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Abstract: In this work, the Generalized Hubbard Model on a square lattice is applied to evaluate
the electrical current density of high critical temperature d-wave superconductors with a set of
Hamiltonian parameters allowing them to reach critical temperatures close to 100 K. The appro-
priate set of Hamiltonian parameters permits us to apply our model to real materials, finding a
good quantitative fit with important macroscopic superconducting properties such as the critical
superconducting temperature (Tc) and the critical current density (Jc). We propose that much as
in a dispersive medium, in which the velocity of electrons can be estimated by the gradient of the
dispersion relation∇ε(k), the electron velocity is proportional to∇E(k) in the superconducting state

(where E(k) =
√
(ε(k)− µ)2 + ∆2(k) is the dispersion relation of the quasiparticles, and k is the

electron wave vector). This considers the change of ε(k) with respect to the chemical potential (µ)
and the formation of pairs that gives rise to an excitation energy gap ∆(k) in the electron density
of states across the Fermi level. When ε(k) = µ at the Fermi surface (FS), only the term for the
energy gap remains, whose magnitude reflects the strength of the pairing interaction. Under these
conditions, we have found that the d-wave symmetry of the pairing interaction leads to a maximum
critical current density in the vicinity of the antinodal k-space direction (π, 0) of approximately
1.407236 × 108 A/cm2, with a much greater current density along the nodal direction

(
π
2 , π

2
)

of
2.214702 × 109 A/cm2. These results allow for the establishment of a maximum limit for the critical
current density that could be attained by a d-wave superconductor.

Keywords: critical current density; d-wave superconductors; Hubbard model

1. Introduction

Despite today superconductors are known to be the keystone for overcoming the
technological barriers that limit the generation of clean energy, especially at and over the
MW range, for instance, in the designing of the ultra-high magnetic field coils required for
fusion energy or the upgrading of >16 MW wind turbines with ultralight high temperature
superconducting (HTS) generators. Surprisingly, little is known about the microscopic
origin of its main physical quantity for practical applications, i.e., its critical current density,
Jc. For decades, the BCS theory [1] has been the starting point to analyze the microscopic
origins of most of the physical properties that appear with the transition from the normal
(metallic) state to the superconducting state, giving sufficiently accurate predictions to
transition parameters such as the critical temperature Tc, the critical magnetic field Hc1
(predicting the occurrence of the Meissner effect), and the temperature dependence of the
energy gap ∆, which defines the amount of energy necessary to break a pair of bounded
electrons (Cooper pairs) that form the superconducting state. Most of the superconducting
metallic elements and alloys [2] (and all of them with critical temperatures lower than 30 K)
are known to follow the BCS theory where the electron-phonon interaction is responsible
for the electron pairing. It is worth mentioning that there are superconductors, with critical
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temperatures larger than 30 K, where the pairing is also based on the electron-phonon
interaction such as MgB2 [3] and the copper-free oxide superconductors of the family
BKBO [4]. However, there are exemptions such as the Bi and Li [5] and, more exceptionally,
most practical superconducting compounds within the families of cuprates [6,7], iron
pnictides, and chalcogenides [8], where the BCS coupling of electrons by the weak attraction
caused by phonons does not explain all the above phenomena. Therefore, although the
BCS theory explains how the density of states is changed on entering the superconducting
state, which for electronically isotropic materials means that there are no electronic states
anymore at the Fermi level, in the case of anisotropic electronic materials such as the LSCO,
BSCCO, and YBCO cuprates [9], it is necessary to move beyond the BCS theory.

The discovery of superconductors with high critical temperatures by Bednorz and
Müller [10], generally behaving as Type-II superconductors, i.e., exhibiting a mixed state
where any magnetic field greater than Hc1 but lower than Hc2 (the superconducting to
normal transition field) can penetrate the material in the form of vortices (fluxons), came
to be the beginning of anisotropic superconductivity. This means that these materials do
not have a constant or isotropic superconducting gap [6,11], such as in the BCS theory, but
it depends on the wave vector (k) of the electrons that form the Cooper pairs. Therefore,
although physical properties such as the critical current density in the superconductor
state have been studied in the context of anisotropy, these studies mostly rely on the
arguments of well-known mesoscopic or macroscopic approaches, with no consensus at the
microscopic level. On the one hand, with mesoscopic approaches, we refer to fundamental
approaches based on the laurate Ginzburg Landau theory, which, in brief [12], gives an
account of the vortex dynamics in type II superconductors at a scale comparable to the
superconducting coherence length ξ, i.e., comparable to the radius of each one of the
fluxons. On the other hand, at lengths much greater than ξ, with macroscopic approaches,
we mean those based on the ansatz of Bean’s model [13], where the current density J is
simply constrained by a threshold value or critical current density Jc. This simple but
elegant ansatz might be the first time that Jc has been formally established as a universal
parameter characterizing the practical functioning of type-II superconductors, serving as
the base for building more general formulations of what today is called the critical state
theory and related E–J power law approaches [14–16], where Maxwell equations for the
superconducting state can be solved for large-scale applications such as motors, generators,
fault current limiters, etc. [17–21].

On the other hand, with respect to microscopic theories that are beyond the conven-
tional electron-phonon interaction, the formalism of the Hubbard model stands out [22].
This model has been successfully used to describe itinerant magnetism and the metal-
insulator transition [23,24]. Such a model also allows us to consider strong correlations
between electrons at different sites of the cuprate lattice, which in a periodic potential and
at sufficiently low temperatures might lead to the formation of Cooper pairs. Hence, be-
sides the phonon interaction, probably the most well-known or widely accepted electronic
correlation is the long-range antiferromagnetic interaction caused by spin fluctuations [25],
which is believed to give rise to the pairing between electrons because the superconductiv-
ity appears close to an antiferromagnetic state [26]. Recent studies indicate that the kinetic
exchange in conjunction with the strongly correlated motion (hopping) of the carriers
could be the origin of both antiferromagnetism and superconductivity in cuprates [27].
Nevertheless, as the BCS theory and the electron-phonon interaction mechanism, these
interactions may not capture all the physics of all the superconductor compounds, such as
the single spin and spin-triplet superconductors out of the family of cuprates [28,29]. For
example, for the superconductivity in strontium ruthenate (Sr2RuO4), spin fluctuations
are not enough to generate the expected superconducting triplet state and additional con-
siderations seem necessary [30]. In this sense, the generalized Hubbard model presented
here is aimed to be considered only for cuprate superconductors. This model includes
first- and second-neighbor correlated hoppings, and it has been shown that the latter is
a key participant in the formation of a d-wave superconducting gap, despite its small
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strength in comparison with other terms of the model. Moreover, this interaction favors the
superconducting state over the phase separation, which is an important obstacle when the d-
wave superconducting state originates from an attractive nearest-neighbor density-density
interaction [31].

Thus, although at this instance we are somehow limited to considering cuprates, it
is worth mentioning that these materials are also the ones of most practical interest. This
is because cuprate superconductors such as YBCO and GdBCO are the key component
of what is now known as the second generation of high-temperature superconducting
(2G-HTS) tapes, which are being introduced into the commercial market by companies
such SuperPower Inc. (East Glenville, NY, USA), American Superconductor, SuNAM,
Shanghai Superconductor Technology, Theva, and SuperOx [32–34]. However, despite
the tremendous progress in the large-scale manufacturing of superconducting tapes with
fully texturized and characterized layers in continuous production capabilities, and with Jc
as their flagship parameter, its intrinsic relationship with microscopical theories is nearly
unexplored. It is commonly assumed either as (i) a purely macroscopic characterization
value that is measured by recording the voltage in a four-probe configuration, with the
critical current Ic defined by the condition that the voltage reaches some threshold value
for the electric field at self-field conditions, typically 1 µV/cm or (ii) a physical parameter
that, from the mesoscopic point of view, relates to the physics of vortices, where Jc relates to
the equilibrium between magnetic pressure and the pinning forces. Nevertheless, in these
approaches, it is impossible to infer what electronically correlated mechanism gives rise to
this phenomenon because even though the mesoscopic approach may consider the vortex-
vortex and vortex-defects interactions as the origin of Jc, their correlations are beyond the
scale of ξ. However, in the microscopic world, the first or lowest threshold for Jc must come
at lengths lower than ξ, where the Cooper pairs break for the vortex core in the mixed state.
Thus, even for perfectly magnetically isotropic type-II superconductors with no defects,
a Jc must be established. This means that a closer look at our microscopic understanding
of Jc for superconducting cuprates is still needed, which will be the focus of discussion
in Section 2 of this paper. Therein, the physical principles that sustain our generalized
Hubbard model for d-wave superconductors are explained, such that the current density
on the Fermi surface of cuprate superconductors such as YBCO can be calculated. Then, the
dynamics of the current density along the reciprocal space and as a function of temperature
are presented in Section 3, followed by a brief account of the main conclusions of this study
in Section 4.

2. The Hubbard Model Approach and Related Considerations

Let us start by reminding the reader that to describe the dynamics of the carriers
on the CuO2 planes of the superconducting cuprates, the formalism of the three-band
Hubbard model is well-known [35]. Under this framework, the electronic states are close
to the Fermi energy (EF) and can be described reasonably well by a single-band tight-
binding model on a square lattice with second-neighbor hoppings [36]. This supports
the idea that, on the one hand, the current density in the superconducting state of HTS
materials can be incorporated via a single-band Hubbard model on a square lattice where
the second-neighbor charge-bond interaction (correlated hopping) leads to the formation of
Cooper pairs with d-wave symmetry. On the other hand, low-temperature superconductors
showing an isotropic gap in all directions can be treated by an s-wave pairing function,
where a generalized Hubbard model that includes the nearest-neighbor hopping (t) and the
so-called nearest-neighbor correlated hopping interaction (∆t) can explain superconducting
states with an extended s-symmetry gap [37]. Thus, for d-wave superconductors, our model
contains the nearest-neighbor (∆t) and second-nearest-neighbor (∆t3) correlated hopping
interactions, in addition to the on-site (U) and inter-site (V) Coulombian repulsions [38].

The mean-field electronic dispersion relation (εMF) in a square lattice includes the
mean-field single-particle hopping that is a function of the electron density (n). Therefore,
the superconducting state requires solving a couple of integral equations for a set of
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Hamiltonian parameters, which, in our case, is set to reach a critical temperature Tc ≈ 100 K,
for the sake of generality. Additionally, within the semiclassical theory of metals, the current
density (J) is given by J = ρqv, where ρ is the volume density of charge carriers, q is their
charge, and v is their mean velocity. Notwithstanding, it is worth reminding the reader
that for explaining the depth penetration phenomena in superconductors, the statements
of the BCS theory imply that the mean velocity of Cooper pairs must be assumed (as a first
approach) within the previous formula.

However, from the viewpoint of quantum mechanics, it is not truly possible to know
whether the current density of electrons in the superconducting state satisfies a relation of
the form J = ρqv, but at least some fundamental considerations can be made:

I. The electrons in the superconductor state travel across the crystal at a finite velocity
(v) of less than c. Otherwise, there would not be a finite critical current.

II. In a dispersive medium, the velocity of electrons can be estimated by the gradient
of the relation of dispersion ε(k), but in the case of superconductors, it needs to be
estimated from the quasiparticle’s relation corresponding to Cooper pairs.

III. The electronic states that mainly participate in the formation of Cooper pairs are
those near the Fermi; therefore, the higher velocity corresponds to that on the FS.
Thus, for a given direction of k, the group velocity involves the states k such that
|k| < |kF| and |v(k)| ≤ |v(kF)|.

IV. The Cooper pairs are formed by electrons with the wave vectors k and−k, whereby
an electron travels in an opposite direction from the other. Analogously to the
Mott-insulator transition, hole doping is considered for the carriers’ density from
when it is half-filled [39].

V. In anisotropic superconductivity, the electrons with wave vectors close to the nodes
have a weak superconducting gap and require very low temperatures to form the
Cooper pairs; therefore, the anti-nodal states play a more dynamic role in carrying
the superconducting current [40].

With the above considerations, an appropriate expression for J in a superconductor
can then be written as

J = ρqvg , (1)

where ρ is the number of carriers per volume unit, which for YBCO tapes with J in the
order of MA/cm2 is approximately 1022/cm3 [41], the carrier charge is q = 2e, with e the
bare charge of the electron. The group velocity (vg) is given by

vg(k) =
1
} |∇E(k)| (2)

where E(k) is the dispersion of the relation of the quasiparticles. It is important to men-
tion that the Equation (1) J is equivalent to that of the radiant flux in one dimension
(J = 1

2m (ψ∗pxψ + ψp∗xψ∗), where ψ is the wave function and px =
(
}
i

)
d

dx is the momen-
tum operator).

Thus, by considering a single-band generalized Hubbard model in a square lattice with
first- and second neighbor correlated hoppings, ∆t and ∆t3 respectively, together with the
on-site (U) and first-neighbor (V) Coulombic repulsions, the corresponding Hamiltonian
(Ĥ) can be written as [38]

Ĥ = t ∑<i,j>,σ c†
iσcjσ + t′ ∑�i,j�,σ c†

iσcjσ + U ∑i ni↑ni↓ +
V
2 ∑<i,j> ninj+

∆t ∑<i,j>,σ c†
i,σcj,σ

(
ni,−σ + nj,−σ

)
+ ∆t3 ∑< i, l >< j, l >

� i, j�, σ

c†
i,σcj,σnl , (3)

where ni = ni,↑ + ni,↓, ni,σ = c†
i,σci,σ, and c†

i,σ (ci,σ), is the creation (annihilation) operator
with spin σ =↓ or ↑ at the site i, with < i, j > and < < i, j > > denote the nearest-neighbor
and next-nearest neighbor sites, respectively. The expressions for single-particle and
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electron-electron interaction parameters can be written in terms of the Wannier functions
[ϕ(r−Ri)] centered at the lattice site Ri. Such expressions are summarized in Table 1.

Thus, after the Fourier transformation, the c†
k,σ = 1

Ns
∑j exp

(
ik ·Rj

)
c†

j,σ Equation (3)
becomes

Ĥ = ∑
k,σ

ε(k)c†
k,σck,σ +

1
Ns

∑
k,k’,q,σ

Vk,k’,qc†
k+q,↑c

†
−k+q,↓c−k′+q,↓ck′+q,↑, (4)

where ε(k) is the single-electron dispersion relation and Ns is the total number of lattice
sites. The interaction potential (Vk,k’,q) only considers Cooper pairs with antiparallel spins,
and it can be written as

Vk,k’,q = U + Vβ
(

k− k’
)
+ ∆t

[
β(k + q) + β(−k + q) + β

(
k’ + q

)
+ β

(
−k’ + q

)]
+∆t3

[
γ
(

k + q, k’ + q
)
+ γ

(
−k + q,−k’ + q

)]
,

(5)

with
β(k) = 2

[
cos(a kx) + cos

(
a ky

)]
, (6)

and
γ
(
k.k′

)
= 4 cos(a kx) cos

(
a k′y

)
+ 4 cos

(
a k′x

)
cos
(
a ky

)
, (7)

where for the sake of generality, the effective lattice parameter a has been assumed to
be equal to 3.855 Å, which corresponds to a relative average between the CuO2 lattice
parameters found for several cuprates [42,43].

Table 1. Expressions for the Hubbard model parameters with u(r) as the lattice periodic potential
and v(r− r′) as the interaction potential between two electrons in the lattice.

Single-particle parameters

ti,j =
∫

d3rϕ∗(r−Ri)
∣∣∣− }2∇2

2m + u(r)
∣∣∣ϕ(r−Rj

)
t = ti,j with < i, j >
t′ = ti,j with� i, j�

Electron-electron interaction parameters

Ukl
ij =

∫
d3rd3r′ϕ∗(r−Ri)ϕ∗

(
r′ −Rj

)
v(r− r′)ϕ(r−Rk)ϕ(r′ −Rl)

U = Uii
ii

V = Uij
ij

Uij
ii = ∆t, with < i, j >

Ul j
il = ∆t3, with < i, l >, < j, l >, and� i, j�

Then, the chemical potential (µ) and superconducting gap [∆(k)] can be obtained from
the mean-field BCS coupled integral equations for d-wave superconductors [38]:

1 = − (V − 4∆t3)a2

4π2

x

1BZ

{[
cos(a kx)− cos

(
a ky

)]2
2E(k)

tanh
(

E(k)
2kBT

)}
dkxdky, (8)

n− 1 = − a2

4π2

x

1BZ

ε(k)− µ

E(k)
tanh

(
E(k)
2kBT

)
dkxdky, (9)

where 1BZ refers to the first Brillouin zone, which is defined as
[−π

a , π
a
]⊗[−π

a , π
a
]
. The

quasiparticle energy [E(k)] is given by [44]:

E(k) =
√
(εMF(k)− µ)2 + ∆2(k). (10)
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Therein, the mean-field dispersion relation is given by [38]

εMF(k) = EMF + tMF
[
cos(a kx) + cos

(
a ky

)]
+ 4t′MF cos(a kx) cos

(
a ky

)
, (11)

with

EMF =

(
U
2
+ 4V

)
n, (12)

t′MF = t′ + 2n∆t3, (13)

and
tMF = t + n∆t, (14)

where n is the number of electrons per lattice site.
Therefore, the d-wave superconducting gap symmetry is given by the following:

∆(k) = ∆d
[
cos(a kx)− cos

(
a ky

)]
. (15)

where ∆d is the temperature-dependent gap amplitude, the critical temperature of the
superconductor can be determined from Equation (8) by ∆d(T = Tc) = 0. On the other
hand, as established by Equation (2), to calculate the superconducting critical current
density (from microscopic principles), it is necessary to obtain the group velocity evaluated
on the Fermi surface.

3. Critical Current Density

To obtain the critical current density, i.e., the maximum current density, vg(k) was
evaluated at the Fermi surface, given by the condition εMF(k) = µ, which leads to

vg(kF) =
a∆d
}

√
sin2(a kxF) + sin2(a kyF

)
, (16)

where a is the lattice parameter and ∆d is the gap amplitude, which depends on the
temperature. Therefore, the final expression for the current density is

J(kF) =
1
}ρqa∆d

√
sin2(a kxF) + sin2(a kyF

)
, (17)

where the J strength basically depends on ∆d(T) for T between zero and Tc, i.e., the
critical current density has the same temperature dependence as the superconducting gap
amplitude. Moreover, the square root term will be the maximum for

(
akxF, a kyF

)
≈
(

π
2 , π

2
)
,

considering that the FS does not necessarily touch the point
(

π
2 , π

2
)
.

By fixing the electronic correlation and looking for the minimal energy of the ground
state in the space (t′, nop) with Tc ≈ 100 K, we assumed that ∆t3 = 0.05 eV and ∆t = 0.5 eV
for the case of YBCO as previously established in Ref. [45]. Likewise, for the corresponding
carrier density at the Fermi surface, we assumed ρ = 1.0 × 1022 carriers/cm3, this is in
good agreement with the recent observations reported in Ref. [41].

In this way, by solving the above set of coupled integral equations that determine
∆d, the current density on the reciprocal lattice

(
akx, a ky

)
of a generic YBCO crystal at the

Fermi surface has been calculated (see Figure 1) for the interaction parameters already
mentioned.
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peratures lower than that of liquid nitrogen (77 K), the microscopic current density does 
not change substantially (or at least not within the logarithmic scale of Figure 2). It is clear 
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with the experimental observations for 𝐽  along diverse YBCO samples [48,49], which 
means that the current density 𝐽 calculated from microscopic principles is independent 
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mesoscopic or vortex dynamics parameters influenced by materials deposition, fabrica-
tion techniques, and composite pinning properties. 𝐽 is to be understood as the most fun-
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Figure 1. Critical current density (Jc) (blue line) as a function of k on the Fermi surface for T = 0 K
for a set of Hamiltonian parameters with −t′/t = 0.06, ∆t = 0.5 eV, ∆t3 = 0.05 eV, and n = 0.805.
The corresponding Fermi surface is depicted on the kx-ky plane by a black line.

Figure 1 shows that the obtained FS is in good agreement with that derived from
ARPES data [46] and the one obtained by similar theoretical approaches which have
previously shown that the YBCO has a d-wave symmetry gap [47]. Therefore, as previously
stated in Ref. [45], the superconducting properties of YBCO are mostly driven by the
second-neighbor correlated hopping ∆t3, and that is not an exemption when calculating
the current density of the superconductor from microscopic principles.

On the other hand, when calculating the current density as a function of temperature
and the gap amplitude for the same system shown in Figure 1 (but at two different k on
the FS, say akF−1 = (1.321354, 1.321774) and akF−2 = (π, 0.087194), represented by stars
and circles in Figure 2), it is possible to notice that, as T increases, the gap amplitude
∆d decreases with a very rapid drop in the current density near Tc. In fact, even for
temperatures lower than that of liquid nitrogen (77 K), the microscopic current density
does not change substantially (or at least not within the logarithmic scale of Figure 2). It is
clear that when assuming 77 K as a reference, J slightly increases along with ∆d. When the
temperature decreases (i.e., within the same order of magnitude), it can rapidly decrease
with a parabolic tendency toward higher temperatures. This result is in good agreement
with the experimental observations for Jc along diverse YBCO samples [48,49], which
means that the current density J calculated from microscopic principles is independent of
macroscopic factors, such as geometry (bulk, films, crystals, etc.), as well as of mesoscopic
or vortex dynamics parameters influenced by materials deposition, fabrication techniques,
and composite pinning properties. J is to be understood as the most fundamental and
possibly maximum critical current density that can be exhibited by the superconductor.
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Figure 2. Critical current density (Jc) as a function of temperature and gap amplitude for the same
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on the kx-ky plane (black solid circles).

The above is true by reminding the well-established critical state theory for type-II
superconductors [13–15], where it has been already proven that the current density of charge
carriers into a lossless superconducting state (only possible to attain at T = 0 K) is bounded
by the condition J = Jc [50]. Therefore, our model allows connecting the macroscopic world,
where the critical current density characterizes the balance equation between magnetic
and intrinsic pinning forces, with the microscopic world which determines the maximum
current density that a superconductor can stand. However, it should be noted that due to
the d-wave anisotropy of the superconducting gap of cuprates, J is not uniform along the
Fermi surface.

In fact, by using high-resolution angle-resolved photoemission spectroscopy,
ARPES [6,9,25], it has been demonstrated that the quasiparticle energy dispersion at
the so-called nodal

(
π
2 , π

2
)

and antinodal (π, 0) directions differ. In this sense, we have
found that for the calculated group velocity at T = 0 K (see Figure 3), either for direc-
tions close to the node (vg = 6.920943 × 105 cm/s at kF−1) or close to the antinode
(vg = 4.397612 × 104 cm/s at kF−2), upper and bottom limits of the current density J over
the FS can be established. In particular, we have found that close to the nodal direction, the
current density at kF−1 is of about 2.214702 × 109 A/cm2 for the analyzed case, while for
wave vectors close to the antinodal direction, it is J ≈ 1.407236 × 108 A/cm2 (see Figure 2).
This result indicates the existence of a maximum threshold value for Jc in d-wave super-
conductors of about 140 MA/cm2 because even though a higher current density can exist
along the nodal direction due to its augmented group velocity, in practical applications, a
transport current density higher than this value would destroy the superconductivity along
kF−2, creating an instantaneous avalanche of vortices moving from the superconducting
state to the normal one. Thus, putting our findings into the context of the most recent
measurements of the critical current density in PLD-deposited YBCO thin films [34,41], it
should be noticed that, indeed, d-wave superconductors such as YBCO can reach ultra-high
critical current densities of approximately 90 MA/cm2 for oxygen overdoped samples,
denoting significant room for improvement. Therefore, by having shown that from micro-
scopic principles the maximum current density that a cuprate superconductor may stand is
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around 140 MA/cm2, we reaffirm the hypothesis at Ref. [41], which suggests that overdop-
ing strategies with oxygen post-processing treatments and nanoengineering pinning can
truly offer powerful prospects to increase the limits of dissipation-free current transport in
cuprate superconductors and coated conductors for practical applications. Nevertheless,
regardless of how the Jc properties of the superconductor are enhanced, either by the
inclusion of pinning elements (defects, dopants, inclusions, etc.) or the increment of charge
carriers by the hole doping of the superconducting CuO2 planes, the Jc of the cuprates
cannot exceed the microscopic limits imposed by the Cooper pairs formation.
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4. Conclusions

In summary, in this paper, a comprehensive analysis of the critical current density
for d-wave superconductors has been performed by using a generalized Hubbard model,
which includes a second neighbor correlated-hopping term that is key for the formation.
The superconducting properties were calculated by solving two coupled integral equations,
Equations (8) and (9), obtained by applying the BCS formalism to the mean-field general-
ized Hubbard Hamiltonian, where the integrals involved can be efficiently calculated by
isolating the region around the Fermi surface. Thus, the calculation of the group velocity
on the FS allows estimating the maximum critical current density of quasiparticles in the
superconducting state, which in turn permits the establishment of a more fundamental
threshold for the critical current density Jc (fundamental in the sense that it is related to the
microscopic pairing mechanism).

Likewise, it is suggested that the k-states at the anti-nodal region play a more important
role than those around the nodes in the formation of the superconducting condensate. This
is because even though the nodal direction shows the highest current density, in the order
of the London penetration depth (λ ≈ 100 nm), i.e., in the length scale of fluxons for type-II
superconductors, Cooper pairs must coexist at both the nodal and the antinodal regions of
the CuO2 planes (otherwise a stable flux pinning event cannot occur). Thus, our results
support the idea that the further nanoengineering of superconducting thin films based on
the deposition of rare-earth barium copper oxygen (REBCO) compounds and the increment
of the charge density by the p-doping of superconducting CuO2 planes are both likely to
lead to critical current densities even higher than the record of 90 MA/cm2 in overdoped
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YBCO films. Nevertheless, although these are already ultrahigh critical current densities,
the capacity of the superconductors for transporting current is not unlimited, but on the
contrary, from purely microscopic principles, we predicted that critical current densities
higher than 140 MA/cm2 in d-wave superconductors are unlikely to appear. Still, to fully
ratify this conclusion, further research for the 3D case of tetragonal lattices is needed,
such that families of superconductors with more Cooper oxygen planes and higher critical
temperatures could be studied.
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