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Abstract: Fibre-reinforced composite laminates are frequently used in various engineering structures,
due to their increased weight-to-stiffness ratio, which allows to fulfil certain regulations of CO2

emissions. Limited inter-laminar strength makes composites prone to formation of various defects,
which leads to progressive degradation of residual strength and fatigue life of the structure. Using
ultrasonic guided waves is a common technique for assessing the structural integrity of composite
laminates. Phase velocity is one of the fundamental characteristics of guided waves and can be used
for defect detection, material property estimation, and evaluation of dispersion. In this paper, a
phase velocity reconstruction approach, based on the phase-shift method, was proposed, which uses
frequency sweep excitation to estimate velocity at specific frequency harmonics. In contrast to the
conventional phase spectrum technique, the proposed approach is applicable to the narrowband
piezoelectric transducers and suitable for the reconstruction of dispersion curves for direct, converted,
and multiple co-existing modes with high accuracy. The proposed technique was validated with
finite element simulations and experiments, both on isotropic and anisotropic structures, analysing
the direct, converted, and overlapped modes. The results demonstrated that, using the proposed
technique, the phase velocity dispersion can be reconstructed at −20 dB level bandwidth of the
transducer, with a relative error of ±4%, compared to the theoretical velocity predictions.

Keywords: guided waves; mechanical properties; phase velocity; non-destructive testing; composites

1. Introduction

The composites market is one of the strategic development areas of the European
Union, which aims to strengthen their competitiveness and extend the use of composites in
the sectors of aerospace, automotive, and renewable energy [1]. The current EU demand of
carbon fibre is estimated to be 35% of the global demand, and it will have an annual growth
of 10–12% [1,2], while the UK market will grow from 2.5 billion up to 10 billion pounds a
year by 2030 [3–5]. Fibre-reinforced composite laminates can offer increased strength- and
stiffness-to-weight ratios, which allow for meeting the demanding requirements of CO2
emissions. However, composites have limited interlaminar strength and are prone to forma-
tion of fibre breakage, matrix cracking, delaminations, porosity, and other structural defects.
Such defects are usually hidden and progressively degrade the residual strength and fatigue
life, eventually leading to sudden structural failure. Using ultrasonic guided waves is a
common method for periodic inspection and monitoring of structural integrity of plate-like
composite laminates, that offers large inspection areas and sensitivity to structural damage
of various kinds [6–8]. To date, many studies are available that employ guided waves for
the detection and quantification of impact damage [9–12], delaminations [13–17], and other
defects in composite laminates. Guided wave propagation in composites is determined by
many factors, including, but not limited to, multi-layered structure and anisotropy, object
boundaries, dispersion, multiple co-existing modes, and mode conversion. Phase velocity
is one of the fundamental properties of guided wave modes that depends on composi-
tion, structural integrity, elastic properties, and frequency-thickness product of composite.
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Velocity measurements can be exploited both for material characterisation and damage
detection, offering several benefits, such as validation of material properties, identification
of wave-packets in complex guided wave signals, and sizing of defects [18–20].

However, reconstruction of phase velocity from overlapped, multimodal signals, and
multi-layered anisotropic structures has been a long-standing problem. Initial phase veloc-
ity measurement approaches used threshold, zero crossing, or cross-correlation methods to
evaluate the time-of-flight (ToF) of well-isolated guided wave modes [21]. The threshold
method, in its simplest form, captures the time instance at which the signal crosses certain
amplitude level. As these methods are based on signal amplitude, they are susceptible to
noise and any other variation of the signal shape; hence, more advanced threshold-based
ToF evaluation methods, such as variable ratios or similarity-based double threshold, were
proposed [22,23]. The zero-crossing method seeks to obtain time instances at which the
amplitude of the signal is equal to zero. To improve the accuracy of ToF estimation, using
the zero-crossing technique, and avoid cycle skip problems, multiple zero-crossing points
are being estimated within the same signal [24]. It is known that zero-crossing technique
suffers from the phase uncertainty, especially at large propagation distances and under
significant dispersion, as it become impossible to follow signal phase of the elongating
wave packet and to avoid the cycle-skip. Recently, a technique based on zero-crossing and
spectrum decomposition was proposed which exploits signals measured at sufficiently
close distances and estimates the phase velocity, based on zero-crossing evaluation on
signals filtered with different bandpass filters [25]. Cross-correlation technique is based
on the measurement of correlation lag, between the received and reference signals. Such
technique is considered suitable for low signal-to-noise ratio (SNR) signals, while the ToF
accuracy mainly depends on the sampling ratio [26]. However, it is reported that cross-
correlation-based ToF estimation may become significantly biased while analysing signals
distorted due to scattering or dispersion [27].

The abovementioned ToF estimation methods can effectively be used for well-isolated
and undistorted signals; however, they usually fail in analysing the overlapped, multi-
modal, scattered, and dispersed responses. Model-based approaches can partly deal with
this problem by solving multi-dimensional and non-linear optimisation problems, while
fitting synthetic signals to a segment of ultrasonic structural response. By using matching
pursuit, chirplet transform, empirical mode decomposition or wavelet methods it is possi-
ble to decompose multimodal signals and to estimate their properties, such as frequency or
ToF [28–32]. However, model-based methods are usually computationally expensive, as
transformations are calculated in multi-dimensional space, while the selection of the mother
wavelet or atoms is non-trivial task and may lead to unexpected results. It has been demon-
strated that phase and group velocities can be reconstructed using phase-shift methods.
First proposed by Sachse [33] and used by Schumacher [34], phase-shift methods are based
on the estimation of the phase difference between transmitted and received signals, which is
proportional to propagation distance. Initially, phase-shift methods were extensively used
for bulk waves and later applied to laser-induced guided waves. In contrast to broadband
laser-based excitation, piezoelectric sensors, that are more cost effective and commonly
used in structural health monitoring applications, usually have quite narrow frequency
band, due to the type of excitation, vibration mode, and size of the transducer; hence, the
phase velocity reconstruction zone essentially becomes limited. Moreover, in order to avoid
phase ambiguity, the distance between transmitted and recorded signals is required to be
up to one wavelength, which limits spatial velocity distribution reconstruction capabilities.

In this paper, a phase velocity reconstruction approach is presented that uses phase-
shift method and excitation frequency sweep to obtain phase velocity estimations in the
entire band of transducer. Two sensors, positioned in close proximity, are used to record
signals propagated through the structure and estimate the phase-shift between the signals.
At each excitation frequency, the reconstruction of phase velocity is performed at specific
frequency components only, which correspond to the peak values of the magnitude spectra.
These peak frequencies depend on the frequency response of the excitation signal; hence,
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phase velocity values can be collected at different frequencies, allowing us to achieve a
wideband reconstruction. The validity of the approach is demonstrated through simulations
and experiments by reconstructing the phase velocities of S0 and converted A0 modes, as
well as identifying guided wave modes in complex multimodal signals.

In contrast to the classic phased spectrum method, the proposed approach allows
to reduce the relative error of the phase velocity reconstruction from ±11% to ±4% and
increase significantly the reconstruction bandwidth from −6 dB to −20 dB of the ultrasonic
probe. As a result, using only two signals, measured in close proximity, the proposed
phased spectrum method can achieve the reconstruction accuracy and bandwidth, which,
to date, could be achieved only with techniques that include scanning of the sensor over a
sufficiently large area.

2. Description of Proposed Phase Velocity Estimation Method

The proposed phase velocity reconstruction approach employs a classic phase-shift
method to estimate the velocity values at specific frequencies that correspond to peak
values of the magnitude spectra of received signal. By repeating this procedure at different
excitation frequencies, velocity values can be reconstructed at wide band, covering the
entire bandwidth of the transducer. Variation of the excitation frequency allow different
harmonics to be enhanced or suppressed, which is the key factor if reconstruction is
performed at peak values of magnitude spectra only. The algorithm of the proposed
method can be summarized with the following steps:

1. The transducer is driven by a burst at a central frequency of f 1, and the waveforms
ur1f1(t) and ur2f1(t) are registered with receivers r1 and r2, each positioned at a distances
d1 and d2 from the source (see Figure 1a for reference).

2. The waveforms ur1f1(t) and ur2f1(t) are windowed using the tapered cosine window
w(t) to isolate the wave packets of particular mode (see Figure 1b):

ur1f1w(t) = ur1f1(t)·w(t − t1), ur2f1w(t) = ur2f1(t)·w(t − t2) (1)

where ur1f1w(t) and ur2f1w(t) represent the windowed versions of the waveforms ur1f1(t) and

ur2f1(t), respectively; t1 and t2 correspond to the time instances of the maximum amplitude
of the wave packet.
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(a) (b) 

Figure 1. (a) The example of the waveform, registered with receivers r1 and r2, at distances d1 and d2;
(b) the illustration of waveform windowing to isolate the wave packet of single mode.

3. Each waveform, ur1f1w(t) and ur2f1w(t), is shifted in the time domain by −tm1 and
−tm2, to avoid the uncertainties in the phase unwrapping procedure. The waveforms
can be shifted according to the centroid of signal [35] or maximum value of the Hilbert
envelope [36], in case of moderate dispersion:

ur1f1s(t) = ur1f1w(t + tm1), ur2f1s(t) = ur2f1w(t + tm2), (2)
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tm1 = arg
(

max
t

[
HT
∣∣ur1f1w(t)

∣∣]), tm2 = arg
(

max
t

[
HT
∣∣ur2f1w(t)

∣∣]),

where HT denotes the Hilbert transform; tm1 and tm2 are the time instances, which cor-
responds to the maximum of Hilbert envelope, in such a way that the influence of the
signal delay due to phase velocity is compensated. The shift in time domain is illustrated
in Figure 2a.
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4. The complex frequency spectra of each time-shifted waveform, ur1f1s(t) and ur2f1s(t),
is obtained employing the Fourier transform:

Ur1f1(j f ) = FT
[
ur1f1s(t)

]
, Ur2f1(j f ) = FT

[
ur2f1s(t)

]
(3)

where FT represents the Fourier transform.

5. The phase difference ∆φ(f ) between shifted signals ur1f1s(t) and ur2f1s(t), is estimated
for a given frequency band f (see Figure 2b):

∆ϕf1( f ) =
(
αr1f1( f )− αr2f1( f )

)
, (4)
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αr1f1( f ) = arctan

[
Im
[
Ur1f1(j f )

]
Re
[
Ur1f1(j f )

] ], αr2f1( f ) = arctan

[
Im
[
Ur2f1(j f )

]
Re
[
Ur2f1(j f )

] ],

where Im and Re represent the imaginary and real of the complex Fourier spectra.
Note that the phases αr1f1(f ) and αr2f1(f ) are calculated in a range of [−π . . . π] ra-

dians. If the true phase of the particular frequency is less than −π radians, it will be
represented below the π radians. This means that some discontinuities will appear, in case
the phase goes beyond the ±π radian limit. Therefore, the phases αr1f1(f ) and αr2f1(f ) have
to be unwrapped.

6. The phase velocity, as a function of frequency, is calculated at particular frequencies,
f 1,k1, using a modified version of the phase spectrum method:

cp
(

f1,k1

)
=

2π f1,k1 d
∆ϕf1

(
f1,k1

)
− 2π f1,k1(tm1 − tm2)

, (5)

where f 1,k1 are the frequencies that corresponds to the peak values of the magnitude spectra
|Ur1f1(jf )| at excitation frequency f 1; k = 1 ÷ K1, K1—is the total number of detected peaks
at excitation frequency f 1, and d is the separation distance between the receivers r1 and r2
(d = d2 − d1). The frequency selection for phase velocity estimation is illustrated in Figure 2c.

7. The intermediate values of the phase velocities at other frequencies are obtained by
changing the excitation frequency to f 2 and repeating the whole routine described
above. The final result is obtained by combining the calculations at different excitation
frequencies f 1 . . . f N:

cp( f ) = sort
f

{
cp
(

f1,k1

)
, . . . , cp( fn,kn), . . . , cp

(
fN,kN

)}
, (6)

where N is the number of excitation frequencies used to drive the emitter.

The method presented above is applicable to flat structures with uniform thickness,
which can be multi-layered, anisotropic, or isotropic. In contrast to the conventional
phase spectrum method, it provides better accuracy of velocity estimation, which will be
demonstrated in the subsequent Chapter.

3. Experimental Validation on Isotropic Samples

In this section, the proposed phase velocity estimation approach is validated with the
appropriate experiments. For this purpose, the phase velocity values, extracted with the
proposed approach, are compared with the theoretical calculations, which were considered
a reference. In this study, the velocities of the S0 mode in the aluminium sample will
be analysed.

The experiments were carried out on the aluminium alloy 2024 T6 plate, which was
2 mm thick, 650 mm wide, and 1250 mm long. The well-known isotropic material was
deliberately selected for this study, in order to be able to compare the experimental results
with the theoretically estimated values. The S0 mode was launched into the structure by
attaching the thickness mode transducer to the edge of the Al plate, as is shown in Figure 3.
For the reception, two transducers, r1 and r2, possessing the same characteristics, were
bonded perpendicularly to the upper surface of the specimen at distances d1 = 450 mm and
d2 = 550 mm from the source (see Figure 3).

In this paper, transducers with a central frequency of 240 kHz and bandwidth of
340 kHz at −6 dB level were used. The frequency response of the probe can be seen in
Figure 4a. To reconstruct the dispersion curve under the wide band, two different scenarios
employing the square pulse excitation were used, as follows: n1 = 3 cycles, f 1 = 150 kHz;
and n2 = 3 cycles, f 2 = 200 kHz. Such excitation frequencies were deliberately selected,
according to the magnitude spectrum of excitation pulse, which can be seen in Figure 4b.
The results, presented in the figure, demonstrate that a minor shift of excitation frequency
from 150 to 200 kHz enables peak amplitudes of the magnitude spectra to be obtained at
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different frequencies. Moreover, the local maximum values, in case of 200 kHz excitation,
mostly correspond to the local minimum frequencies of 150 kHz excitation. Thus, excitation
under the selected frequencies enables a large variety of reconstruction frequencies to be
obtained. In this case, it was presumed that the selected excitation frequencies will provide
a sufficient amount of velocity values. In other cases, more excitation frequencies may be
used, exploiting the whole bandwidth of the transducer.
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Figure 4. (a) The frequency response of the thickness mode transducer used for the experiments;
(b) the magnitude spectra of three cycles (150 kHz) (solid line) and three cycles (200 kHz) (dashed
line) square excitation pulse.

The experimental waveforms of the S0 mode, at distances d1 and d2, under the f 1 = 150
and f 2 = 200 kHz excitation, are presented in Figure 5a,b, respectively. The magnitude
spectra, |Ur1f1(jf )| and |Ur2f2(jf )|, of the windowed S0 mode wave packet can be seen in
Figure 5c. The frequencies at which the phase velocity values were extracted are indicated
with circle markers. Finally, the reconstructed dispersion curve of the phase velocity for
the S0 mode, along with theoretical estimation, is shown on Figure 5d. The theoretical
dispersion curve was calculated by employing the SAFE method and material properties of
aluminium 2024 T6 (the density: ρ = 2780 kg/m3; Young’s modulus: E = 72 GPa; Poisson’s
ratio: υ = 0.35).

The results in Figure 5d show that the phase velocities are reconstructed in the fre-
quency band up to 0.8 MHz. According to the frequency response of the transducer used
in this study (see Figure 4a), the technique enables the phase velocities in the −20 dB level
bandwidth of the actuator to be reconstructed. In this study, a total of K = 52 velocity values
were extracted at a band up to 1 MHz. This means that using two frequencies to drive the
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transducer, 52 reconstruction points were observed that correspond to peak frequencies
of the magnitude spectra. Such a number of reconstruction points is relative and depends
on the total number of excitation frequencies, N, and obtained number of peak values of
magnitude spectra, in case of each excitation frequency.

It is noteworthy that the general reliability of the phase spectrum method depends on
the proper selection of the time window to crop the wave packet of the single mode for
FFT. The proposed method implicitly assumes that only one mode is present at the selected
time window.
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In order to estimate the agreement of the results with theoretical phase velocities, the
standard deviation (STD) was used as a measure of spread:

σ =

√√√√ 1
K1 − 1

K1

∑
i=1

∣∣(cp( fi)− ct( fi)
)
− µ

∣∣2, (7)

µ =
1

K1

K1

∑
i=1

(
cp( fi)− ct( fi)

)
, (8)

where K1 is number of points in reconstructed phase velocities, cp(fi) is a vector of recon-
structed phase velocity values, and ct(fi) are the corresponding reference phase velocity
values, calculated using the SAFE method. The estimated standard deviation of the cal-
culated phase velocity values is σ = 161 m/s. This leads to the conclusion that 40 out of
52 velocity values (77%) are within the standard deviation range, as shown in Figure 6a.
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The experimental results, presented in this section, demonstrate that proposed ap-
proach reconstructs the phase velocity values at frequencies up to 800 kHz for the selected
probe. At frequencies above 800 kHz, the approach starts to fail at capturing the pattern of
the dispersion curve. Hence, it can be said that the phase velocity values of the S0 mode
can be reconstructed at −20 dB bandwidth or 0.1 level of the transducer, according to
its normalized magnitude spectra, presented at Figure 4a. The standard deviation of the
reconstructed phase velocities, calculated according to Equation (7), is 161 m/s, which pro-
vides relative error of phase velocity estimation equal to ±3% for the S0 mode, calculated
according to:

δ =

(
σ × 100%

µct( f )

)
, (9)

where µct(f ) is the mean theoretical phase velocity value in the selected frequency band
under analysis.

In order to emphasize the achieved improvement, the signals of the S0 mode, obtained
at 200 kHz, were processed using classic phased spectrum method, described in [33,34].
The reconstructed phase velocity curve is presented at Figure 6b. The results indicate that
highest velocity reconstruction accuracy can be obtained at frequency band 200–340 kHz,
which corresponds to −6 dB bandwidth of the sensor. The standard deviation of the
S0 mode phase velocity reconstruction is estimated to be 592 m/s for the classic phase
spectrum method, which gives ±11% relative phase velocity reconstruction error. In can be
concluded that proposed approach allow to increase the reconstruction bandwidth, from
140 to 800 kHz, and reduce the relative velocity estimation error, from ±11% to ±3%, for
the S0 mode.

4. Identification of Converted Modes

In this section, the numerical validation of the proposed phase velocity reconstruction
method will be presented. The major focus will be given to the method performance, in
case the analysed signal is surrounded by the wave packets of other co-existing modes. To
achieve the purpose of this study, the phase velocities of the converted A0 mode will be
analysed, which convert from the S0 mode, due to the presence of notch.

To fulfil the scope of this research, the 3D linear structural mechanics finite element
model of isotropic aluminium alloy 2024 T6 plate (600 × 200 × 2 mm) is considered. The
top view of the analysed structure is presented on Figure 7. The S0 mode was initially
launched into the structure by applying the in-plane force to the shortest edge of the Al
plate. To generate the converted A0 mode, the vertical 36 mm wide (along x axis) crack-type
defect, with a depth of 66% of the plate thickness, was introduced by duplicating the
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nodes of the mesh. In such way, a complete disbond was simulated, without changing
the shape of finite element model. It was shown by the various researchers that, if a crack
is not symmetrical to the middle plane of the plate, according to the thickness, the mode
conversion takes place upon the wave interaction with the notch, and both the S0 and A0
modes are expected as the reflected and transmitted waves [37]. The defect was centred,
with respect to the short edge of the sample, and situated at the distance of 200 mm from
source of Lamb waves (see Figure 7).
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Figure 7. Illustration of the set-up of numerical aluminium plate FE model with the notch.

Throughout the simulations, the ANSYS 17.1 implicit solver and 3D structural solid
solid64 finite elements were used, which are defined by eight nodes having three de-
grees of freedom at each node and 2 × 2 × 2 integration points. The finite elements
were hexahedrons, meshed using structured grid. Once again, two different scenarios
employing the square pulse excitation were used, as it was described in the previous
section. At first, the excitation pulse consisted of n1 = 3 cycles and a central frequency of
f 1 = 150 kHz. Meanwhile, in the second case, the Lamb waves were excited with n2 = 3 cycles
at f 2 = 200 kHz. The average mesh size was equal to 0.5 mm, which corresponds to 21 nodes
per wavelength for the slowest A0 mode at f 1 and 17 nodes per wavelength at f 2. The
integration steps in the time domain were 0.33 and 0.25 µs, respectively, which produces a
1/20 of the period, both at f 1 and at f 2. The variable monitored in this study was a vertical
component of particle velocity (y) along the centreline of the sample. The waveforms for
the phase velocity estimation were selected along the centreline of the sample at distances
d1 = 240 mm and d2 = 360 mm. The B-scan images of the longitudinal (z) and vertical com-
ponent (y) of the particle velocity, showing the S0 and converted A0 modes, are presented
in Figure 8a,b.

The simulated waveforms of the converted A0 modes, at distances d1 and d2, in case
of f 1 = 150 kHz and f 2 = 200 kHz excitation, are presented in Figure 9a,b. The selected time
windows to cut the wave packet of single mode are indicated with vertical dashed lines. The
magnitude spectra of windowed A0 mode, at frequencies f 1 and f 2, along with indicated
reconstruction frequencies, can be seen on Figure 9c. Finally, the comparison of estimated
DC, with the theoretical calculations, is shown on Figure 9d. The results demonstrate
a good match between the estimated results and theoretical phase velocities, calculated
with the SAFE method. The standard deviation of the reconstructed velocities is equal to
σ = 47.3 m/s. Overall, the K = 32 velocity values were extracted, while 20 (63%) of them were
within the range of standard deviation. Even though the number of reconstruction points is
less than from the experiments present in previous section, Figure 9d suggests that its quite
sufficient for the reconstruction of the segment of dispersion curve. The proposed approach is
not limited with two excitation frequencies; hence, the number of reconstruction points can be
increased if the segment of dispersion curve is not represented properly.
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As it was mentioned previously, the time window selection ambiguity is quite essential
in the success of phase velocity reconstruction using phase-shift method, especially for
overlapped modes. Hence, the selected time window must hold the single mode only. For
complex structures, where signals undergo many reflections, the reconstruction can be
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quite uncertain. On the other hand, it will be demonstrated in the next chapter that phase
velocities can be estimated using part of the signal only. In such a case, the position of the
time window must be optimised, i.e., by solving a minimisation problem, to get reasonable
velocity reconstruction results.

5. Analysis of Multimodal Signals in Anisotropic Structures

In this section, the performance of the proposed phase velocity reconstruction ap-
proach is validated qualitatively by analysing the experimental multimodal signals in
an anisotropic structure. For this purpose, the experiments have been carried out in a
pitch-catch configuration on the 6-ply GFRP plate (biaxial: 0◦ and 90◦/bias: ±45◦/biaxial:
0◦ and 90◦), with dimensions xo = 2000, yo = 1000, and 4 mm thickness (see Figure 10).
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tion approach.

The Lamb waves were generated using the MFC transducer, centred at the coordinates
xe = 500 mm, ye = 250 mm. It was bonded to the surface of the specimen using a thin
layer of gasket maker. The emitter was excited by a three-cycle square pulse, with a central
frequency of 100 kHz, where the fundamental A0 and S0 modes exist in the structure. In
this case, the measurements were recorded at a single excitation frequency. Two waveforms
were recorded along the wave path (0◦ propagation), at the distances d1 = 773 mm and
d2 = 895 mm from the source of Lamb waves (see Figure 10). The proposed phase velocity
estimation method was used to extract velocities of the four wave packets: direct S0, bottom
reflected S0, left top edge reflected S0, and direct A0 mode. The experimentally obtained
waveforms, at the distances d1 and d2, are presented in Figure 11a,b. The start and stop
points of the time windows used to crop the wave packets are indicated by dashed squares.

The reconstructed phase velocities of different reflections can be seen in Figure 12a–d.
The standard deviations for each case of reconstruction are summarized in Table 1. Note
that the reconstructed velocity values below 40 kHz were not considered in the calculations
of STD.

Table 1. The standard deviation of the estimated phase velocities for different GW mode packets.

Type of Mode Velocity Standard Deviation, σ (m/s)

S0 direct 97.4
S0 bottom edge 202.7
S0 left and top edge 224.5
A0 direct 51.5
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The results presented above (Figure 12) were found to be in quite good agreement
with the theoretical calculations. It suggests that the proposed technique can be used with
a certain reliability to extract the phase velocities of GW and identify modes in complex
signals. The results show that the velocities of the direct modes are closer to the theoretical
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values, in comparison to the reflected ones. The average deviation for the direct modes (A0
and S0) is approximately 75 m/s, while for the reflected S0 modes, it is 213 m/s. Several
factors may influence the reliability of the results, though. First of all, the selected time
windows in Figure 11a,b (dashed squares) may give an idea that this procedure is not very
straightforward, especially for the reflected modes. As it turns out, in some cases, part of
the wave packet has to be cropped to get better velocity estimation. Another important
factor is the propagation distance, which varies for modes arriving at different directions.
It means that the distance (d) has to be predefined for each wave packet separately. If
the propagation distance is not known in advance, an additional error will be obtained.
The study revealed that the proposed velocity estimation technique gives an approximate
relative experimental error of ±4%, in comparison to theoretical predictions. Meanwhile,
for the incident modes, the relative error is always less than a ±2.5%. For example, the 2D
FFT method gives an error of approximately of 1% [38]. However, in the study above, the
authors used a set of 64 time series, spatially sampled at 1 mm, to achieve such accuracy.

6. Conclusions

In this paper, a phase velocity reconstruction approach, based on the phased spectrum
method, was developed, which exploits several excitation frequencies of the ultrasonic
probe and estimates phase velocity values at peak frequencies of the magnitude spectra.
The proposed approach allows us to reconstruct phase velocities with high accuracy in
wide frequency bandwidth using only two waveforms measured at close proximity. In
contrast to the classic phase spectrum method, the proposed technique offers an increased
reconstruction bandwidth (from −6 to −20 dB) and reduced relative error of phase velocity
reconstruction (from ±11% to ±4%). The main outcomes of the research can be summarized
as follows:

• It was found that the accuracy of the classic phase spectrum method can be improved
if several frequencies are used to drive the transducer, while the phase velocities are
reconstructed at peak values of Fourier spectra only. Such an approach allows us to
avoid low energy frequency components, where the velocity estimation error is likely
to increase.

• The initial experiments demonstrated that the proposed phased spectrum method can
increase the reconstruction bandwidth, from −6 to −20 dB, of the sensor and improve
the standard deviation of velocity reconstruction, from 592 to 161 m/s. For the
experimental S0 mode, this results in a velocity estimation relative error improvement,
from ±11% to ±3%.

• The finite element simulations demonstrated the applicability of the proposed ap-
proach in detecting converted guided wave modes. It was demonstrated that the
phase velocities of converted modes can be reconstructed with a standard deviation of
47.3 m/s, even if the modes are partly overlapped with direct waves.

• Finally, the proposed method was demonstrated to be appropriate for the analysis of
complex guided wave signals, with multiple co-existing modes. It was estimated that
average deviation for the direct modes (A0 and S0) is approximately 75 m/s, while for
the reflected S0 modes, it is 213 m/s. While analysing the overlapped complex guided
wave signals, the proper selection of time gate is the most important parameter for the
accuracy of reconstruction.

• It was estimated that the average phase velocity reconstruction error of the proposed
method, including both symmetrical and asymmetrical modes, is up to ±4%. The
classic phase spectrum method provides an approximate reconstruction error of ±11%.
Other techniques, reported in the literature, can achieve velocity reconstruction with
an average error of ±1%; however, at least 64 signals need to be acquired to achieve
such accuracy.
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