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Abstract: Throughout the world, the construction industry produces significant amounts of by-
products and hazardous waste materials. The steel-making industry generates welding waste and
dusts that are toxic to the environment and pose many economic challenges. Water-based drilling
fluids (WBDF) are able to remove the drill cuttings in a wellbore and maintain the stability of
the wellbore to prevent formation damage. To the best of our knowledge, this is the first study
that reports the application of welding waste and its derived graphene oxide (GO) as a fluid-loss
additive in drilling fluids. In this research, GO was successfully synthesized from welding waste
through chemical exfoliation. The examination was confirmed using XRD, FTIR, FESEM and EDX
analyses. The synthesized welding waste-derived GO in WBDF is competent in improving rheological
properties by increasing plastic viscosity (PV), yield point (YP) and gel strength (GS), while reducing
filtrate loss (FL) and mud cake thickness (MCT). This study shows the effect of additives such as
welding waste, welding waste-derived GO and commercial GO, and their amount, on the rheological
properties of WBDF. Concentrations of these additives were used at 0.01 ppb, 0.1 ppb and 0.5 ppb.
Based on the experiment results, raw welding waste and welding waste-derived GO showed better
performance compared with commercial GO. Among filtration properties, FL and MCT were reduced
by 33.3% and 39.7% with the addition of 0.5 ppb of raw welding-waste additive, while for 0.5 ppb of
welding waste-derived GO additive, FL and MCT were reduced by 26.7% and 20.9%, respectively. By
recycling industrial welding waste, this research conveys state-of-the-art and low-cost drilling fluids
that aid in waste management, and reduce the adverse environmental and commercial ramifications
of toxic wastes.

Keywords: industrial waste; nanomaterials; drilling fluids; graphene oxide; rheology; filtrate loss

1. Introduction

The construction and steel industries produce significant amounts of by-products and
welding wastes around the planet [1]. Welding waste is produced during the welding
process in the form of vitreous material or slag, of red or black color, which is a non-
biodegradable, toxic and hazardous waste material [2,3]. These wastes can be recycled
and reused as a constructive material by the proper management of welding waste [4].
For instance, welding wastes can be reused by extracting the valuable minerals inside
them through physical or chemical mineral-processing techniques [5]. In addition, welding
wastes can be utilized in land filling and in the production of cement [6]. On construction
sites, welding waste can be added to road surfaces or the pavements of airports as an
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asphalt mixture additive [7]. Thus, recycling welding wastes not only conserves the
mineral resources but also protects the environment [8].

Steel wastes have similar properties to bentonite clay. Bentonite clay is widely used
in the petroleum industry. Almost 80% of drilling fluids consist of bentonite clay. Drilling
fluids perform many functions in the drilling operation, such as transporting the drill
cuttings from the bottom of a wellbore to the surface; suspending cuttings; maintaining
the wellbore pressure of the formations to prevent blow out; cooling and lubricating the
drill bit and sealing permeable formations [9]. High amounts of aluminum and titanium
dioxide (TiO2) are found in welding waste and can improve the rheological properties of
WBDF [10]. Such waste contains similar ingredients to commercial fluid-loss additives, for
example, TiO2. The addition of TiO2 to drilling fluids increases viscosity, while reducing FL
and MCT. Due to its unique properties, TiO2 enhances thermal conductivity and acts as a
viscosifier as compared to conventional drilling fluids [11].

Previous data shows that total steel demand grew to hundreds of millions of metric
tons worldwide [12]. In metallurgical processes, different types of slags are generated as by-
products or large amounts of residues in metal incineration processes [13]. A noteworthy
analysis was performed to investigate solid waste composition and generation rates in six
vocational college welding workshops in Malaysia [14]. The data revealed that welding
waste was composed of scrap metal, metal dust, welding electrodes and grinding disks
which constituted 92.89, 3.64, 3.07 and 0.4 percent of the total welding waste, respectively.
The total welding waste generation rates varied from 59.57 to 117.63 kgw−1 across the
study workshops, with an average of 83.42 kgw−1. Per capita generation rates varied from
0.60 to 1.90 kgw−1, with an average of 1.23 kgw−1. These data showed the potential and
environmental effects of welding waste due to the presence of hazardous constituents
which were known to contain a variety of metals and metal oxides [14,15].

In recent years, the usage of GO as a drilling mud additive was established. Due to
its high surface area, stability, water resistance and strong mud formation properties, it
possesses the super-efficient capability of preventing the leakage of drilling mud into the
wellbore [16,17]. A variety of studies presented the addition of GO as an emerging additive
for WBDF to enhance rheological properties, such as FL and MCT. Nevertheless, none of
the previous studies evaluated the effects of welding waste, or its derivatives as additives,
in drilling fluids [18,19]. By choosing the optimal concentration of GO, the properties and
hydraulics of drilling fluids can be enhanced [20]. GO helps create an ideal drilling mud
as it can prevent the invasion of drilling mud into the formation. Thus, GO-based drilling
fluid can significantly reduce friction between the borehole and the drill pipe due to its fine
film-forming capabilities [21].

Drilling fluid serves as the material to cool the drill bit during a long drilling operation.
When there is contact between the drilling fluids and formation, minimal impact on the
mechanical properties of the formation itself is essential. [22]. In order to complete a
drilling operation successfully, maintaining an open hole is very important. The addition of
welding waste, and its derived GO as additives, allows the drilling fluid to serve as a hole
cleaner to eliminate the cuttings from the bottom of the well hole and to control subsurface
pressure [23]. The usage of bentonite and different expensive additives used in drilling fluid
formulations is expected to decrease as these are replaced with sustainable waste-derived
additives. Moreover, this will reduce the residual effects of welding and construction waste,
thereby protecting the environment [24]. FL is commonly known as the loss of the mud
filtrate into the porous permeable formation. The invasion of drilling fluid is due to the
presence of a higher hydrostatic pressure in the wellbore than the pressure in the formation.
This is a critical issue during a drilling operation as it leads to many problems, such as
formation damage and pipe sticking. If mud filtrate invades the formation, production
of the hydrocarbon decreases as the permeability, capillary pressure and wettability are
affected. Thus, non-toxic, low cost and environmentally safe additives are added to the
drilling fluids to reduce fluid loss into the formation [25].
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The application of waste materials in the petroleum industry is important to reduce
the negative impact on society. Conventional drilling fluids produce thick mud cake
and a significant amount of filtrate loss (FL) which eventually damage the reservoir [26].
Furthermore, current industry practice uses commercial GO which is expensive at around
MYR 1000 per few grams, which increases the investment cost of drilling operations.
The availability of carbonaceous industrial waste also triggers the initiative to turn such
industrial waste into value-added products [27]. To the best of our knowledge, this is the
first study using welding waste and welding-waste-derived GO in WBDF. The aim of the
research is to recognize the usage of welding waste to improve its filtration properties as a
fluid loss agent. This work, therefore, endeavors to fulfill the research gap by proposing
the recycling of welding waste and its derived GO to investigate the effect of drilling
fluids, compared to basic water bentonite suspensions. The performance of rheological
and fluid loss properties was conducted by incorporating welding waste and welding
waste-derived GO and comparing them to commercial GO prepared at three different
levels (low/medium/high 0.01, 0.1 and 0.5 wt%). Firstly, the unwanted industrial welding
waste was converted into GO using a modified Hummers method. Characterization
of the fabricated GO was then performed using XRD, FTIR, FESEM and EDX analysis.
Furthermore, these additives successfully demonstrated the effectiveness of waste additives
following examination of their rheological properties under American Petroleum Institute
(API) standards; the properties included plastic viscosity (PV), yield point (YP), gel strength
(GS), FL and mud cake thickness (MCT). Finally, we also determine the optimized amount
of welding waste and welding waste-derived GO additives that produced the lowest FL
and thinnest mud cake.

2. Materials and Methods
2.1. Chemicals and Reagents

All the chemicals used were of analytical grade and used as received. Sulfuric Acid
(H2SO4 98%), Hydrochloric Acid (HCl 37%) and Sodium Nitrate (NaNO3) were purchased
from Riedel-de-Haen. Potassium Permanganate (KMnO4) was supplied by Merck, and
Potassium Hydroxide (KOH) and Hydrogen peroxide solution 35% (H2O2) from Sigma-
Aldrich. Deionized water was used throughout the experiments.

The following components of drilling fluids were used: Sodium hydroxide
(purity ≥ 99 wt%), Potassium chloride (purity ≥ 99 wt%) and Carboxymethylcellulose
(purity ≥ 99 wt%) were acquired from Sigma-Aldrich, St. Louis, MO, USA. Bentonite and
barite (purity 91–93 wt%) were provided by M-I SWACO, Malaysia. Distilled water was
used to prepare all aqueous solutions with no further purification.

2.2. Synthesis of Welding Waste-Derived GO

A welding-waste sample was collected from a local welding workshop. The waste
sample was a gray colored powder material with a high density due to the presence of
metallic residues. The welding-waste sample was first carbonized in a muffle furnace, in
the absence of oxygen, at 300 ◦C for 3 h. The carbonized char was ground to a fine powder
and screened through a 125 µm mesh size sieve. The carbonized mass was then pyrolyzed
under continuous flow of N2 in a stainless-steel tubular reactor. About 5 g of sample was
placed in the reactor tube which was connected to the N2 supply. The tube was inserted
into a tubular furnace and heated at 550 ◦C for 1 h. The sample was allowed to cool within
the reactor and then stored in vials [28].

To remove the metallic, mineral and ash residue, the sample was first treated with
KOH solution (in a ratio of 1:1.4 w/w) under vigorous treatment for 4 h in a beaker. The
suspension was allowed to settle for a few hours and the clear aqueous layer was removed.
The sample was then suspended in distilled water under vigorous stirring; the suspension
layer was quickly decanted and the bottom residues were discarded. The suspension was
allowed to settle and then filtered to allow the residue to be collected. The residue was
excessively washed with 0.1 N HCl solution and distilled water until the pH of washing
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was neutralized. The pyrolyzed carbon residue was dried in an oven at 60 ◦C for 5 h and
then stored in vials.

GO was prepared from pyrolyzed carbon powder via an improved Hummers’
method [16,29,30]. About 5 g of pyrolyzed carbon derived from welding waste was added
to a flask containing a solution of concentrated H2SO4 (92 mL) and NaNO3 (4 g), placed
in an ice bath and stirred for 10 min. About 15 g of KMnO4 was slowly added to the
suspension under continuous stirring; the temperature rose due to the exothermic nature
of the reaction, and was maintained at less than 30 ◦C in the ice bath. After this, 2–3 mL
of H2O2 was dropwise added to the suspension and the temperature rapidly rose but
was controlled to about 90 ◦C. The color of the slurry turned brown; the flask was cov-
ered and allowed to stand overnight. About 180 mL of distilled water was added to the
mixture and slowly heated to 90–95 ◦C for 30 min; the brown-colored residue (GO) was
collected through filtration, excessively washed with distilled water and then dried in oven
at 60 ◦C for 5 h [31]. The sequences of steps involved in the synthesis of GO are shown in
Figure 1 below.
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2.3. Characterization of GO

The welding waste-derived GO was characterized by FTIR, FESEM, EDX and XRD
analysis. The composition and crystallinity of GO was investigated through X-ray diffrac-
tometer (XRD; model JDX-9C, JOEL, Tokyo, Japan) using CuKα radiation (1.54178 A◦ wave-
length) and an Ni filter. The surface morphology and elemental composition was studied
by FESEM and EDX analysis through Scanning Electron Microscope (Model JEOL-Jsm-5910;
Tokyo, Japan). The functional group composition was evaluated by FTIR spectrophotometer
(Schimadzu-A60, Tokyo, Japan).

2.4. Drilling Fluid Preparation

Three types of WBDF were prepared in this research; these were basic WBDF with
(1) commercial GO, (2) raw welding waste and (3) welding waste-derived GO as the additives.
The different additives were added to the base fluid using different concentrations—0.01, 0.1
and 0.5 ppb—as described in previous research work [32]. During the formulation of the base
fluid, water was added to the bentonite to create a hydrated slurry, followed by the addition
of the remaining components. Table 1 shows the formulation of the WBDF including each
material, required mixing time and mixing order for all additives.

Table 1. Formulations of WBDF.

Materials Basic WBDF Basic WBDF + Waste Additives Mixing Time Mixing Order

Distilled water (mL) 300.0 300.0 - 1
Bentonite (ppb) [Al2O3.4(SiO2).H2O] 25.0 25.0 5 2

Potassium chloride (ppb) 20.0 20.0 2 3
Xanthan gum (ppb) 1.0 1.0 5 4

Polyanionic cellulose (ppb) 3.0 3.0 5 5
Sodium hydroxide (ppb) 0.1 0.1 5 6

Barite (ppb) 70.0 70.0 20 7
Welding waste (ppb)/

Welding waste-derived GO (ppb)/
Commercial GO (ppb)

- 0.01, 0.1, 0.5 5 8
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2.5. Evaluation of Rheological and Filtration Properties

A Fann Model 35 Viscometer (Houston, TX, USA) and an Anton Paar rheometer
(Germany) were operated at room temperature to measure the rheological properties. The
viscometer was used to measure the PV, YP and GS of the drilling fluid at rotor speeds of
300 rpm and 600 rpm. The dial readings for both speeds are recorded as ∅300 and ∅600. For
the GS, the drilling fluid was stirred at 600 rpm until it reached a steady dial reading value.
The drilling fluid sample was then held for 10 s and the motor was stopped. The maximum
reading was achieved and recorded as 10 s of GS; the same steps were repeated for 10 min
of GS.

The filtration test was piloted by pouring the mud sample into the cell to within
1/2 inch of the top, and the filtrate was collected using a dry graduated cylinder placed
under the drain tube. An OFITE filter press was used for this test. The system used N2
to supply pressure and a standard filter paper. The pressure relief valve was opened and
began to record the FL as a function of time. According to the API standard, the operating
pressure was 100 psi and the temperature was atmospheric (77 ◦F). After 30 min, the FL
was measured in cubic centimeters (to 0.1 ccs). The MCT was measured using a digital
Vernier caliper, model Mitutoyo 500-197-20, to the nearest 1/32 inch [32,33].

3. Results and Discussion
3.1. Characterization of GO

The FTIR spectra of welding wastes and of GO derived from welding wastes are
shown in Figure 2. The spectrum of welding wastes shows a weak absorption band
at 3748 cm−1 corresponding to the O-H bond of Si-O-H. Bands appeared at 2986 cm−1,
showing the C-H bond, and at 1700, showing C=O; multiple bands appeared in the range of
1660 cm−1–1541 cm−1, corresponding to aromatic C=O configurations. Peaks at 1058 cm−1

and 955 cm−1 show an Si-O stretching vibration and Si-O-Al vibrations, whereas the bands
appearing between 800 and 500 show metals-oxygen bonds [4,34]. These results show that
the welding waste consists of silicates, aluminates and oxides of various metals, along with
some proportion of graphite.
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The FTIR spectrum of GO exhibits prominent bands positioned at 3748, 3345 and
3154 cm−1, which correspond to the O-H stretching vibrations of Si-OH, O-H carboxylic
acids and C-H aromatics [5,31]. The absorption bands positioned at 1622, 1122, 1035 and
955 cm−1 show C=C aromatics, carboxyl O=C-O, Si-O and Si-O-Al, respectively [5,35],
whereas the FT-IR absorption bands appearing in the range of 610–500 cm−1, correspond
to various metal-oxygen linkages [6,7,36,37]. The results show that the GO sample also
contains impurities such silica, alumina and several metal oxides.

The elemental composition of the welding-waste sample and GO prepared from
welding waste was determined through EDX analysis. The EDX spectra of the samples
and the % weight and atomic % values of various elements in the samples are displayed in
Figure 3. These results reveal that the welding-waste sample contains various elements as
their oxides, including Ti, Mn, Fe, Si, Ca, K, Na and Al, and of which Ti, Si, Fe and Mn are
present as a high atomic % i.e., 13, 7, 4 and 3%, respectively. About 4 atomic % carbon in the
sample is also present in the sample, the form of graphite. The welding electrode generally
consists of a metal rod made of steel or wrought iron; the flux material around it contains
cellulose, silica and oxides of various metals, such as Fe, Mn, Al, Ti, Ca and others [8,38].
During arc welding, the electrode transforms into residues of oxides. It was shown that the
welding flux changes into granular powder during arc welding, and consists of alumina,
silica, and oxides of Ca, Mn, Fe, Ti and other minerals [9,39]. The composition of welding
wastes agrees with the composition of the components of the electrode. The elemental
composition of the GO derived from welding wastes includes about 85% carbon and 7%
oxygen, which confirms the synthesis of GO. It is clear from the results that Ti, Fe and Mn
are not present in the sample where the other metals are present in very smaller quantities.
It is inferred that during the synthesis of GO, the carbon content was enriched, and the
other metals leached from the welding residue through acid treatment and the decantation
processes. The presence of S in the GO sample is also an indication of contamination from
the sulfuric treatment during the synthesis process.
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The XRD pattern of the welding wastes and GO is given in Figure 4. The XRD pattern
of welding wastes shows an amorphous hump and some sharp and intense peaks; the
amorphous pattern appears at 2θ of 0 to 20◦ which indicates the presence of powder
graphite. The high-intensity prominent peaks represent the presence of Fe2O3, MnO2, TiO2,
silica and alumina as major components. The other less intense peaks indicate the presence
of mullite and wollastonite in smaller proportions. The components of welding wastes
exhibited by the XRD analysis agree with the literature reports [9,10,39,40].
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In the case of GO, the XRD pattern shows a typical amorphous configuration of GO
with a sharp peak at 10.5◦ 2θ [5,35]. Other configurations indicated by the XRD patterns
of GO include silica, alumina, mullite and calcium silicate. As per EDX analysis, other
minerals containing Na, S and K may also be present in the welding waste-derived GO.
However, due to their small concentrations, the corresponding peaks do not appear in the
XRD patterns.

The FESEM micrographs of welding wastes and GO derived from welding wastes
are displayed in Figure 5 which illustrates that both samples exhibit an identical granular
morphology. However, the granular size of the welding waste sample is non uniform,
wherein the particles of different sizes ranging from nanosized grains to large lumps of
two microns can be seen. Also, the grains seem agglomerated or glued together, which
may be attributed to the presence of oxides of various metals. However, the GO sample
represents regular-shaped, uniformed-sized particles with an average grain size of about
half a micron.
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3.2. Properties of Drilling Fluids

The rheological properties of drilling fluids such as PV, YP, 10 s and 10 min GS, API FL
and MCT were determined as summarized in Tables 2–4 below.

Table 2. Rheological properties of commercial GO.

Concentration Base WBDF 0.01 g 0.1 g 0.5 g

PV (cP) 14.0 16.0 16.5 17.0
AV (cP) 19.0 21.5 22.2 23.5

YP (Ib/100 ft2) 15.0 17.5 17.4 18.0
10sGS (Ib/100 ft2) 8.0 8.5 10.0 11.2
10mGS (Ib/100 ft2) 11.0 11.4 12.0 12.5

FL (mL) 9.0 7.4 7.0 6.8
MCT (mm) 2.82 1.52 1.44 1.13

Table 3. Rheological properties of raw welding waste.

Concentration Base WBDF 0.01 g 0.1 g 0.5 g

PV (cP) 14.0 25.0 28.2 30.5
AV (cP) 19.0 28.0 30.4 31.4

YP (Ib/100 ft2) 15.0 15.0 16.2 17.2
10sGS (Ib/100 ft2) 8.0 7.0 8.0 8.5
10mGS (Ib/100 ft2) 11 9 10 10

FL (mL) 9.0 8.0 7.2 6.0
MCT (mm) 2.82 2.37 2.25 1.70

Table 4. Rheological properties of welding waste-derived GO.

Concentration Base WBDF 0.01 0.1 0.5

PV (cP) 14.0 22.0 24.2 25.5
AV (cP) 19.0 24.0 26.4 27.0

YP (Ib/100 ft2) 15.0 17.0 18.2 19.0
10sGS (Ib/100 ft2) 8.0 6.0 6.5 7.5
10mGS (Ib/100 ft2) 11.0 8.0 9.5 9.7

FL (mL) 9.0 4.0 5.8 6.6
MCT (mm) 2.82 1.90 2.03 2.23
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The rheological properties of WBDF with commercial GO as the additive are tabulated
in Table 2.

The rheological properties of WBDF with raw welding waste as the additive are
tabulated in Table 3.

The rheological properties of WBDF with welding waste-derived GO as the additive
are tabulated in Table 4.

3.2.1. Plastic Viscosity

Figure 6 represents the comparison of plastic viscosity of raw welding waste, welding
waste-derived GO and commercial GO-based drilling fluids with different concentrations.
The results show that the PV of 0.5 ppb raw welding waste drilling fluid is 30.5 cP, which is
the highest among them all. Drilling fluids with the presence of welding wastes increase
dramatically compared with the base drilling mud and commercial GO drilling fluid. This
might be due to the presence of the solid form welding waste, which increases the flow
resistance of the drilling fluids [11,41]. PV increases when the mechanical friction between
solids and liquids increases.
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Figure 6. PV comparison of WBDF using different additives.

3.2.2. Yield Point

A comparison of YP for the different drilling fluid formulations at different concen-
trations is presented in Figure 7. The trend for all types of drilling fluids are that the YP
increases with increasing concentration, except for 0.1 ppb of commercial GO. The lifting
capacity of a high YP is better but would increase the cost of the power when the drilling
fluid is pumped in the wellbore. Drilling fluids with high YP indicate that it has a higher
suspension. The rock cuttings would not sink to the bottom when the drilling operation is
stopped. Stuck pipes and lost circulation can be prevented if the YP of the drilling fluids are
controlled. The YP of welding waste-derived GO drilling fluid increased from 15 Ib/100 ft2

to 19 Ib/100 ft2 when its concentration was 0.5 ppb. An increasing YP can improve the
dynamic cutting suspension and efficiency of the hole cleaning of the drilling fluids [12,42].
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3.2.3. Gel Strength

GS is related to the viscosity of the drilling fluid and affects the ability of drilling
fluids to lift rock cuttings [43]. Figures 8 and 9 show that GS increased with the increasing
concentration of additives when different types of additives were added into WBDF. The
10 s GS and 10 min GS of commercial GO based drilling fluid increased to 11.2 Ib/100 ft2

and 12.5 Ib/100 ft2, respectively, when the concentration of additives was 0.5 ppb. Drilling
fluids have higher suspension power with a higher GS when the drilling operation is
stopped. For the 10 s GS in Figure 8, the GS deceased slightly when raw welding waste
and welding waste-derived GO were added into WBDF. From Figure 9, it can be seen that
the 10 min GS increased gradually as the concentration of additives increased.
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3.2.4. Filtrate Loss

The FL of the three types of drilling fluid at the different concentrations of 0.01 ppb,
0.1 ppb and 0.5 ppb is shown in Figure 10. The base fluid displayed a filtrate loss volume
of 9 mL. The fluid loss was significantly reduced to 6.6, 5.8 and 4 mL after the addition
of 0.5, 0.1 and 0.01 wt% of GO nanoparticles to the WBDF, respectively, as shown in
Figure 9. Raw welding waste-derived GO drilling fluid with 0.01 ppb shows the best result
as the FL decreased from 9 mL to 4 mL—the highest reduction. The GO nanoparticles
remarkably minimize the permeability and porosity of the mud cake [44]. By consolidating
the attractive force between the particles, the volume of FL is reduced. On the other hand,
when the amount of welding waste-derived GO was increased, the FL also increased.
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The usage of GO as a drilling fluid additive is likely because it has a special surface
area of 2391 m2/g [13]. This acts as a solid penetrating layer that can make the formation
of mud cake in drilling mud stronger, thereby preventing the mud from flooding into the
formation. Furthermore, GO possesses another interesting characteristic, namely separation
of the solution and the formation of a strong paper-shaped material capable of efficiently
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preventing drilling mud leaks into the well wall. For instance, dispersed GO flakes can be
filtered out of the solution and pressed to make a strong paper-like material, which results
from the robust tile-like interlocking of the flakes. This could be beneficial for making a
thin impermeable film to prevent FL in the wellbore [23,45].

It is believed that FL is affected by the concentration of nanomaterials added after
a specific point as 0.01 ppb is the optimum concentration of waste-derived GO drilling
fluid with the lowest FL. Excessive nanomaterials added to drilling fluid may reduce the
effectiveness, make it costlier and increase the chance of formation damage [46,47].

3.2.5. Mud Cake Thickness

The optimum thickness of mud cake helps to increase the stability of the wellbore
and decrease mud invasion; hence, thin mud cake is recommended [48]. This is due to
thick filter cake increasing the chance of the drill pipe becoming stuck when in contact
with the mud cake under pressure. Figure 11 shows the thickness of mud cake with the
addition of different amounts of raw welding waste, commercial GO and welding waste-
derived GO. The effectiveness of the drilling fluid is closely related to the permeability and
porosity of the mud cake. As shown in Figure 11, a decrease in fluid loss volume results
in a decrease in MCT. It is clear that by adding the lowest GO concentration (0.01 wt%) to
WBDF, the lowest FL volume was established, and the thinnest mud cake was obtained,
demonstrating significant enhancement by lowering the FL by 55.6% when compared with
basic WBDF. Similarly, MCT was reduced to 32.6% using welding waste-derived GO. As a
result, GO nanoparticles were critical in blocking the nanopores in the filter cake made of
bentonite particles. For commercial GO and raw welding waste-derived GO, significant
results are obtained, as MCT is reduced with a minimum amount of additive. However,
large graphene-cut stacks in the water medium experience issues with WBDF. Therefore,
GO, which is more water resistant and possesses the same layered morphology, is capable
of forming the desired mud cake. Since GO sheets are well exfoliated, they could be
added at substantially lower concentrations than clay-based additives to obtain the desired
performance. More prominently, the nanometer thickness of the GO flakes could also result
in much thinner filter cakes than those obtained using clay-based materials. The thickness
of a filter cake is directly correlated with the differential torque needed to rotate the pipe
during drilling operations, to the drilling time and to drilling costs. In this work, GO is
further appealing as it offers the prospect of a waste-derived mechanism and inexpensive
technology [20,22,45].
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Figure 11. MCT comparison of WBDF using different additives.
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Both additives were able to form the thinner mud cake compared with the conventional
WBDF. From this study, it can be concluded that waste-derived GO can prominently
improve the filtration properties of WBDF [49,50].

4. Conclusions

In this work, unwanted welding waste-derived GO was prepared in a novel way using
a modified Hummers’ method to improve the filtration properties of WBDF. A comparison
of three additives including raw welding waste, welding waste-derived GO and commercial
GO was conducted, using three different concentrations i.e., low (0.01 wt%), medium
(0.1 wt%) and high (0.5 wt%) under API standard conditions. The following conclusions
can be drawn based on this research;

• The effect of the lowest concentration of welding waste-derived GO showed the lowest
FL up to 55.6%.

• The remarkable reduction of MCT was obtained by adding highest concentration of
raw welding waste (39.7%). However, the highest concentration of welding waste-
derived GO and commercial GO showed reductions of 20.9% and 59.9%, respectively.

• The lowest concentration of commercial GO showed an MCT reduction of 46.1%
compared with welding waste-derived GO, which showed a reduction of up to 32.6%.
The results verify that the use of novel nanocomposites in drilling fluids is capable of
increasing efficiency, while reducing operating cost. These waste-derived economical
additives can be excellent alternatives to commercial GO.

• The linked structure of GO allows more water to be trapped between layers. This
causes an increase in viscosity and yield stress, while reducing fluid filtration.

• The addition of waste-derived GO could be a useful substitute of commercial GO.
• The major cost to produce GO is the cost of chemicals, equipment and labor. The chem-

icals required include H2SO4, KMnO4, NaNO3 and H2O2, which are all abundantly
available in the open market at very low prices. Moreover, these are commonly used
chemicals and are available in almost every lab. The cost of these consumables is same
as for commercial GO and GO derived from welding wastes. These only differ in the
supply of raw materials. For commercial GO, the raw material is pure graphite, which
must be imported at high cost, whereas for synthesis of GO from welding waste, the
raw material is a waste product and available free of cost. Thus, the total production
cost of welding waste-derived GO is much lower than that of t commercial GO.

• This research focused on the conversion of hazardous waste into GO which vali-
dates the conversion of many other waste materials into graphene derivatives and
potential filtrate loss agents. Thus, this study paves the way for utilizing a variety of
waste sources in sustainable and cost-effective drilling operations. The availability
of carbonaceous industrial waste, therefore, can stimulate initiatives to convert such
industrial waste into value-added products.

5. Future Perspectives

This work supports the view that the effectiveness of drilling fluids containing differ-
ent type of additives is significantly increased. When the conventional formulations for
welding waste-derived additive-based formulations were substituted and the optimum
concentration of additives was added, FL and MCT were reduced. The results prove
that the novel welding waste-derived GO-based drilling fluids are capable of increasing
efficiency, while reducing operating costs. This presents a golden opportunity to extract
graphene from other industrial wastes and utilize it to further enhance drilling fluid prop-
erties. Welding wastes consist of toxic substances such as aluminum, titanium oxide and
others. Metal oxides are hazardous to the environment and marine life. Hence, reuse and
extraction into valuable products from raw welding waste is very important. In conclusion,
lower amounts of toxins will be released into the environment, leading to a lower impact
on the atmosphere.
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Nanotechnology recently introduced new formulations of drilling fluids to the oil and
gas industry. This technology can rearrange the properties of nanomaterials to produce
more attractive properties which are essential in drilling fluids. By-products from the
construction industry such as welding wastes can be reused in WBDFs and can serve
as low-cost additives compared with commercial products in terms of optimizing the
performance of conventional drilling fluids. The development of advanced methods is,
therefore, required for the production of nanomaterials on a large scale and with cost-
effective strategies for commercialization. In addition, proper guidelines for the handling
and storage of nanomaterials must be implemented. This is to prevent contamination of
the materials which leads to high surface activity and degrades their effectiveness.

Finally, novel routes are required to be discovered for the extraction of GO from waste
materials. The use of welding waste-derived GO improves the rheological properties of
drilling fluids. Researchers from different fields of expertise should use their skills and
experience to improve technology and create new remarkable materials such as green
nanocomposites. Other parameters such as high temperature and high pressure can also
be used in future studies to investigate the effect of aging on the drilling fluids after the
addition of novel additives.
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Abbreviations

API American Petroleum Institute
AV Apparent viscosity
EDX Energy Dispersive X-ray analysis
PV Plastic viscosity
YP Yield point
GS Gel strength
FL Filtrate loss
FTIR Fourier Transform Infrared Spectroscopy
FESEM Field Emission Scanning Electron Microscopy
MCT Mud cake thickness
GO Graphene oxide
WBDF Water-based drilling fluids
XRD X-ray Diffraction Crystallography
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