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Abstract: PVAH is a mixture of solid and fluid, but its mechanical behavior has usually been described
using solid material models. The purpose of this study was to obtain material properties that can
reflect the mechanical behavior of polyvinyl alcohol hydrogel (PVAH) using finite element analysis, a
biphasic continuum model, and to optimize the composition ratio of PVAH to replace the nucleus
pulposus (NP) of the human intervertebral disc. Six types of PVAH specimens (3, 5, 7, 10, 15, 20 wt%)
were prepared, then unconfined compression experiments were performed to acquire their material
properties using the Holmes–Mow biphasic model. With an increasing weight percentage of PVA in
PVAH, the Young’s modulus increased while the permeability parameter decreased. The Young’s
modulus and permeability parameter were similar to those of the NP at 15 wt% and 20 wt%. The
range of motion, facet joint force, and NP pressures measured from dynamic motional analysis of the
lumbar segments with the NP model also exhibited similar values to those with 15~20 wt% PVAH
models. Considering the structural stability and pain of the lumbar segments, it appears that 20 wt%
PVAH is most suitable for replacing the NP.

Keywords: PVAH; lumbar spine; biphasic continuum model; nucleus pulposus; Holmes–Mow model

1. Introduction

Low back pain is the most common disease in modern society. Degenerative inter-
vertebral discs (IVDs) account for more than 75% of the causes of low back pain [1]. The
nucleus pulposus (NP) of the IVD applies intradiscal pressure to the annulus fibrosus
(AF) [2]. When the NP of the degenerated IVD has reduced water content, there is ab-
normal stress on the AF [2–4]; this condition is treated by using a replacement for the
NP [5]. NP replacement can reduce pain while restoring spine mobility and delay IVD
degeneration [6–11]. Moreover, this treatment has the advantage of preserving AF with
minimally invasive surgery.

Some studies have reported that the NP can be modeled as an incompressible fluid
and an isotropic solid with a porous structure [4,12–16], while others have shown that
the NP exhibits properties of both solid and fluid materials simultaneously [4,17,18]. Al-
though various studies have been conducted to explore the material models of the NP by
performing experimental and analytical studies [14,19,20], these material models do not
accurately reflect the biomechanical behavior of the NP and that of the entire IVD with the
NP [21]. Currently, a biphasic continuum model that implements anisotropy, nonlinear-
ity, and inhomogeneity is widely used to model the NP and simulate its biomechanical
behavior [22–25].

Hydrogels are crosslinked polymer networks with high water content. Polyvinyl
alcohol (PVA) is a synthetic water-soluble polymer with low toxicity, excellent mechanical
strength, and high biocompatibility. PVA hydrogel (PVAH) has been used in various ap-
plications, including arterial phantoms [26], heart valves [27], corneal implants [28], and
artificial cartilage [29]. PVAH exhibits a large deformation for relatively small mechanical
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loads and time-dependent viscoelastic behavior, such as rubber materials. One of the
applications of this material is the treatment of degenerative IVDs [30,31]. To investigate
the mechanical behavior of PVAH, various tests, including unconfined and confined com-
pression tests, have been performed, and PVAH has been described using hyperelastic and
viscoelastic material models [1,32,33]. However, because PVAH consists of a porous solid
(PVA) and a fluid (body fluid) that fills it, there are limitations in describing its mechanical
behavior with material models that only simulate its solid part.

Therefore, the purpose of this study was to obtain the material properties of PVAH,
and then optimize its composition ratio such that it can reflect the mechanical behavior of
the NP, using finite element analysis (FEA) and a biphasic continuum model. To this end,
PVAH specimens with various composition ratios of PVA and PBS were first generated to
experimentally measure the material properties used for the NP in the finite element (FE)
model of the lumbar spine. Next, in the lumbar spine model with PVAH to replace the NP,
the range of motion (ROM) and facet joint force (FJF) for flexion, extension, lateral bending,
and axial torsion were analyzed to select the optimal PVAH composition ratio.

2. Materials and Methods
2.1. PVAH Specimen Preparation

In Jordan’s unconfined test results, the maximum compressive stress of human nucleus
pulposus was about 4 kPa [33], and this value was less than the maximum compressive
stress of 10% PVA in Kobayasi’s study [34]. Therefore, in this study, PVAH having a
composition between 3 wt% and 20 wt%, polyvinyl alcohol was selected as follows:

Phosphate-buffered saline (PBS, ×10 Concentrate, Sigma-Aldrich, St. Louis, MO,
USA) was diluted ten times with distilled water. PVA (polyvinyl alcohol, molecular weight
~89,000–98,000 g/mol, 99+% hydrolyzed, Sigma-Aldrich, St. Louis, MO, USA) with a
molecular weight (Mw) of 8.9 × 104~9.8 × 104 was prepared. Six types of PVAH specimens
(PVAH1: 3 wt% PVA and 97 wt% PBS; PVAH2: 5 wt% PVA and 95 wt% PBS; PVAH3: 7
wt% PVA and 93 wt% PBS; PVAH4: 10wt% PVA, 90 wt% PBS; PVAH5: 15 wt% PVA, 85
wt% PBS; PVAH6: 20 wt% PVA, 80 wt% PBS) were prepared.

When preparing the specimen, the PVA:PBS solution was stirred and heated for 2 h.
The temperature was gradually raised to 160 ◦C by stirring the specimen at a speed of
120 rpm for 1 h and 30 min. The temperature was then increased slowly to 220 ◦C for
30 min by stirring at 60 rpm to prevent excessive evaporation due to a sudden phase
change. Finally, to remove bubbles generated during stirring and heating, the temperature
was reduced to 100 ◦C, and the heating conditions were maintained for approximately
10 min, after which the stirring was stopped. The prepared PVAH specimen was poured
into a self-made mold and stored at room temperature for 10 h for bubble removal and
stabilization. The samples were then frozen at −20 ◦C for 10 h and thawed at 3 ◦C for 20 h.
This process was repeated five times [35]. The completed PVAH specimen was placed in a
1× PBS solution and stored in a refrigerator (Figure 1).
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Figure 1. Schematic diagram of PVAH (Polyvinyl Alcohol Hydrogel) production process.

2.2. Holmes–Mow Model

The Holmes–Mow material model was used to represent the non-fibrillar solid matrix
of soft tissues, including articular cartilage and annulus fibrosus [20,36–39]. The Holmes–
Mow model is expressed in terms of elastic solids and hydraulic permeability.

Here, elastic solids can be formulated constitutively by the coupled hyperelastic
strain–energy function (Ψ), as described by

Ψ(I1, I2, J) =
1
2

c
(

eQ − 1
)

(1)

where I1 and I2 are the first and second invariants of the right Cauchy-Green tensor, and J
is the Jacobian of the deformation. The exponential strain components related to function
Q and material parameter c are formulated by:

Q =
β

λ + 2µ

[
(2µ − λ)(I2 − 3) + λ(I2 − 3)− (λ + 2µ)ln

(
J2
)]

(2)

c =
λ + 2µ

2β
(3)
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where β is the exponential stiffening coefficient that accounts for the nonlinearity of the
matrix stress–strain response. The material parameters λ and µ can be expressed by Young’s
modulus (E) and Poisson’s ratio (υ) as follows:

λ = E/(1 + υ)(1 − 2υ) (4)

µ = E/(2(1 + υ)) (5)

In biological tissues, compressive forces reduce the size and change the shape of the
pores within a solid matrix. This leads to a nonlinear increase in the frictional interaction
and momentum exchange between the fluid and solid. To explain this, Holmes–Mow’s
hydraulic permeability is employed as follows:

k(J) = k0

(
J − ϕ0

1 − ϕ0

)α

e
1
2 M(J2−1) (6)

where J is the Jacobian of the deformation, k is the hydraulic permeability in the current
state, k0 is the permeability in the reference state, ϕ0 is the solid volume fraction in the
reference state, M is the exponential strain-dependent coefficient, and α is the power
law exponent.

2.3. Unconfined Compression Experiments

Unconfined compression experiments were performed using a dynamic material tester
(Model 809, MTS Systems, Eden Prairie, MN, USA) with a 500 N load cell. A transparent
acrylic chamber with a height of 10 cm was used to place the PVAH specimens with PBS
solution (Figure 2). For the unconfined compression experiments, 30 PVAH specimens (five
specimens × six types of PVAH: five specimens for each type of PVAH), 30 mm in diameter
and 30 mm in height, were prepared and loaded with a flat indenter attached to the load
cell. The indenter was initially lowered to contact the specimen. Compressive loads were
then applied to the specimen up to 25% strain at a rate of 5% per minute. The 5% strain
was maintained for 3 h to observe the stress relaxation.

Figure 2. Material testing apparatus.

The experimental results were curve-fitted to the Holmes–Mow model using the opti-
mization algorithm of FEBio software (open-source, version 1.5.0, Weiss Lab—University
of Utah, and Ateshian Lab—Columbia University, USA), and the elastic parameters in the
model, such as Young’s modulus (E), Poisson’s ratio (υ), nonlinear permeability parameters
k0 and exponential coefficients β and M, were extracted.
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2.4. Range of Motion (ROM), Facet Joint Force (FJF), and Nucleus Pulposus (NP) Pressures

The lumbar finite element (FE) model was generated using lumbar shape data from the
Human Anatomy Model (Viewpoint Datalabs, Orem, Utah, USA). The lumbar vertebrae
are composed of cancellous bone, cortical bone, posterior element, and endplate. The
endplate was modeled as a bony endplate (BEP) and cartilage endplate (CEP). A linear
elastic model was adopted for cancellous bone, cortical bone, the posterior element, and
BEP, while the Holmes–Mow model was used for CEP. The articular cartilage of the facet
joint was modeled to be attached to the upper and lower posterior elements, and the initial
gap between the upper and lower cartilages was set to 0.5 mm. It was assumed that there
was no friction between the upper and lower cartilage of the facet joint [40,41].

The intervertebral disc (IVD) was modeled with annulus fibrosis (AF) and nucleus
pulposus (NP) [42,43]. The AF was modeled as two layers of the outer annulus fibrosus
(OAF) and inner annulus fibrosus (IAF) [44]. The solid matrix of the AF was modeled
using the Mooney–Rivlin model, whereas its fluid was modeled using the Holmes–Mow
hydraulic permeability. The AF fiber was simulated by adding a fiber-pow-linear model to
the Mooney–Rivlin model of the solid matrix. The fluid and solid of the NP were simulated
using the Holmes–Mow model (Table 1).

Table 1. Material properties of lumbar spine components.

Component Young’s Modulus
(MPa) Poisson Ratio Reference

Cortical bone 12,000 0.3 [45–47]

Cancellous bone 100 0.2 [45–47]

Posterior elements 3500 0.25 [45–47]

Cartilage endplate
Holmes–Mow

E = 0.5218, υ = 0.38, β = 0.0028,
k0 = 5.5 × 10−16 (m4/Ns), M = 0.22

[19]

Bony endplate 1000 0.3 [19]

Cartilage 11 0.4 [48]

Nucleus pulposus
Holmes–Mow

E = 0.202, υ = 0.36, β = 1.46,
k0 = 18.7 × 10−16 (m4/Ns), M = 4.8

[19]

Inner anterior

Mooney–Rivlin
C1 = 0.2, C2 = 0.01, k = 6

Fiber-pow-linear
E = 12.5, β = 5.5, λ0 = 1.135

[44]

Outer anterior

Mooney–Rivlin
C1 = 0.2, C2 = 0.01, k = 6

Fiber-pow-linear
E = 46, β = 4, λ0 = 1.065

[44]

Ligament Nonlinear stress–strain curve [49–51]

Lastly, the lumbar ligaments, including the anterior longitudinal ligament (ALL),
posterior longitudinal ligament (PLL), transverse ligament (TL), interspinous ligament
(ISL), supraspinous ligament (SSL), capsular ligament (CL), and ligamentum flavum (LF),
were modeled to be attached to the lumbar spine based on anatomical information. The
behavior of the ligament was simulated using a spring element that only resists tension
(Figure 3) [49–51].
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Figure 3. Finite element (FE) model of the lumbar segments.

To validate the normal lumbar FE model, the ROMs, FJFs, and NP pressures (maximum
stresses of the IAF and OAF) were compared with analytical and experimental literature
findings for flexion, extension, lateral bending, and axial torsion motions. To compare the
literature findings and the current results, the loading conditions shown in Table 2 were
applied to the upper surface of the L1 lumbar vertebrae, while the lower surface of the
L5 lumbar vertebra was fixed so as not to cause displacement in any direction [52–54].
For finite element (FE) analysis of PVAH composition optimization, the ROM and FJF for
flexion, extension, lateral bending, and axial torsion motions were calculated under the
same loading conditions as above (Table 2). Here, the material properties of six different
types of PVAH specimens were experimentally obtained from the unconfined compression
experiments and subsequent curve fitting and then used in the Holmes–Mow model of the
NP. The results of the ROMs and FJFs were compared with the analytical and experimental
results of the normal lumbar FE model with the normal NP.

Table 2. Follower load and moment values of lumbar spine movements.

Follower Load (N) Moment (N·m) References

Flexion 1175 7.5 [52]

Extension 500 7.5 [52]

Lateral bending 700 7.8 [53]

Axial rotation 720 5.5 [54]

3. Results
3.1. Unconfined Compression Experiments

In the unconfined compression experiments, all six types of PVAH exhibited a nonlin-
ear stress–strain response curve (Figure 4). The maximum compressive stress of 20 wt%
PVAH was greater than those of 3 wt% PVAH by about 143 times. The stress–relaxation
rate was about 4.27 times greater for 3 wt% PVAH compared to 20 wt% PVAH. As the
water content of PVAH increased, the maximum compressive stress decreased, whereas the
amount of stress relaxation behavior increased. The elastic and permeability parameters
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in the Holmes–Mow model to represent PVAH in FEA were acquired by curve fitting of
these results using the optimization algorithm of FEBio (Figure 5). It was found that the
Holmes–Mow model could successfully fit the experimental stress–strain response data
with errors less than 1 × 10−6. With an increasing PVA content of PVAH, the Young’s
modulus (E) increased, while the nonlinear permeability parameter (k0) decreased (Table 3).

Figure 4. (a) Stress–strain and (b) stress–relaxation curves of six types of typical PVAH specimens with
different composition ratios of PVA and PBS obtained from unconfined compression experiments.

Figure 5. Stress relaxation curve as a function of time and corresponding curve fit (R2 = 0.999) for a
typical PVAH specimen with 7 wt% PVA and 93 wt% PBS.

Table 3. Parameter values used in the Holmes–Mow model for PVAH.

3 wt% (n = 5) 5 wt% (n = 5) 7 wt% (n = 5) 10 wt% (n = 5) 15 wt% (n = 5) 20 wt% (n = 5)

E (kPa) 2.2 ± 0.5 10.4 ± 3.5 21.0 ± 4.6 52.3 ± 3.6 123.3 ± 21.5 347.4 ± 32.6

υ 0.15 ± 0.5 0.17 ± 0.05 0.22 ± 0.01 0.23 ± 0.03 0.29 ± 0.03 0.3 ± 0.008

β 1.32 ± 0.38 0.46 ± 0.2 0.74 ± 0.16 1.58 ± 0.21 0.46 ± 0.20 0.45 ± 0.25

k0 × 10−16

(m4/N·s)
23, 262 ± 4768 2998 ± 596 357.3 ± 110.7 191.8 ± 84.6 73.8 ± 16.9 11.7 ± 2.2

M 1.6 ± 0.5 5.99 ± 2.11 4.47 ± 2.19 6.83 ± 2.71 8.30 ± 2.25 5.5 ± 2.4

R2

(Curve-fitting)
0.928 ± 0.032 0.981 ± 0.019 0.997 ± 0.004 0.999 ± 0.01 0.999 ± 0.000 0.998 ± 0.001
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The E and k0 of the NP were between those of 15 wt% PVAH and 20 wt% PVAH. The
E of the NP was ~39% higher than that of 15 wt% PVAH and ~72% lower than that of
20 wt% PVAH, while k0 of the NP was ~295% lower than that of 15 wt% PVAH and ~37%
higher than that of 20 wt% PVAH.

3.2. Range of Motion (ROM), Facet Joint Force (FJF), and Nucleus Pulposus (NP) Pressures

To verify the modeled lumbar spine segments, the ROM for flexion, extension, lateral
bending, and axis torsion motions measured under a combination of moments and follower
loads were compared with the results of previous studies. The present results were consis-
tent with the ROMs measured in previous in vivo and analytical studies (Figure 6) [55–58].
Likewise, the FJFs and NP pressures for flexion, extension, lateral bending, and axis torsion
motions were consistent with previous findings measured from lumbar spine finite element
(FE) models (Figures 7 and 8) [55–58].

Figure 6. Range of motions (ROMs) of the healthy lumbar spine segments measured under a
combination of (a) flexion moment (7.5 N·m) and follower load (1175 N), (b) extension moment
(7.5 N·m) and follower load (500 N), (c) lateral bending moment (7.8 N·m) and follower load (700 N),
and (d) axial rotation moment (5.5 N·m) and follower load (720 N) (the white bars represent in vivo
experimental results of the ROM for the L4–L5 segment, and other bars represent previous and
current findings obtained from finite element analyses).
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Figure 7. Facet joint forces (FJFs) of the healthy lumbar spine segments measured under a combination
of (a) extension moment (7.5 N·m) and follower load (500 N), (b) lateral bending moment (7.8 N·m)
and follower load (700 N), and (c) axial rotation moment (5.5 N·m) and follower load (720 N).
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Figure 8. Nucleus pulposus (NP) pressures of the healthy lumbar spine segments measured under
a combination of (a) flexion moment (7.5 N·m) and follower load (1175 N), (b) extension moment
(7.5 N·m) and follower load (500 N), (c) lateral bending moment (7.8 N·m) and follower load (700 N),
and (d) axial rotation moment (5.5 N·m) and follower load (720 N) (the white bars represent in vivo
experimental results of the NP pressures for the L4–L5 segment, and other bars represent previous
and current findings obtained from finite element analyses).

The ROM and FJF for flexion, extension, lateral bending, and axial torsion motion
decreased with an increasing weight percentage of PVA in PVAH. When the results of the
L1–L2, L2–L3, L3–L4, and L4–L5 segments were averaged, the ROMs of 20 wt% PVAH were
lower than those of 3 wt% PVAH by 1.0%, 3.3%, 4.8%, and 1.7% for flexion, extension, lateral
bending, and axial torsion motions, respectively. The ROMs of the lumbar segments with
15 wt% and 20 wt% PVAH differed by only 0.45% and 0.86%, respectively, compared with
the ROMs and the NP. When the results of the L1–L2, L2–L3, L3–L4, and L4–L5 segments
were averaged, the ROMs of 20 wt% PVAH were lower than those of 15 wt% PVAH by
0.5%, 1.6%, 2.0%, and 1.0% for flexion, extension, lateral bending, and axial torsion motions,
respectively (Figure 9). The FJFs of 20 wt% PVAH were lower than those of 3 wt% PVAH by
6.5%, 9.2%, and 5.3% for extension, lateral bending, and axial torsion motions, respectively.
The FJFs of the lumbar segments with 15 wt% and 20 wt% PVAH differed by only 0.8%
and 1.4%, respectively, compared with those of the NP. The FJFs of 20 wt% PVAH were
lower than those of 15 wt% PVAH by 2.7%, 3.2%, and 0.7% for extension, lateral bending,
and axial torsion motions, respectively (Figure 10). Similarly, the maximum stress values
generated in the IAF and OAF surrounding the NP (i.e., NP pressures) decreased with
an increasing weight percentage of PVA in PVAH. In the IAF, the maximum stresses of
20 wt% PVAH (average values of the L1–L2 to L4–L5 segments) were lower than those of
3 wt% PVAH by 12.4%, 15.4%, 8.0%, and 12.0% for flexion, extension, lateral bending, and
axial torsion motions, respectively. Moreover, in the OAF, the maximum stresses of 20 wt%
PVAH were lower than those of 3 wt% PVAH by 12.3%, 1.4%, 14.1%, and 11.8 % for flexion,
extension, lateral bending, and axial torsion motions, respectively. The maximum stresses
of the AF with 15 wt% and 20 wt% PVAH differed by only 2.1% and 3.2%, respectively,
compared with those of the NPs. In the AF, the maximum stress of 20 wt% PVAH was
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lower than those of 15 wt% PVAH by 6.3%, 4.2%, 4.5%, and 0.7% for flexion, extension,
lateral bending, and axial torsion motions, respectively (Figure 11).

Figure 9. Range of motions (ROMs) of the lumbar spine segments with PVAH to replace the NPs that
were measured under a combination of (a) flexion moment (7.5 N·m) and follower load (1175 N), (b)
extension moment (7.5 N·m) and follower load (500 N), (c) lateral bending moment (7.8 N·m) and
follower load (700 N), and (d) axial rotation moment (5.5 N·m) and follower load (720 N).

Figure 10. Cont.
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Figure 10. Facet joint forces (FJFs) of lumbar spine segments with PVAH to replace the NPs that
were measured under a combination of (a) extension moment (7.5 N·m) and follower load (500 N),
(b) lateral bending moment (7.8 N·m) and follower load (700 N), and (c) axial rotation moment
(5.5 N·m) and follower load (720 N).
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Figure 11. Maximum stresses for the inner annulus fibrosus (IAF) and the outer annulus fibrosus
(OAF) of the lumbar spine segments with PVAH to replace the NPs that were measured under a
combination of (a) flexion moment (7.5 N·m) and follower load (1175 N), (b) extension moment
(7.5 N·m) and follower load (500 N), (c) lateral bending moment (7.8 N·m) and follower load (700 N),
and (d) axial rotation moment (5.5 N·m) and follower load (720 N) (each colored bar represents the
average value of maximum stresses calculated in the L1–L2, L2–L3, L3–L4, and L4–L5 segments).

4. Discussion

This study aims to optimize the composition ratio of PVAH that can reflect the me-
chanical behavior of the NP and further reflect the range of motion (ROM) and facet joint
forces (FJFs) of the L1–L2 to L4–L5 segments for flexion, extension, lateral bending, and
axial torsion, although replaced by PVAH. To this end, six types of PVAH with different
composition ratios of PVA and PBS were used to replace the NP, and their biphasic material
properties were compared with those of the NPs. Furthermore, the ROMs and FJFs of the
lumbar segments with PVAH were compared to those of the NP.

The finite element (FE) model of the lumbar spine developed in this study was verified
by comparing the current results (ROMs, FJFs, NP pressures) with in vivo experimental
data and finite element (FE) analysis results reported in the literature. Although the
current results were reasonably consistent with the literature’s findings, previous in vivo
experimental results on the ROM for flexion motion exhibited a significant difference from
the FE analysis results (Figure 6). This difference was presumably because the experimental
measurements on the ROMs were taken with the subjects (11 male volunteers between
the ages of 25 and 36 years) standing with their spine maximally flexed [56]. The applied
flexion moment and follower load in in vivo experiments could be significantly different
from those in the FE analysis. Regarding the FJFs, previous FE analysis results showed
large variations depending on the FE model constructed by each researcher, mainly in the
shape of the facet joint cartilage and friction conditions applied to the facet joint (Figure 7).
These results suggest that the normal lumbar spine FE model proposed in this study reflects
the physiological characteristics of the human lumbar spine, which makes it suitable for
use in biomechanical analysis.

The stress–strain curves of PVAH obtained from unconfined compression experiments
showed a toe region and a linear region and were identical to the compression behavior
of various polymer materials (Figure 4) [29,32,34,59]. The Young’s modulus (E) obtained
by curve-fitting unconfined compression experimental results using the Holmes–Mow
model increased with an increasing weight percentage of PVA in PVAH. This is because
the load required for compression increased with the increasing percentage of weight of
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PVA, owing to an increase in the solid matrix in PVAH. On the other hand, the permeability
parameter k0 decreased with an increasing weight percentage of PVA; this indicates that
the low permeability (k0), caused by the small pore size from the high weight percentage
of PVA required a long time to achieve steady-state equilibrium in the stress–relaxation
behavior. This can be explained by the fact that the smaller pore size of PVAH with lower
permeability (k0) provides higher fluid flow resistance, preventing fluid from flowing freely
within the PVAH [60]. These results are consistent with those of previous studies [61]. The
material properties of PVAH obtained by curve-fitting the experimental results were also
compared with those of the NP in previous studies. As per the results, E and k0 of the NP
are between those of 15 wt% and 20 wt% PVAH, respectively, indicating that 15 wt% and
20 wt% PVAH exhibit compressive properties similar to those of the NP.

In terms of dynamic motional analysis of the lumbar segments either with the NP
or with PVAH, the ROMs, FJFs, and NP pressures were measured for flexion, extension,
lateral bending, and axial torsions. These values of the lumbar segments with NP were
similar to those with 15 wt% PVAH and 20 wt% PVAH. The maximum stresses of the IAF
and the OAF tended to gradually decrease with an increasing weight percentage of PVA
in PVAH for flexion, extension, lateral bending, and axial torsion because the pressures
applied by the AF decreased with increasing E of PVAH. This result also suggests that,
as the E of the PVAH decreases, the load applied to the AF increases, increasing the risk
of causing lesions such as disc herniation due to AF tear. In this study, variations in the
ROMs measured from the lumbar segments with different composition ratios of PVA and
PBS in PVAH were smaller than variations in the E measured from PVAH with different
composition ratios of PVA and PBS. This is considered to be due to the role of the AF, a
form that surrounds the NP, which absorbs the shock of the spine during exercise and
evenly distributes the pressure applied to the spine to stabilize it [62–66].

5. Conclusions

Among the PVAHs used in our study, 15 wt% PVAH was more similar to the NP
than 20 wt% PVAH in terms of the ROMs, while 20 wt% PVAH exhibited results more
similar to the NP than 15 wt% PVAH in terms of the FJFs and the maximum stresses of
the AF. Considering that the FJFs and AF maximum stresses could cause the risk of AF
tears and/or the pain in the facet joints, and the difference between the ROMs with 15 wt%
and 20 wt% was insignificant, it appears that 20 wt% PVAH is most suitable for replacing
the NP. However, it is still possible that PVAH with a composition between 15 wt% and
20 wt% PVAH, such as 17 wt% PVAH may be closer to the properties of the human nucleus
pulposus according to the current results. To evaluate PVAH as a functional substitute for
NPs, further studies on material properties and fatigue and wear properties for PVAH with
compositions between 15 wt% and 20 wt% are needed.
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