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Abstract: Bone-substitute materials are essential in dental implantology. We prepared collagen
(Col)/hydroxyapatite (Hap)/acidic gelatin (AG)/basic fibroblast growth factor (b-FGF) constructs
with enhanced bone-forming capability. The Col/Hap apatite composites were prepared by immers-
ing Col sponges alternately in calcium and phosphate ion solutions five times, for 20 and 60 min,
respectively. Then, the sponges were heated to 56 ◦C for 48 h. Scanning electron microscopy/energy-
dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction analyses
showed that the Col/Hap composites contained poorly crystalline Hap precipitates on the Col matrix.
Col/Hap composite granules were infiltrated by AG, freeze-dried, and immersed in b-FGF solution.
The wet quaternary constructs were implanted in rat cranial bone defects for 8 weeks, followed by
soft X-ray measurements and histological analysis. Animal studies have shown that the constructs
moderately increase bone formation in cranial bone defects. We found that an alternate immersion
time of 20 min led to the greatest bone formation (p < 0.05). Constructs placed inside defects slightly
extend the preexisting bone from the defect edges and lead to the formation of small island-like bones
inside the defect, followed by disappearance of the constructs. The combined use of Col, Hap, AG,
and b-FGF might bring about novel bone-forming biomaterials.

Keywords: collagen/hydroxyapatite composite; acidic-gelatin; alternate immersion method; hydrox-
yapatite precipitation; basic-fibroblast growth factor; bone formation; bone histology; bone substitute
materials; dental implantology

1. Introduction

Animal-derived collagen (Col) has several medical uses, including in artificial skin [1],
vascular grafts [2], and nerve guides [3], due to its excellent biocompatibility, biodegrad-
ability, and widespread availability [4]. Col is a biopolymer and a major constituent of
the extracellular matrix of several important tissues, such as skin and bone [5]. While
in total, 29 types of Col are present in the body [6], type I Col is preferred in tissue en-
gineering because of its fibrillar elaboration in triple-helical polypeptide chains, which
result in favorable mechanical properties [6–8]. Although the use of conventional Col is
considered old-fashioned, new devices using Col have recently been developed in tissue en-
gineering [6,9,10], drug delivery systems [11–13], and three-dimensional-printed organs [7].
Therefore, Col-based biomaterials may have multiple clinical applications in the future.

Cross-linking of Col using physical or chemical methods is frequently performed to
improve its durability and strength. The cross-linking method is outlined in Supplementary
Material A: Cross-Linking Method of Collagen (Col) (Supplementary Materials) [14–17].
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The techniques related to this study were physical de-hydrothermal treatment (DHT) and
chemical cross-link by ethylene glycol diglycidyl ether (EGDE) or glutaraldehyde (GTA).

Col has also been combined with osteo-conductive hydroxyapatite (Hap) to produce
composites used for bone regeneration in dental implantology and oral surgery [18–21].
We previously reported successful preparation of three bone-substitute Col and Hap ma-
terials using lyophilization, DHA and GTA cross-linking, alternate immersion for Hap
precipitation, and Newton press [17]; lyophilization, DHT cross-linking, and blending
of micro-sized inter-connected porous Hap [22]; and lyophilization, DHT cross-linking,
addition of nano-sized Hap, and Newton press [23].

To further improve the bone-forming capability of materials, we decided to add the
growth factor system to Col/Hap composites [24–28]. Three elements in tissue engineer-
ing, including growth factor, are briefly explained in Supplementary Material B: Tissue
Engineering and Therapeutic Effects of b-FGF (Supplementary Materials) [28–34]. In Japan,
use of basic fibroblast growth factor (b-FGF) as a growth factor is common and has been
approved by the government [35], whereas bone morphogenic protein is no longer used.
The therapeutic effect of b-FGF is also illustrated in Supplementary Materials B [28–34]. Pre-
vious studies have shown that b-FGF has several positive effects on bone formation [36–38].
Acidic gelatin (AG), produced by collagen degradation, maintains electrostatic interaction
and slowly releases b-FGF [39,40]. AG impregnated with b-FGF solution accelerates bone
formation in critical-sized defects in animal models [41–43].

Thus far, four materials and growth factors such as Col, Hap, AG, and b-FGF were
referred to form bone substitute materials. The composites comprised of two to three
selected materials and growth factor have recently been utilized for regenerative bioma-
terials, as follows. Du et al. [44] used acellular dermal matrix (mostly, Col) loading with
b-FGF to accelerate bone regeneration by recruitment, proliferation, and sustained osteo-
differentiation of mesenchymal stem cells. Ueno et al. [45] employed Col sheet loaded
with b-FGF fused to the Col-binding domain with bone allogenic graft to increase callus
volume in the femoral bone defect model. Madani et al. [46] evaluated quercetin-loaded
gelatin/tragacanth/nano-Hap composite in the cell culture test as a bone tissue engineering
scaffold. Yamaguchi et al. [47] studied b-FGF-containing Hap/Col in prefabricated vascu-
larized allo-bone grafts for bone union enhancement. Santhakumar et al. [48] facilitated
in situ precipitation of amorphous calcium phosphate (analogue of Hap) nanoparticles
within three-dimensional porous Col sponges and immobilized b-FGF for bone tissue
engineering. Matsumine et al. [49] examined b-FGF-impregnated Col-gelatin sponge for
full-thickness skin reconstruction and obtained favorable results. Nakamura et al. [50]
reported that bone regeneration was accelerated in rat horizontal alveolar bone defect
model using Col-binding b-FGF combined with Col scaffolds. Imada et al. [51] found
that the use of bFGF-containing gelatin hydrogel prevented tooth extraction-triggered
bisphosphonate-related osteonecrosis of the jaws. Sohn et al. [52] succeeded in maintaining
edentulous alveolar ridge preservation using b-FGF in combination with collagenated
biphasic calcium phosphate. Kobayashi et al. [53] confirmed that alpha-tricalcium phos-
phate with immobilized b-FGF enhanced bone regeneration in a canine mandibular bone
defect model.

The combination of quaternary compositions such as Col, Hap, AG, and b-FGF has,
however, not been reported yet. Its combination might produce very effective bone sub-
stitute materials in the next generation. It has the potential to up-grade bone-forming
capability, the level of which could be arbitrarily adjusted by the mixing ratios of the
compositions, the cross-link levels of Col and AG, and amounts of b-FGF loaded. This
study was a first step to realize this objective. We believed that this pioneering research has
novelty and value in academic fields.

The Col membrane was very important in assisting in forming bones by Col/Hap
composite granules and was self-prepared in this study. Its usage, preparation method, and
characterization are mentioned in Supplementary Material C: Self-Preparation of Collagen
(Col) Membranes (Supplementary Materials) [49,54–73]. The formed Col membranes were
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employed in animal studies, which are explained later. These characterization studies
included different Col base material produced for Col/Hap composites. Self-preparation
of the Col membrane was the second-priority purpose of this investigation.

Upon consideration of all above information, the purposes of this investigation were
(1) to prepare Col/Hap composites by freeze drying and alternate immersion methods
and characterize materialistically the composites; (2) to infiltrate acidic gelatin into the
composites, followed by freeze drying and b-FGF impregnation; and (3) to implant the
wet constructs (collagen/hydroxyapatite/acidic gelatin/b-FGF, coded by Col/Hap/AG/b-
FGF) in critical-size defects of rats, the top of which was covered by the prepared membrane,
followed by soft X-ray measurements and histological observations so that the constructs
could be evaluated as new, novel osteo-conductive bone substitute materials.

2. Materials and Methods
2.1. Materials
2.1.1. Col/Hap Composite

We used virus-free, medical-grade Col pellets (NMP collagen PS; Nippon Meat Pack-
ers Inc., Tokyo, Japan) extracted from porcine skin using pepsin. The pellets mainly
comprised type I collagen and small quantities of type III collagen. We used calcium
chloride (CaCl2; Kanto Chemical Co., Tokyo, Japan), sodium dihydrogen phosphate dihy-
drate (NaH2PO4·2H2O; Junsei Chemical Co., Tokyo, Japan), Tris hydrochloride (Tris HCl;
Gibco BRL, ThermoFisher Scientific, Waltham, MA, USA), 1 N sodium hydroxide (NaOH)
solution (Kanto Chemical Co., Tokyo, Japan), and 1N hydrochloric acid (HCl) solution
(Nacalai Tesque Co., Kyoto, Japan).

2.1.2. Col/Hap Composite Complexed with AG and b-FGF

AG was obtained from the denatured product of alkaline-treated bovine bone (G-
2700P; Nitta Gelatin Co., Osaka, Japan). Water-soluble ethylene glycol diglycidyl ether
(EGDE) (Denacol EX-810; Nagase Chemtex, Osaka, Japan) was used for chemical cross-
linking of AG. For b-FGF, Fibroblast Spray 500 (500 µg/5 mL; Kaken Pharmaceutical Co.,
Tokyo, Japan) was used.

2.2. Preparation of Biomaterials
2.2.1. Preparation of Col/Hap Composite Granules

Col pellets (1 g) were dissolved in 28 mL of distilled water in a 50 mL polystyrene
conical tube at 4 ◦C. The acidic solution was neutralized using 0.1 N NaOH solution (6.5 mL)
in three rectangular plastic plates (84 × 54 × 12 mm3) to achieve a Col gel pH of 7.5. The
Col gel was frozen at −80 ◦C for 12 h and freeze dried for 12 h. The resultant sponge was
cross-linked using DHT treatment at 140 ◦C for 24 h in a vacuum dry oven.

The Col sponge was processed using an alternate immersion method (Figure 1). In
brief, three sponge sheets produced from 1 g of pellets were cut into 0.5–1 mm gran-
ules using scissors. The granules were packed in nine Nylon meshes (Mesh Pack C,
60 mm × 80 mm; Sansho Co., Tokyo, Japan). The granules in the mesh were immersed in
100 mL of Tris-HCl buffered solution containing 200 mM CaCl2 (pH = 7.4) for 20 min at
37 ◦C, blot dried using a paper cloth, immersed in 100 mL of Tris-HCl buffered solution
containing 120 mM NaH2PO4 (pH = 9.3) for 20 min at 37 ◦C, and blot dried using a paper
cloth to complete one cycle of the alternate immersion method. The immersion cycle was
repeated five times (AI 20 min 5Cy Col/Hap). The pH was adjusted with NaOH and HCl
solutions using a pH/ion meter (F-24; Horiba Ltd., Kyoto, Japan). The composite sponges
were produced by altering the immersion time of five cycle repetitions to 60 min (AI
60 min 5Cy Col/Hap). Two types of composite sponges were dried in a vacuum dry oven
(VO-300; AS One) at 56 ◦C for 48 h. Control collagen containing only granules without the
use of alternate immersion was also prepared (Col control).
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Figure 1. Schematic of the alternate immersion method.

2.2.2. Complex of Col/Hap Composite Granules with AG and b-FGF Loading

The preparation of AG is briefly described below. First, AG (4 g) was dissolved in
distilled water (36 mL) at 37 ◦C. The gelatin solution (800 µL) was poured into the 1.5 mL
Eppendorf tube, followed by mixing with the cross-linking solution (200 µL). The cross-
linking solution consisted of distilled water (95 mL), EGDE cross-linker (5 mL), and NaCl
(11.7 g), with the pH maintained at 7. Chemical cross-linking was performed by storing
the solution at 4 ◦C for 3 days. The product from the 18 tubes was purified using dialysis
(Mw = 12,000–14,000, Code 3-25; Thermo Fisher Scientific, Waltham, MA, USA) against
exchanged distilled water (1 L), three times for 3 days. The volume of the cross-linked AG
was increased by 2.5-fold relative to that of the original non-cross-linked gelatin.

Two collagen/apatite composite granules (AI 20 min 5Cy Col/Hap and AI 60 min 5Cy
Col/Hap) and Col control granules were infiltrated by ample cross-linked AG, followed
by freezing at −80 ◦C for 12 h and freeze drying for 24 h. The three types of dried gelatin
infiltrated granules (Col control + AG, AI 20 min 5Cy Col/Hap + AG and AI 60 min 5Cy
Col/Hap + AG) were sterilized using ethylene oxide gas and stored in a desiccator.

Immediately prior to the animal experiments, the three types of dried gelatin-infiltrated
granules were immersed in ample b-FGF solution for 60 min at 4 ◦C to form three wet
constructs (Col control + AG + b-FGF, AI 20 min Co/Hap + AG + b-FGF, and AI 60 min
Co/Hap + AG + b-FGF).

2.2.3. Sample Codes

Table 1 shows the details of code, composition, and preparation process (major part) of
samples examined so that inter-relationships among samples could be better understood.

Table 1. Code, composition, and preparation process (major part) of samples examined.

Code Composition Preparation Process (Major Part)

Before AG infiltration

Col control Col
(Medical collagen) 24 h DHT treatment

AI 20 min 5Cy Col/Hap Col, Hap Alternate immersion of Col control in Ca2+ and PO4
−

solutions for 20 min, respectively, 5 cycles

AI 60 min 5Cy Col/Hap Col, Hap Alternate immersion of Col control in Ca2+ and PO4
−

solutions for 60 min, respectively, 5 cycles
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Table 1. Cont.

Code Composition Preparation Process (Major Part)

After AG infiltration
Col control + AG Col, AG Filling pores of Col control with AG

AI 20 min 5Cy Col/Hap + AG Col, Hap, AG Filling pores of AI 20 min 5Cy Col/Hap with AG
AI 60 min 5Cy Col/Hap + AG Col, Hap, AG Filling pores of AI 60 min 5Cy Col/Hap with AG

After impregnation of b-FGF
Col control + AG + b-FGF Col, AG, b-FGF Dipping Col control + AG in b-FGF solution

AI 20 min 5Cy Col/Hap + AG + b-FGF Col, Hap, AG, b-FGF Dipping AI 20 min 5Cy Col/Hap + AG
in b-FGF solution

AI 60 min 5Cy Col/Hap + AG + b-FGF Col, Hap, AG, b-FGF Dipping AI 60 min 5Cy Col/Hap + AG
in b-FGF solution

Col/Hap/AG/b-FGF Col, Hap, AG, b-FGF Dipping Col/Hap/AG composite in b-FGF solution

2.3. Characterization of Biomaterials
2.3.1. SEM/Energy-Dispersive Spectroscopy (EDS) and Scanning Electron Microscopy
(SEM) Analyses

The morphological and chemical properties of the outer surfaces of the two Col/Hap
composite granule samples (AI 20 min 5Cy Col/Hap and AI 60 min 5Cy Col/Hap) were
examined using SEM (SU8010; Hitachi High-Tech Co., Tokyo, Japan) and EDS (JSM-7100F;
Joel Co., Tokyo, Japan) (n = 1) at an accelerating voltage of 10 kV.

The outer and cross-sectional surfaces of three types of dried gelatin-infiltrated gran-
ules (Col control + AG, AI 20 min 5Cy Col/Hap + AG and AI 60 min 5Cy Col/Hap + AG)
were examined (n = 1 for both) using SEM (SU8010; Hitachi High-Tech Corp., Tokyo, Japan)
at an accelerating voltage of 15 kV after plasma coating with OsO4.

2.3.2. X-ray Diffraction (XRD) Analysis

The crystallographic states of Col and Col/Hap composite granules (Col control, AI
20 min 5Cy Col/Hap, and AI 60 min 5Cy Col/Hap) were examined (n = 1 for all) using
XRD (D8 Discover; Bruker AXS, Billerica, MA, USA), CuKα radiation, and an accelerating
voltage of 40 kV. Pure Hap produced by high-temperature sintering (187-37; Taihei Chemical
Industry Co., Osaka, Japan) was used as standard for comparison.

2.3.3. Fourier-Transform Infrared Spectroscopy (FTIR)

The organic functional groups in Col and Col/Hap composite granules (Col control,
AI 20 min 5Cy Col/Hap, and AI 60 min 5Cy Col/Hap) were examined (n = 1 for all) using
FTIR equipped with attenuated total reflectance attachment (Nicolet6700; Thermo Fisher
Scientific, Waltham, MA, USA). Hap standard was also used for comparison.

2.3.4. Growth Factor b-FGF Levels in the AG-Infiltrated and b-FGF-Loaded Granules

The rate of absorption (wt%) of b-FGF solution by AG-infiltrated granules (Col control
+ AG, AI 20 min 5Cy Col/Hap + AG, and AI 60 min 5Cy Col/Hap + AG) was calculated
(n = 6 for all) by measuring the weight of the granules before and after immersion of AG.
The dry and wet granules were compacted into a stainless steel hole mold (6 mm in diameter
and 1 mm in height), with a size equivalent to the defect size created on the cranial bones of
rats, and analyzed in terms of the bulk density and b-FGF absorption rate, respectively. The
absorption rate (%) was calculated by the weight of absorbed b-FGF solution (g) divided by
the weight of the original granule before dipping (g) and multiplying by 100. The quantity
of b-FGF in three implanted granules with b-FGF (Col control + AG + b-FGF, AI 20 min
Co/Hap + AG + b-FGF, and AI 60 min Co/Hap + AG + b-FGF) was estimated.
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2.4. Animal Experiments
2.4.1. Operation

We used 18 male Wistar rats weighing 340 ± 16 g. The rats were housed in sepa-
rate cages (three rats per cage) and provided with standard diet and water ad libitum.
Using anesthesia with a mixture of isoflurane (3% vol) and oxygen (0.5 L/min) gas gen-
erated by a carburetor (IV-ANE; Olympus, Tokyo, Japan), the centers of the rat calvariae
were shaved, sterilized with 10% povidone iodine, and injected with a local anesthetic
(0.2 mL, 2% lidocaine with 1:80,000 epinephrine). Then, full-thickness periosteum flaps
were elevated, and bone defects were created using a trephine bur (6 mm diameter;
Implant Re Drill System, GC, Tokyo, Japan). Six specimens from each granule sample
(Col control + AG + b-FGF, AI 20 min 5Cy Col/Hap + AG + b-FGF, and AI 60 min 5Cy
Col/Hap + AG + b-FGF) were implanted in the calvarial bone defects (Figure 2), whereas
six holes were left empty (defect only). The defects were covered with the self-prepared
Col membrane. The flaps were repositioned and sutured using soft nylon (Softretch 4-0,
GC). At 8 weeks after surgery, the rats were sacrificed using CO2 inhalation. The animal
experiments were performed in accordance with the Guidelines for the Care and Use of
Laboratory Animals and approved by the Institutional Ethics Committee of Iwate Medical
University (19 March 2021; approval no.: #02-035).
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Figure 2. Photograph of the prepared construct granules in a rat cranial bone defect and the covering
collagenous membrane.

2.4.2. Soft X-ray Measurements

We performed soft X-ray (M60; Softex, Tokyo, Japan) to evaluate new bone formation
at the cranial critical defects after implantation of the three granule types with b-FGF (Col
control + AG + b-FGF, AI 20 min Co/Hap + AG + b-FGF, and AI 60 min Co/Hap + AG
+ b-FGF) as well as at untreated defects. Figure 3 illustrates the top and cross-sectional
views of the bone formation process at the rat cranial bone defects. The original bone defect
is indicated by solid lines, and newly formed bone is indicated by broken lines. Small
island-like bone fragments inside and around the bone defect as well as newly extended
bone are indicated by green color. Soft X-ray was performed to identify new bone formation
based on the X-ray grey values of the areas that corresponded to the original defect. The
images were analyzed using ImageJ software (1.53k; National Institutes of Health, Bethesda,
MD, USA).
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Figure 3. Top and cross-sectional views of new bone formation in a cranial bone defect. Note: the
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2.4.3. Histological Analysis
Decalcified Tissue Samples

After feeding for 8 weeks, cranial bones with and without granule samples were
removed using a diamond saw (MC-201 Microcutter; Maruto, Tokyo, Japan) or scissors and
fixed in 10% neutral buffered formaldehyde equivalent (Mildform; Wako Chemicals, Osaka,
Japan) for 4 weeks at 4 ◦C. Then, the bones were decalcified in 0.5 wt% ethylene diamine
tetra-acetate solution (Decalcifying solution B; Wako Chemicals, Osaka, Japan) for 4 weeks
at 4 ◦C. Next, the bones were treated with graded alcohol and xylene and embedded in
wax. The specimens in the wax were cut into 5 µm sections using a microtome (IVS-410;
Sakura Finetek, Tokyo, Japan). The sections were stained with hematoxylin and eosin (HE)
and observed using fluorescence microscopy (All-in-one BZ-9000; Keyence, Osaka, Japan).

Non-Decalcified Tissue Samples

Fluorescent double staining was performed on two of the six rats implanted with the
granules. Sequential labeling was performed to evaluate postoperative bone formation and
remodeling. Rats received an intraperitoneal injection of tetracycline (TC; oxytetracycline
hydrochloride; Nacalai Tesque Co., Kyoto, Japan) (3 mg/100 g body weight) dissolved in
physiological saline solution (Otsuka Pharmaceutic Co., Tokyo, Japan); 0.4 mL) at 5 and
6 weeks after the surgery, followed by injection of calcein (CL; Wako Chemicals, Osaka
Japan; 1 mg/100 g body weight) in 0.4 mL of physiological saline solution at 7 weeks and
7 weeks + 5 days (2 days before sacrifice) after the surgery. The rat calvariae embedded
with granules were processed to observe the non-decalcified histological appearance. After
fixation in 70% ethanol (99.5% pure, Junsei Chemical Co., Tokyo, Japan) at 4 ◦C for 1 week,
the samples were dehydrated in a graded series of ethanol (1 day at each concentration) and
placed in pure acetone (Kanto Chemical Co., Tokyo, Japan) for 24 h. The samples were then
stained with Villanueva solution (222-01445; Wako Chemicals, Osaka, Japan), embedded
in methylmethacrylate for 4 days, and chemically polymerized for 10 days. The non-
decalcified resin blocks (almost 15 mm × 15 mm × 20 mm) were cut in the sagittal plane
using a circular diamond cutter (MC-201 Microcutter; Maruto, Tokyo, Japan). The sections
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were attached to plastic slides, ground to a thickness of 20 µm using a precision lapping
machine (ML-110N; Maruto, Tokyo, Japan), and manually polished. Histological analysis
of the sections was performed using fluorescence microscopy (All-in-one BZ-9000; Keyence,
Osaka, Japan)) for Villanueva-stained images and single CL-fluor-labeling, with confocal
laser scan microscopy (C1si; Nikon Co., Tokyo, Japan) used for dual TC&CL-fluor-labeling
analysis.

2.5. Statistical Analyses

Free statistical software (EZR version 1.55, Saitama Medical Center, Jichi Medical
University, Saitama, Japan) [74] was used for nonparametric tests, such as Kruskal–Wallis
test. The null hypothesis was rejected at p < 0.05.

3. Results
3.1. Col/Hap Composites by Alternate Immersion Method
3.1.1. SEM/EDS

Figure 4a shows a highly magnified SEM image of a Col/Hap composite (AI 20 min
5Cy Col/Hap). The composite surface was covered by small, flaky crystals. The short and
long dimensions of the crystals were 295 and 472 nm (n = 10 each), respectively. Figure 4b
indicates the chemical composition based on EDS point analysis of “x1” in Figure 4a. The
crystals contained calcium, phosphorus, oxygen, and carbon. Figure 4c shows a highly
magnified SEM image of another collagen/apatite composite (AI 60 min 5Cy Col/Hap).
The composite surface was also covered by small, flaky crystals. The short and long
dimensions of the crystals of AI 60 min 5Cy Col/Hap composite were 352 and 903 nm
(n = 10 each), respectively, which were larger than those of the former crystals on AI
20 min 5Cy Col/Hap composite. Figure 4d indicates the EDS spectrum obtained using
compositional analyses of “x2” in Figure 4c. The crystals were composed of calcium,
phosphorus, oxygen, and carbon. Both crystals were small (nano-sized).
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Figure 4. (a) High-magnification SEM image of a collagen/apatite composite (AI 20 min 5Cy
Col/Hap); (b) EDS spectrum and compositional analyses of “x1” in Figure 4a; (c) high-magnification
SEM image of another collagen/apatite composite (AI 60 min 5Cy Col/Hap); (d) EDS spectrum and
compositional analyses of “x2” in Figure 4c. Note: (a,c) 10,000× magnification.
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3.1.2. XRD

Figure 5 shows the XRD patterns of a Col/Hap composite (AI 20 min 5Cy Col/Hap),
Col/Hap composite (AI 60 min 5Cy Col/Hap), Hap standard, and Col control. Hap
standard had sharp and distinct characteristic peaks of highly crystalline Hap [75], whereas
Col control had no specific peak. However, the two composites contained low-crystalline
Hap with dull and ambiguous hydroxyapatite peaks [76].
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3.1.3. FTIR

Figure 6 presents the FTIR charts of a Col/Hap composite (AI 20 min 5Cy Col/Hap),
Col/Hap composite (AI 60 min 5Cy Col/Hap), Hap standard, and Col control. Hap
standard had PO4 peaks [75], whereas Col control had amide (-CO-NH2-) I and II peaks.
Two composites had PO4 and amide peaks, attributable to Hap and Col, respectively.
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3.2. Complexes with AG and b-FGF Loading
3.2.1. SEM

Figure 7a–c show SEM photomicrographs of the outermost and cross-sectional surfaces
of dry gelatin-infiltrated Col control powder (Col control + AG) and two alternate immersed
composite granules (AI 20 min 5Cy Col/Hap + AG and AI 60 min 5Cy Col/Hap + AG),
respectively. The AG overlapped the surface of Col and Col/Hap composites, covering
the precipitated crystals. However, some pores were present cross-sectionally on the three
granules despite AG filling.
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Figure 7. SEM photomicrograph of the outermost (50× magnification) (left) and cross-sectional
(50× magnification) (right) surfaces of (a) dry gelatin-infiltrated control Col powder (Col con-
trol + AG) and two alternate immersed composite granules: (b) (AI 20 min 5Cy Col/Hap + AG) and
(c) (AI 60 min 5Cy Col/Hap + AG).

3.2.2. Quantity of b-FGF Loading to Col/Hap/AG Granules

Figure 8 top-left in blue color, top-right in orange color, and bottom-right in green
color present the relative density (%) (bulk density (mg/mm3)), absorption rates of the
b-FGF solution (%), and estimated b-FGF quantity in the stainless-steel die, respectively, of
the three AG-infiltrated granules ((a) Col control + AG, (b) AI 20 min 5Cy Col/Hap + AG,
and (c) AI 60 min 5Cy Col/Hap +AG). Two alternate immersed composite granules (AI
20 min 5Cy Col/Hap + AG and AI 60 min 5Cy Col/Hap + AG) had a similar density,
with approximately 20% larger granules than those of collagen control (Col control + AG)
(Figure 8 top-left). After dipping of b-FGF solution, the control sample (Col control + AG)
exhibited the highest absorption capacity for the b-FGF solution (%), followed by AI
60 min 5Cy Col/Hap +AG granules; AI 20 min 5Cy Col/Hap + AG had the lowest ab-
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sorption capacity (Figure 8 top-right). The b-FGF solution was water-based, while b-FGF
itself was crystalline protein powder. Considering that the concentration of b-FGF solution
was 100 µg/1 mL, the b-FGF quantity could be estimated by absorbed b-FGF solution.
The b-FGF quantities absorbed by the three granule samples (Col control + AG, AI 20 min
Co/Hap + AG, and AI 60 min Co/Hap + AG) in the metal die were calculated to be 3.5–5 µg
(Figure 8 bottom-left).
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Figure 8. (Top-left) Relative density (%) (bulk density (mg/mm3)), (top-right) the b-FGF solution
absorption rates (%), and (bottom-left) estimated b-FGF quantity in the stainless steel die of the three
AG-infiltrated granules: (a) Col control + AG, (b) AI 20 min 5Cy Col/Hap + AG, and (c) AI 60 min
5Cy Col/Hap + AG. (n = 6 for each) Note. The concentration of b-FGF solution was 100 µg/1 mL.

3.3. Animal Studies of Col/Hap/AG/b-FGF Constructs
3.3.1. Soft X-ray Analyses

Figure 9a–d show representative soft X-ray images of rat cranial bone defects with
and without the implanted b-FGF immersed granules ((a) defects only, (b) Col control +
AG + b-FGF, (c) AI 20 min Co/Hap + AG + b-FGF, and (d) AI 60 min Co/Hap + AG +
b-FGF). Figure 10 shows the X-ray grey values of rat cranial bone defects with and without
b-FGF-loaded granules (n = 6 for each granule type). Weak bone formation occurred at the
rat cranial bone defects. The three implanted granules increased the X-ray grey values. The
grey values were significantly higher at the cranial bone defects with AG-filled composite
(AI 20 min 5Cy Col/Hap + AG + b-FGF) compared to the unfilled defects (Col control +
AG + b-FGF) (p < 0.05).
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Figure 9. Representative soft X-ray images of a rat cranial bone defect with and without three
AG-infiltrated and b-FGF-loaded granules, including (a) defect without granules and defects with
(b) Col control + AG + b-FGF, (c) AI 20 min 5Cy Col/Hap + AG + b-FGF, and (d) AI 60 min 5Cy
Col/Hap +AG + b-FGF. Note: left, raw data; right, the original defect and edges of extending bones
are depicted by solid circles and broken lines, respectively.
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3.3.2. Decalcified Tissue Histology

Figure 11a–d show HE-stained histological images of rat cranial bone defects with and
without implanted b-FGF-loaded granules, including (a) those with defect only, (b) Col
control + AG + b-FGF, (c) AI 20 min 5Cy Col/Hap + AG + b-FGF, and (d) AI 60 min 5Cy
Col/Hap + AG + b-FGF. The defects showed varying degrees of bone extension from the
defect edges and sporadic island-like small bone formation inside the defect.
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granules: (a) defect only, (b) Col control + AG + b-FGF, (c) AI 20 min 5Cy Col/Hap + AG + b-FGF,
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Figure 12a shows magnified images of the dotted square zone (“X1”) in Figure 11c.
Figure 12b is a magnified image of the bone head shown in Figure 12a, which revealed
extensive bone extension. The entire bone shown in Figure 12a was the newly formed
extended bone. The extended bone consisted of an array of discrete, newly formed island-
like bones. Figure 13a is a magnified image of the dotted square zone (“X2”) in Figure 11d.
Figure 13b is a magnified image of Figure 13a, showing the bone head. An island-like bone
was formed inside the defect and in front of the right side of the pre-existing bone.
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Figure 13. (a) Magnified HE-stained image of the dotted square zone “X2” in Figure 11d
(4× magnification). (b) Further magnified HE-stained image of the interspace between the two
bones in Figure 13a (10× magnification).

3.3.3. Non-Decalcified Tissue Histology

Figure 14a shows a Villanueva-stained image of a rat cranial bone defect filled with
AG-infiltrated and b-FGF-loaded control collagen (Col control + AG + b-FGF). There
was extensive bone formation on the left side of the preexisting bone in the bone defect.
Figure 14b is a magnified CL-fluor-labeled image corresponding to “X1” in Figure 14a.
Figure 14c is a magnified CL-fluor-labeled image of “X2” in Figure 14b. In the final week,
bone formation was noted in widespread areas, appearing as thickened bone on the inner
and outer sides.
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Figure 14. (a) Villanueva-stained image of a rat cranial bone defect filled with AG-infiltrated and
b-FGF-loaded control collagen (Col control + AG + b-FGF) (4× magnification). (b) Magnified CL-
fluor-labeled image corresponding to “X1” in Figure 14a (4× magnification). (c) Further magnified
CL-fluor-labeled image corresponding to “X2” in Figure 14b (10× magnification).

Figure 15a shows a Villanueva-stained image of a rat cranial bone defect filled with
an AG-infiltrated and b-FGF-loaded Col/Hap composite (AI 20 min 5Cy Col/Hap + AG +
b-FGF). There was relatively slow bone extension from both bone edges, but small particles
were found within the bone defect. Figure 15b,c show the magnified and CL-fluor-labeled
images of “X1” in Figure 15a, respectively. In the final week, slight bone extension was
observed. Figure 15d,e show the magnified and TC&CL-fluor-labeled images of “X2” in
Figure 15a, respectively. The particles were CL-stained, which revealed bio-absorption
of materials and an initial ossification reaction (i.e., osteoid formation) [77]. Figure 15f,g
show magnified and TC&CL-fluor-labeled images of “X3” in Figure 15a, respectively. In
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the final week, slight bone extension was observed on the right side of pre-existing bone.
Dual fluor-labeling revealed bone formation over the final 3 weeks.
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Figure 15. (a) Villanueva-stained image of a rat cranial bone defect filled with an AG-infiltrated
and b-FGF-loaded Col/Hap composite (AI 20 min 5Cy Col/Hap + AG + b-FGF) (4× magnification).
(b) Magnified image of “X1” in (a). (c) CL-fluor-labeled images of (b); (d) magnified image of “X2” in
(a). (e) TC&CL-fluor-labeled image of (d). (f) Magnified image of “X3” in (a). (g) TC&CL-fluor-labeled
image of (f) (10× magnification).

Figure 16a shows a Villanueva-stained image of a rat cranial bone defect filled with
another AG-infiltrated and b-FGF-loaded collagen/apatite composite (AI 60 min 5Cy
Col/Hap + AG + b-FGF). There was prominent bone extension from the left side of the
bone edge (exceeding 2.5 mm), while slight bone extension was also noted from the right
side. Figure 16b,c show magnified and CL-fluor-labeled images of “X1” in Figure 16a,
respectively. In the final week, rapid bone formation was observed. Figure 16d is a
magnified TC&CL-fluor-labeled image of “X3” in Figure 16c. Bone formation became
prominent in the final 3 weeks. Figure 16e,f show magnified and CL-fluor-labeled images
of “X2” in Figure 16a, respectively. In the final week, sluggish bone formation was observed.
Figure 16g shows a magnified TC&CL-fluor-labeled image of “X4” in Figure 16f. The bone
edge slowly extended outward in the final 3 weeks.
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4. Discussion

Figure 17 illustrates the development of construct granules (Col/Hap/AG/b-FGF)
and the relationship of constituent materials. Table 2 describes the roles of materials
contained in the construct. Col is a space-creating scaffold [78,79]. Low-crystalline Hap is
bio-absorbable and osteo-conductive [80,81]. AG is both a scaffold and excellent b-FGF
carrier [82,83]. The growth factor b-FGF has several therapeutic effects, such as promoting
angiogenesis and recruiting stem cells Supplementary Material B: Tissue Engineering and
Therapeutic Effects of b-FGF (Supplementary Materials) [28–34]) [39].
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Table 2. Roles of components of the prepared granules (AI Col/Hap/AG) and b-FGF contained
therein.

Materials
Drug

Osteo-
Conduction Angiogenesis b-FGF Loading

and Slow Release Remarks

Col None None Minimum Space-making
Hap Large Small Small Replaced to bone
AG None None Large Carrier of b-FGF

b-FGF Small Large — Wound healing
Increase of stem cells

We successfully coated low-crystalline Hap on a Col sponge using an alternate immer-
sion method (Figures 4–6). Although several methods have been used for Hap coating of
Col, including electro-phoretic deposition [84] and biomimetic methods [85], we selected
an alternate immersion method [86–90] because of its simplicity and low cost. A possible
drawback of the immersion method was the weak bond between small Hap crystals and
Col surfaces. This drawback may be overcome by gelatin filling. The alternate immersion
method is associated with the bio-mimetic process at body temperature. The quality of
newly formed Hap is also important. Low-crystalline Hap is bioabsorbable and can be
replaced by new bone [91,92], whereas highly-crystalline Hap is almost non-bio-absorbable,
hindering the formation of new bone [91].

There are certain important considerations with respect to infiltration of AG into
Col/Hap composite granules. AG was cross-linked using a safe cross-linker (EGDE) un-
der mild conditions. Cross-linking was necessary to prolong the in vivo life of gelatin
to 2–3 weeks [93]. Otherwise, the gelatin would be eliminated within 3 days [94]. SEM
analysis confirmed that AG completely covered the inner surfaces of collagen and colla-
gen/apatite composite granules (Col control + AG, AI 20 min 5Cy Col/Hap +AG, and AI
60 min 5Cy Col/Hap + AG) with a porous inner structure (Figure 7). The quantity of b-FGF
absorbed by the three granules in the metal die, equivalent to the volume of a cranial bone
defect, was almost 3.5–5 µg (Figure 8), which was lower than the doses used in previous
bone formation studies (e.g., 115 µg in a large defect) [34].

The rat cranial bone defect model is commonly used to evaluate the bone-forming
capability of biomaterials [95–99]. We successfully produced new bone in rat cranial bone
defects over 8 weeks; the new bone covered 20–35% of the cranial defect after implan-
tation of AG-infiltrated and b-FGF-loaded Col/Hap composite granules (AI 20 min 5Cy
Col/Hap + AG + b-FGF and AI 60 min 5Cy Col/Hap + AG + b-FGF) (Figure 9). This level
of bone regeneration was moderately successful compared to previous bone formation
studies [100,101]. There was significant variation in soft X-ray grey values, reflecting
differences in bone regeneration between defects with and without AG-infiltrated and
b-FGF-loaded granules. Figure 10 illustrates the combination associated with statistically
significant bone regeneration.

We did not effectively use periosteum for bone formation [102]. Intraoperatively, we
created a full flap and completely removed the cranial bone periosteum. After reposi-
tioning, the periosteum did not completely cover the bone defect. If the periosteum had
completely covered the cranial bone defect, bone formation would have been considerably
enhanced [103]. Improvement in operator skill is also important to enhance bone formation.

The quality and nature of the bone formed in the rat cranial bone defects are im-
portant considerations. Figure 3 illustrates the method of bone formation in rat cranial
bones (Figures 11–16). New bone was formed by extension from preexisting bone at
the defect edge and from small island-like bones. Intramembranous ossification may
explain the new bone formation, particularly of small island-like bones [104,105]. The
extended bones often developed via the aggregation of small, arrayed island-like bones
(Figures 12a and 16a). The island-like small bones may have merged and united with the
preexisting bone to achieve complete healing. We also found small remaining particles
(AI 20 min 5Cy Col/Hap +AG + b-FGF) within the cranial bone defect (Figure 15 a,d,e).
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The particle was CL-fluor-stained [106,107], indicating that the liberated calcium ions were
bound to CL; this may have been due to particle dissolution, replacement of particles with
the newly formed bone precursor (i.e., osteoid), or both [108].

When used as a bone substitute, the implant material may last for longer than
2–3 months while slowly releasing growth factors [109]. The addition of osteoconductive
materials to implant material may improve bone formation. The b-FGF-loaded granules
prepared in this study (Col control + AG + b-FGF, AI 20 min 5Cy Col/Hap + AG + b-FGF,
and AI 60 min 5Cy Col/Hap + AG + b-FGF) disappeared earlier than in the afore-mentioned
period, leaving behind few granules. The in vivo longevity of b-FGF-impregnated granules
and the degree of bone formation is enhanced by increased cross-linking of collagen and
AG [110,111].

5. Conclusions

We prepared Col/Hap composite granules using the alternate immersion method
and infiltrated them with cross-linked AG, followed by freeze drying. The growth factor
b-FGF was impregnated into the prepared granules, which produced Col/Hap/AG/b-FGF
constructs. The wet quaternary granules were implanted into rat cranial bone defects
and evaluated using soft X-ray measurements and histological analysis. We self-prepared
collagen membranes using chemical cross-linking to cover bone defects with and without
filled constructs.

Despite its limitations, we can draw several important conclusions from our study
of Col/Hap/AG/b-FGF granules. First, the self-prepared Col membrane provided a
protective barrier and covering material for the defects. Second, instrumental analy-
ses (SEM, SEM/EDS, XRD, and FTIR) showed that alternate immersion promoted small
low-crystalline Hap precipitation on the collagen matrix. Third, the placement of the
Col/Hap/AG/b-FGF construct increased new bone formation in the cranial bone defect
compared to the defect without placement. Fourth, the newly formed bones extended from
the bone defect edge and produced small island-like bones. Finally, the prepared construct
(Col/Hap/AG/b-FGF) produced a moderate amount of new bone. Further materialistic
studies are required to develop methods to improve bone formation.
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Abbreviations

AG Acidic Gelatin
AI Alternate Immersion
BMP Bone Morphogenic Protein
b-FGF Basic-fibroblast Growth Factor
CL Calcein
Col Collagen
Cy Cycle
DHT De-hydrothermal Treatment
DTA Differential Thermal Analysis
DTG Derivative of Thermal Gravimetry
EDC Carbodiimide Hydrochloride
EDS Energy Dispersed X-ray Spectroscopy
EGDE Ethylene Glycol Diglycidyl Ether
FTIR Fourier Transformed Infrared Spectroscopy
GBR Guided Bone Regeneration
GTA Glutaraldehyde
GTR Guided Tissue Regeneration
Hap Hydroxy-apatite
HCl Hydrochloric Acid
HE Hematoxylin and Eosin
NaOH Sodium Hydroxide
Mmb Membrane
NHS N-hydroxy Succinimide
SEM Scanning Electron Microscopy
TC Tetracycline
TG Thermogravimetry
XRD X-ray Diffraction
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