S-shape J–V curve was rapidly shifted. The modification of
the S-shape was mainly caused by the energy alignment of Cu2O. The pure contact between
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HTL and Cu generates a stronger Schottky barrier, leading to a poor charge transportation.
The Schottky barrier accelerated the charge accumulation, and the rest of the trapped
carriers formed a reversed electric field against the built-in electric field; then the S-shaped
J–V curve was formed due to the poor charge transportation [45]. Hence, the introduction
of an additional buffer layer was essential to promote energy level alignment between the
perovskite/HTL and HTL/Cu interfaces [46]. To further correct the mismatching, Cu2O is
an idea candidate, as it exhibits a higher band gap to match between the HTL/Cu.

Table 3. Input parameters for the several different HTMs.

Parameters CuI CuSCN CuSbSe2 PTAA PEDOT: PSS P3HT

Thickness (µm) 0.15 0.15 0.15 0.15 0.15 0.15
Band gap (eV) 2.98 3.2 1.08 2.95 1.5 1.7

E Affinity 2.1 1.9 4.11 2.3 3.6 3.5
Permittivity 6.5 10 15 3.5 10 3

Effective density of states at CB 2.8 × 1019 2.5 × 1018 9.9 × 1020 2 × 1021 1 × 1021 1 × 1022

Effective density of states at VB 1 × 1019 1.8 × 1019 9.9 × 1020 2 × 1021 1 × 1021 1 × 1022

Thermal velocity of e− 1 × 107 1 × 107 7.3 × 106 1 × 107 1 × 107 1 × 107

Thermal velocity of h+ 1 × 107 1 × 107 7.3 × 106 1 × 107 1 × 107 1 × 107

Mobility of e− 1.69 × 10−4 2 × 10−4 10 1 × 10−4 1 1.8 × 10−3

Mobility of h+ 1.69 × 10−4 2 × 10−4 10 1 × 10−4 4 1.8 × 10−2

Density of n-type doping 0 0 0 0 0 0
Density of p-type doping 1 × 1018 1 × 1018 5 × 1016 1 × 1018 3.17 × 1014 3.17 × 1013

Density of defects Acceptor-1 × 1015 Acceptor-1 × 1015 Acceptor-1 × 1014 Acceptor-1 × 1015 Acceptor-1 × 1014 Acceptor-1 × 1014

References [38] [19,39,47] [48] [21,49] [50,51] [19,32]
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Table 4. Photovoltaic parameters obtained using different HTLs.

HTL Cu2O Buffer
Layer

Jsc
(mA/cm2)

Voc
(V)

FF
(%)

PCE
(%)

CuI
without 23.56 1.25 64.88 19.13

with 23.56 1.18 77.40 21.58

CuSCN
without 23.62 1.17 69.29 19.10

with 23.62 1.19 77.48 21.70

CuSbSe2
without 23.45 0.73 79.74 13.64

with 23.61 0.71 69.87 11.74

Spiro-OMeTAD without 23.55 1.22 66.07 18.92
with 23.55 1.18 77.03 21.46

PTAA
without 24.60 1.12 69.16 18.99

with 24.64 1.20 75.92 22.49

PEDOT: PSS
without 26.05 0.73 69.80 13.30

with 28.14 0.90 75.82 19.27

P3HT
without 23.88 0.95 76.56 17.41

with 25.49 1.02 72.09 18.67

After testing several different HTMs using the structure of this work, we noticed
that the PTAA-HTL based device exhibited a remarkable PCE of 22.49% greater than the
other HTMs-based devices. Compared to the Spiro-OMeTAD-HTL device (Voc = 1.18 V,
Jsc = 23.55 mA/cm2), we obtained a higher Voc, Jsc (1.20 V and 24.64 mA/cm2). The PTAA-
HTM has the deepest valence band energy level with respect to MAPbI3 and Cu2O when
compared with other HTMs (Figure 5), which allowed for the maximization of the Voc,
and the large optical band gap (Eg = 2.95 eV) of PTAA guarantees high hole blocking
properties to prevent the transfer of photogenerated charges from perovskite to itself. The
valence band maximum (VBM) of MAPbI3, PTAA-HTL, and Cu2O buffer layer are 5.45 eV,
5.25 eV, and 5.37 eV, respectively. Therefore, the energy-level offset (∆E) for charge transfer
between the VBM of MAPbI3 perovskite and PTAA-HTL is 0.20 eV, and the energy-level
offset (∆E) between the VBM of PTAA-HTL and the buffer is 0.12 eV. Additionally, the Voc
was also increased (without Cu2O: Voc = 1.12 V, with Cu2O: Voc = 1.20 V), perhaps due to
the decrease of recombination [52]. The wide gap band of Cu2O reduces recombination
losses and pulls holes from the absorber, allowing for smoother extraction of the holes
while experiencing lower resistance [53]. Meanwhile, Albert et al. found that the deposition
of CuOx does not degrade the surface of perovskite or introduce traps at the interface by
adding a layer of CuOx between the PTAA and the anode [54].
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The CuSCN-HTL and CuI-HTL devices have the second-highest and third-highest
efficiency of 21.70% and 21.58% (Table 4), respectively; here, the VBM of CuSCN and CuI
are equivalent to that of Spiro-OMeTAD (Figure 5), but they have better hole mobility than
Spiro-OMeTAD (Table 1, Table 4). Therefore, the addition of the Cu2O buffer layer has even
balanced the VBM of CuSCN-HTL and CuI-HTL, which enhances the device performance
after replacing the Spiro-OMeTAD (the PCE of the Cu2O/Spiro-OMeTAD device is 21.46%),
It is worth noting that the addition of the Cu2O buffer layer has a simultaneous “slight” S-
bend elimination effect on the PEDOT: PSS-HTL and P3HT-HTL devices, while it negatively
affects CuSbSe2 (Figure S2). These phenomena can be attributed to their small band gaps.
Compared to PTAA, despite having a close VBM, their lower conduction band minimum
(CBM) leads to electron leakage from the perovskite absorber layer to the anode. The higher
CBM of Cu2O helps to prevent electron leakage from the perovskite to the metal electrode,
which may reduce the recombination of the HTL, the electrode, and the related interfaces,
thereby reducing unnecessary Voc loss.

Consequently, compared to other HTMs, since PTAA has the deepest VBM and a
suitable bandgap, the Cu2O material can achieve the best energy alignment with PTAA and
MAPbI3, which makes the Cu2O well suited as a buffer layer in n-i-p structured perovskite
devices [55].

3.4. The Optimization of Cu2O, Absorber Layer, and PTAA Thickness

According to the previous research shown in Section 3.3, based on the most effective
structure of Cu/Cu2O/PTAA, the optimized thickness combinations were still absent in our
study. Hence, first, we kept the thickness of PTAA-HTL at 0.15 µm, the tunable thickness
of the Cu2O buffer layer (from 0.01 µm to 0.10 µm) and the absorber layer (from 0.40 µm to
1.0 µm), and Jsc, Voc, FF and PCE were carried out; all results are summarized in Figure 6.

As shown in Figure 6a, the Jsc changed slightly with the change in thickness of Cu2O,
probably owning to the fact that the use of a thinner Cu2O will not affect the photo
absorption. The photocurrent decreased from 25.45 mA/cm2 to around 24.20 mA/cm2

as the thickness of MAPbI3 decreased because the thinner absorption layer absorbs fewer
photons, resulting in fewer electron-hole pairs. Conversely, the Voc shows an increasing
tendency when the thickness of MAPbI3 and Cu2O decreases (Figure 6b), which may be
due to the reduced recombination of free charge carriers in thinner function layers. We find
that FF (Figure 6c) decreases with the decreasing thickness of Cu2O, which may be due to
the fact that thinner Cu2O is less effective in improving charge accumulation. However,
it increases with the decreasing thickness of MAPbI3 because thinner MAPbI3 results in
lower series resistance of the device. Combined with the changes of Jsc and Voc, it can be
seen from Figure 6d that PCE increases with the decrease in Cu2O thickness until it is close
to 0.02 µm, and it shows a clear trend of first rising and then falling with the decrease
inMAPbI3 thickness, reaching the maximum value at 0.60 µm.

Based on the previous research, the optimized buffer layer thickness and absorber layer
thickness are kept constant to obtain the optimal thickness of the PTAA. We changed the
thickness of the PTAA from 0.01 µm to 1.0 µm (Figure 7), and we see that Jsc remains almost
unchanged when the PTAA thickness is greater than 0.02 µm; Voc increases slowly as the
PTAA thickness increases. PCE and FF decrease continuously when the PTAA thickness
is greater than 0.02 µm, which may be due to higher series resistance with increasing
PTAA thickness. It was found that the maximum PCE of the device was 22.94% when the
thickness of PTAA was 0.02 µm.

Through our optimization, the device can achieve the best performance when the
thickness of Cu2O, MAPbI3, and PTAA are 0.02, 0.60, and 0.02 µm, respectively, and the
maximum PCE is 22.94%, FF is 77.20%, Jsc is 24.93 mA/cm2, and Voc is 1.19V.
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3.5. The Effect of Interface Layer Defect

The impact of the defect states in both interfaces in the proposed structure of the cell,
the HTL/absorber, and the absorber/ETL have been investigated in detail. The defect
parameters of the two interface layers are shown in Table S1.

The influence of the defect density at the PTAA/absorber interface layer on the
solar cell parameters was changed from 109 cm−2 to 1013 cm−2, while the other variables
remained unchanged. The results we obtained are as shown in Figure 8. We can see that the
increase in the defect density results in a decrease in the Voc, Jsc and PCE, while the FF shows
an upward trend. In regards to FF as the ratio of maximum power area to the product of Jsc
and Voc in the J–V curve, its increase may be attributed to a slightly unchanged maximum
power point (MPP) when both Jsc and Voc decrease. Notably, FF cannot be used as the
primary parameter representing cell performance. Increasing the interface defect density
accelerates the recombination rate of charge carrier at the PTAA/absorber interface, which
results in degraded device performance. Thus, a value of defect density of 1 × 109 cm−2

could be chosen as a design parameter, yielding PCE = 22.94%.
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Next, we studied the effect of defect density regarding the absorber/ETL interface
(Figure 9). It has a substantial influence on the function of the solar cells, as the quality of
the absorber/ETL interface exhibits a significant impact on PSCs performance. The results
are shown in Figure 9. It can be observed that several parameters change very little in the
defect density range from 109 to 1011 cm−2, and then drop abruptly when the defect density
in in a range greater than 1011 cm−2. Such a sharp decline in solar cell performance can be
attributed to the increase in recombination. Therefore, in order to maintain high efficiency,
the defect density should be controlled in the range of 109 to 1011 cm−2. A defect density of
1 × 109 cm−2 was chosen and, in this case, PCE = 22.94%.
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4. Conclusions

In conclusion, we proposed the inclusion of an inorganic material (Cu2O) into per-
ovskite solar cells as a buffer layer between the HTL and the electrode. We found that
the insertion of Cu2O can greatly improve the FF of n-i-p devices for low work function
electrodes (especially Cu), which is attributed to the fact that it can effectively lower the
interfacial energy barrier between the interface and promote hole transportation. Simulta-
neously, it can achieve the best energy alignment among Cu, Cu2O, and PTAA, thereby
reducing the charge accumulation, which optimizes Voc and PCE. Moreover, we optimized
the thickness of Cu2O, MAPbI3, and PTAA to 0.02 µm, 0.60 µm, and 0.02 µm, respectively,
and the appropriate defect densities at the interface between the HTL/absorber and ab-
sorber/ETL were explored to provide a reference for the experiment. The most efficient
performance device we achieved showed a PCE of 22.94%, Jsc of 24.93 mA/cm2, Voc of
1.19V, and FF of 77.04%, This simulation study has instructive implications for achieving
high efficiency, as well as low-cost perovskite solar cells.
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PEDOT: PSS, P3HT, and CuSbSe2 HTLs; Table S1: Parameters of interface layer; Table S2: Parameters
of back and front contacts; Table S3: Work Function of Back Metal electrode [66,67].
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