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Abstract: The superplastic behavior of alumina-based nanostructured ceramics (Al2O3) is an impor-
tant issue in the world of materials. The main body of this paper is an analysis of the creep behavior of
polycrystals, with grain boundary sliding as the main deformation mechanism at high temperatures.
Concomitant accommodation of grain shapes to preserve spatial continuity has a comparatively
small effect on the strain rate. The constitutive equations for small deformations, relating strain and
strain rate, derived from two models for grain sliding, are compared with the experimental data
with their respective uncertainties. The data follow from experiments on the plastic deformation of
alumina composites reinforced, on the one hand by graphene oxide, and on the other hand by carbon
nanofibers sintered by SPS. The results show good agreement between experiment and theory for
these advanced ceramics, particularly for one of the assumed models. The values obtained of ξ2 for
model A were in the interval 0.0002–0.1189, and for model B were in the interval 0.000001–0.0561.
The values obtained of R2 for model A were in the interval 0.9122–0.9994, and for model B were in
the interval 0.9586–0.9999. The threshold stress was between (3.05 · 10−15–25.68) MPa.

Keywords: alumina; plasticity; superplasticity; micromechanical modeling; ductility

1. Introduction

Advanced ceramic materials such as alumina composites (c-Al2O3) have good proper-
ties, and due to this, have several applications in the industry. These kinds of new materials
have excellent properties of high strength, low chemical reactivity and high thermal and
electric insulating characteristics [1,2].

For grain sizes d < 2 µm and in the temperature range (1373 ≤ T ≤ 1573 K), alumina
samples obey the following Equation (1), which is a phenomenological equation proposed
by Dorn

.
ε = A

(σ− σ0)
n

dp exp
(
− Q

kBT

)
(1)

where
.
ε is the strain rate defined by

.
ε = dε/dt; in other words, the variation of the

deformation with time. A is a stress and temperature independent coefficient, σ is the
applied stress, σ0 is the threshold stress which indicates the minimum value of stress to
start the process of deformation and d is the mean grain size. Q is the activation energy
of the deformation mechanism, which is defined by Equation (2), and can be obtained
by changing the temperature and maintaining constant the value of stress. kB is the
Boltzmann constant, and T is the absolute temperature. n is the stress exponent defined
by the Equation (3), which is calculated by changing the applied load and maintaining the
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temperature constant. p is the grain size exponent. The value of n varies strongly with the
flow stress σ, and sometimes takes the value n = 2.

Q = −k
[
∂
(
ln

.
εss
)
/∂(1/T)

]
σss
≈ −k

 ln
.
ε1.
ε2

1
T1
− 1

T2

 (2)

n =
[
∂
(
ln

.
εss
)
/∂(lnσss)

]
T =

(
ln

.
ε2
.
ε1

)
/
(

ln
σss2

σss1

)
(3)

The processes of deformation at high temperatures are as follows: (i) the grains slide
along the common grain boundaries; (ii) the deformation of the grains try to accommodate
to prevent the opening of holes and maintain the equation continuity; and (iii) accommoda-
tion of grain shapes produced by several processes like diffusion, dislocations, etc. [3].

Several authors [4,5] published theories that provided equations of the form (1) with
n = 2 and σ0 = 0. Gittus [6] and Kaibyshev [7] introduced finite values for σ0. The grain
size exponent changes from p = 1 [8], p = 2 [4–7,9–11] and p = 3 [6,12]. Hence, they attribute
to the class of processes (iii) the main role in controlling the strain rate.

There are other models in the literature. The theory of Ashby and Verrall [13] provides
n = 1. Gómez-García et al. [14] presented a model that explains the transition between
two regimes with n = 1 and n = 2. This regime change has been reported by Sakuma and
Yoshida [15].

Other models explain the superplastic regime of deformation [16–20]. A quite different
scheme assumes that the reshaping of small grains demands weaker forces than those
causing the sliding of the grains along the boundaries. In contrast to most of the theories
cited in the previous paragraphs, this attributes to processes of class (i) the main role in
controlling the strain rate. In this scheme, the flow is the composition of the sliding of all
the grain pairs, which are driven by the shear forces in the shared faces of each pair. The
grains continuously accommodate their shapes, but the forces demanded by these processes
are much weaker. The final equation is analytic, and exhibits the characteristic sigmoidal
shape of the logarithmic plots of the experimental stress-strain data for superplastic regime
of deformation. The agreement between the theoretical equation and the experiment for
several metal materials with grains of several microns (1.0 < d < 10 µm) is notable [16–20].
A recent paper shows that the model also fits with high precision the data of Zapata-Solvas
et al. on ceramic samples [21,22]. The theoretical approach just described has two variants,
which hereafter we will call models A [16] and B [19].

In this work, we begin revisiting the experimental data of Zapata-Solvas et al. [21].
These authors worked with 4% mol yttria tetragonal zirconia polycrystals (4-YTZP) with
grain sizes between 0.38–1.15 µm. The employed temperature was between 1350–1400 ◦C,
and the strain rates ranged between 5 · 10−7 and 2 · 10−4 s−1. The stresses were between 10
and 300 MPa. The stress exponents varied with increasing stress from 3.5 to an asymptotic
value of 2.0. There is a correlation between the stress exponent and the grain size: the larger
the grain size, the smaller the stress exponent, with a negligible influence of the applied
stress. A value of the activation energy equal to Q = 520 ± 70 kJ/mol was also obtained
from these creep tests, and no dependence on grain size was observed. These creep data
were already analyzed in light of model B, to show that this model produces a better fit
than the one of model A. The main part of this article is composed of the best fit analysis of
both models, with experimental data on the plastic flow of alumina composites reinforced
by graphene oxide on one hand, and carbon nanofibers sintered by SPS by Cano-Crespo
et al. [23] on the other. These authors performed creep experiments at temperatures ranging
between 1200–1250 ◦C, and the values of the applied load were in the range 9–300 MPa.
The stress exponents were between 1.5 and 2.0 in both composites, and the activation
energy was approximately 600 kJ/mol. The main theoretical hypotheses are discussed in
detail, and the derivation of the constitutive equations is also discussed. The quality of the
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theoretical fits given by models A and B are compared, and the obtained values for the
physical constants inherent to the models are discussed.

2. Background Theory

The plastic deformation of a polycrystalline solid is modeled as the flow of a contin-
uous material composed of a random array of deformable polyhedron, which can slide
over each other along shared surfaces [18–20]. Each polyhedron continuously modifies
its shape to fit the neighbors and preserve the continuity of matter. This describes how
materials with micrometric or submicrometric grain size (<10 µm) do deform, and can
undergo large plastic deformation. The hypothesis of this theory is that deformation is
controlled by tangential forces on the grain boundaries. The shear stress must exceed a
threshold value τC to begin to slide. This stress is very low to activate dislocations, given
the nature of the grains [24].

Other authors [16,17], Monte Carlo computer simulations [25], research on bicrys-
tals [26] and molecular dynamic simulations [27] all indicate that the grains start to slide
when the stress is higher than a critical value.

There can be two kinds of elastic instability between grains when the stress is higher
than a threshold value. There can be compression due to some boundary imperfections
like triple points, and in this case only shear exists. In the former case, the amplitude of
the corrugation increases linearly with the difference between the applied stress and the
threshold stress for this kind of elastic instability, starting from zero. In the second class of
instability, the plate suddenly breaks into bands when the threshold stress is reached. The
resultant distortion jumps from zero to a finite value, and then starts to increase linearly
with the applied stress. The relative velocity between adjacent grains is proportional to
the amplitude of the induced stress field. Two possibilities for the force law between the
sliding grains can be presented:

(a) The relative velocity ∆
→
v between two sliding grains is proportional to the difference

between the shear stress and the threshold stress τC.
(b) The relative velocity ∆

→
v increases linearly with the shear stress, and jumps from zero

to the proper value when it is higher than τC.

These two options are called models A and B, respectively.
In the Lagos model (model A), the speed |∆→v | of two grains is proportional to the

shear stress τ =

√
(σx′z′)

2 +
(
σy′z′

)2
applied in the sliding plane. Here σi′ j′ denotes the

elements of the stress tensor in the reference system whose x′y′ plane is in the sliding plane,
shared by the two grains. The force law on the grain scale then reads

∆vi′ =

{
Kσi′z′

0
if τ > τc, i′ = x′, y′

if τ < τc, i′ = x′, y′
(4)

where K is a coefficient independent of the stresses. In this model the relative speed |∆→v |
of the grains jumps suddenly from zero to KτC when the shear τ stress reaches τC. The
Lagos-Retamal model (model B) [28] avoids such a discontinuity, and the relative speed
increases proportionally to τ- τC. The force law at grain scale for the two models can be
written in a unified way as

∆vi′ =

{
Kσi′z′

(
1− ατc

τ

)
0

if τ > τc, i′ = x′, y′

if τ < τc, i′ = x′, y′
(5)

where

α =

{
0 : model A
1 : model B

(6)
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The coefficient K only depends on the hydrostatic pressure

p = −

(
σx′ x′ + σy′ y′ + σz′ z′

)
3

(7)

and temperature to be invariant to the surface orientation.
Equation (5) establishes a law which depends on the stresses, strains and strain rates

fields. A change in the reference system must be made from the local reference system x
′
y
′
z
′

to the absolute reference system xyz, and then promediate over all possible orientations
of x

′
y
′
z
′
. The details of this procedure are in the literature [18–20,29]. The stress will be

referred to as:
σxx = σyy ≡ σ ,σzz ≡ σ (8)

The strain rate tensor can be obtained from

.
εji =

1
d
〈∆vj i〉 (9)

where d is the mean grain size and the symbol 〈A〉i stands for the average of the values
assumed by the magnitude A in a sequence of grains along the coordinate axis xj. It
obtained the following

.
ε = s

Kτc

2d

[
cot(2θC) + α

(
2θC −

π

2

)]
(10)

.
p =

sBKτC
2d

[
1− cos(2θC)

sen(2θC)
− 2θC

(
1 +

2
πsen(2θC)

)
− 2cos(2θC)

π
+

π

2

]
(11)

where ε is the strain, s = ± 1 is positive or negative for elongation or compression, B is the
bulk modulus and θC is defined by:

sen(2θC) =
4τC

3|σ+ p| (12)

The stress σ changes when the sample is being deformed in the longitudinal direction
z. It is essential to fully describe the state of the system at any instant, although it is better
to employ the hydrostatic pressure.

p = −(σ + 2σ )/3 (13)

Equations (10) and (11) govern the evolution of the deformation of a cylindrically
symmetric solid along its axis.

If the solid has been annealed and has no residual internal stresses before subjecting
it to uniaxial stress σ at time t = 0, the internal pressure p(t) satisfies the initial condition
p(0) = − σ

3 , which is equivalent to σ (0) = 0, at any point inside the solid. In terms of the
auxiliary variable θC, this reads:

sen(2θC) =
2τC
σ

, at t = 0 (14)

As long as the plastic deformation continues, ε, p and σ will evolve as dictated by
Equations (10)–(12). The pressure p always increases, and this behavior has been postulated
as the cause of solid materials having finite stress to fracture [29].

Information about K(p) is reported in [17,26]. A derivation can be found in [20]. The
most important variations are in the chemical segregation of precipitation of a solid solution
within the grain boundaries [30]. Pressure-dependent expression [16,17,20]

K(p)
4d

= C0
Ω∗

KBT
exp

(
−Q + Ω∗p

KBT

)
(15)
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was adopted to test whether the sensitivity Ω∗ of the activation energy to the stress,
appearing in Equation (15) through p, gives a good fit to the experiments. The function of
internal pressure has been reported in olivine [31].

Combining Equations (10), (14) and (15) and substituting p = − σ
3 , it follows that:

.
ε = 2C0

Ω∗τc

KBT

√( σ

2τc

)2
− 1 + α

(
arcsen

(
2τc

σ

)
− π

2

) exp
(
−

Q−Ω∗ σ
3

KBT

)
(16)

Recalling that α = 0 for model A and α = 1 for model B, the experimental data of a
number of experiments were adjusted by Equation (16) to obtain the best values for the
physical constants: C0 (which depends on structure and grain size), the sensitivity Ω∗ to
stress of the activation energy, the critical shear stress τc for grain sliding and the activation
energy Q.

3. Experimental Validation and Discussion

The set of six graphs of Figure 1 shows the experimental points of ln σ vs. ln
.
ε for the

creep of 4-YTZP (4 mol% yttria tetragonal zirconia polycristal) measured by Zapata-Solvas
et al. [21] for several grain sizes, together with the curves corresponding to the best fits
given by models A and B. As it can be checked, all the experimental points with its bar
errors adjust very well to the fitting curves.

Tables 1 and 2 show the values of ξ2 and R2, indicative of the quality of the fitting of
the experimental data by the two theoretical models. ξ2 has values for all the cases very
close to zero, between 0.0001 and 0.1189. Furthermore, R2 has values between 0.9122 and
0.9996, which are very near to one. Both facts indicate a high quality of the fits. It can be
observed there that, with the only exception of case d = 1.13 µm, in all other cases model
B fits the data better than model A. In the mentioned case of d = 1.13 µm, the threshold
value τC is higher than in the other cases due to the segregation of the yttria along the grain
boundaries, and in Equation (5) for the model A we have that ∆vi′ = Kσi′z′ and for the
model B to high values of τC we have the same value of ∆vi′ , and this is the reason why
in Figure 1f the fits of the experimental data for both models are similar. The values for
the physical constants of the best fits are not shown, as they were published in a previous
communication [22].

Table 1. Quality of the fits of models A and B to the YTZP data of smaller grain sizes.

d = 0.30 µm d = 0.38 µm d = 0.45 µm

Model A Model B Model A Model B Model A Model B

ξ2 0.1189 0.0561 0.0007 0.0001 0.0045 0.0013

R2 0.9122 0.9586 0.9978 0.9996 0.9918 0.9977

Table 2. Quality of the fits of models A and B to the YTZP data of the higher grain sizes.

d = 0.60 µm d = 0.75 µm d = 1.13 µm

Model A Model B Model A Model B Model A Model B

ξ2 0.0091 0.0033 0.0026 0.0007 0.0002 0.0003

R2 0.9844 0.9943 0.9937 0.9983 0.9994 0.9990
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Figure 1. Stress σ versus strain rate
.
ε data collected for creep tests of 4 mol% yttria tetragonal zirconia

polycrystals at temperature of 1350 ◦C for six mean grain sizes. Circles are the experimental values of
Zapata-Solvas et al. [21]. The continuous lines depict the best fit given by models A and B, respectively.
The values for the statistical indices measuring the quality of the fits are given in Tables 1 and 2.

Figures 2–4 show the experimental data of Cano-Crespo et al. [23] on the creep of
composites of pure alumina (A), alumina-graphene oxide (A-GO) and alumina-carbon
nanofibers (A-CNF) sintered by SPS, together with the corresponding fits of theoretical
models A and B. Again, all the experimental values without exception are inside the
fitting curves.
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Figure 2. Creep data reported by Cano-Crespo et al. [23] for pure alumina (Al2O3) at two different
temperatures. The circles represent experimental values. The continuous lines depict the best fit
given by models A and B. The values for the statistical parameters that indicate the quality of the fits,
and the corresponding physical parameters are given in Tables 3–5.
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and the physical parameters are shown in Tables 3–5.
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that indicate the quality of the fits and the corresponding physical parameters are given in Tables 3–5.

Table 3. Values of the fitting parameters ξ2 and R2 for models A and B to the alumina (A), alumina-
graphene oxide (AGO) and alumina-carbon nanofibers (A-CNF) creep data.

1200 ◦C
A

1250 ◦C
A

1200 ◦C
A-GO

1250 ◦C
A-GO

1200 ◦C
A-CNF

1250 ◦C
A-CNF

A B A B A B A B A B A B

ξ2 0.0008 0.0007 0.0012 0.0005 0.0003 0.0003 0.0191 0.0149 0.0022 0.000001 0.0005 0.0007

R2 0.9893 0.9913 0.9950 0.9979 0.9887 0.9909 0.9501 0.9611 0.9600 0.9999 0.9978 0.9965

Table 4. Values of the physical constants Q (J) and C0 (s−1) for models A and B to the alumina (A),
alumina-graphene oxide (AGO) and alumina-carbon nanofibers (A-CNF) creep data.

1200 ◦C
A

1250 ◦C
A

1200 ◦C
A-GO

1250 ◦C
A-GO

1200 ◦C
A-CNF

1250 ◦C
A-CNF

A B A B A B A B A B A B

Q (J) 9.5 · 10−19 9.5 · 10−19 9.5 · 10−19 9.5 · 10−19 1.0 · 10−18 1.0 · 10−18 1.0 · 10−18 1.0 · 10−18 9.9 · 10−19 9.9 · 10−19 9.9 · 10−19 9.9 · 10−19

C0 (s−1) 3.46 · 1014 2.61 · 1015 3.10 · 1013 3.69 · 1013 3.43 · 1015 6.24 · 1019 2.68 · 1014 5.34 · 1014 8.53 · 1020 1.63 · 1015 1.06 · 1014 1.47 · 1014
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Table 5. Values of the physical constants τc (MPa) and Ω* (m3) for models A and B to the alumina
(A), alumina-graphene oxide (AGO) and alumina-carbon nanofibers (A-CNF) creep data.

1200 ◦C
A

1250 ◦C
A

1200 ◦C
A-GO

1250 ◦C
A-GO

1200 ◦C
A-CNF

1250 ◦C
A-CNF

A B A B A B A B A B A B

τc
(MPa) 19.84 7.92 0.25 3.05 · 10−15 25.68 15.83 6.32 3.58 13.28 3.85 6.78 2.63

Ω* (m3) 4.9 · 10−23 8.3 · 10−24 2.5 · 10−22 2.3 · 10−22 2.1 · 10−22 2.5 · 10−26 8.7 · 10−22 6.7 · 10−22 1.2 · 10−27 4.5 · 10−22 1.1 · 10−21 1.0 · 10−21

Table 3 shows the values of the statistical indexes ξ2 and R2, signaling the accuracy
of the fits. ξ2 has values for all the cases very close to zero, between 0.000001 and 0.0191.
Furthermore, R2 has values between 0.9501 and 0.9999, which are very near to one. Both
facts indicate the high quality of the fits. It is also observed that model B fits the data better
than model A for the two temperatures employed in the creep. Table 3 shows that for
alumina-carbon nanofibers at a temperature of 1200 ◦C, model B gives a better fit than
model A, but for a temperature of 1250 ◦C, model A fits better the experimental data.

Tables 4 and 5 exhibit the values for the physical constants furnished by the best fit
analysis. The activation energy was obtained directly from creep experiments [23], as
only two temperatures were used. The critical stress τc in most cases is close to unity. For
the same model and temperature, the relative values for τc satisfy the scheme A < A-GO
> A-CNF. In most cases, for the same material and model, the temperature dependence of τc
is such that τc (1250 ◦C) < τc (1200 ◦C), which is in agreement with what is expected, since
it means that temperature reduces the threshold for flow stress, which can be understood
because increasing the thermal molecular motions should weaken the bonds. Regarding
the grain size dependent coefficient C0, it can be seen that in general C0 (1250 ◦C) < C0
(1200 ◦C). Finally, for the parameter Ω∗, it is generally true that Ω∗(1250 ◦C) > Ω∗(1200 ◦C).

4. Conclusions

In this work, the data obtained from creep experiments on ceramic materials of
composites of alumina reinforced with graphene oxide and with carbon nanofibers were
fitted with two theoretical models already put forward in the literature, which we call
models A and B. The values obtained of ξ2 for model A were in the interval 0.0002–0.1189,
and for model B were in the interval 0.000001–0.0561. The values obtained of R2 for model
A were in the interval 0.9122–0.9994, and for model B were in the interval 0.9586–0.9999.
In most cases, model B gave a better fit. The best fit analysis for the alumina composites
furnished the physical constants of the models, which were analyzed and commented on.
The threshold stress was between (3.05 · 10−15–25.68) MPa. These findings were also tested
for 4-YTZP materials, which confirm previous statements.
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