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Abstract: Zr-6Al-0.1B alloy rich in Zr3Al phase is prepared by hot-pressing sintering. The thermal
deformation behavior of sintered Zr-6Al-0.1B is analyzed by isothermal compression tests at defor-
mation temperatures of 950, 1050, and 1150 ◦C with strain rates of 0.01, 0.1, and 1 s−1. The results
indicate that at the early stage of thermal deformation, the stress increases rapidly with the increase of
strain and then reaches the peak value. Subsequently, the stress decreases with the increase of strain
under the softening effect. On the whole, the true stress-strain curve shifts to the high stress area with
the increase of strain rate or the decrease of deformation temperature, so the sintered Zr-6Al-0.1B
alloy belongs to the temperature and strain rate sensitive material. For the microstructure evolution
of sintered Zr-6Al-0.1B during the isothermal compression, the high strain rate can improve the grain
refinement. However, because sintered Zr-6Al-0.1B is a low plastic material, too high strain rate will
exceed the deformation capacity of the material, resulting in an increase in defects. The increase of
deformation temperature also contributes to grain refinement, but when the temperature is too high,
due to the decomposition of Zr3Al phase, the deformation coordination of the material decreases,
leading to the increase of the probability of the occurrence of defects. This study verified the feasibility
of hot-pressing sintering to prepare Zr-6Al-0.1B alloy rich in Zr3Al phase and laid the foundation of
“hot-pressing sintering + canning hot-extrusion” process of Zr-6Al-0.1B alloy components.
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1. Introduction

The importance of lightweight, long life, and high reliability to spacecraft components
is self-evident. Scholars are working to find more applicative alloy systems with excel-
lent performance in special service environments such as alternating temperature fields,
irradiation, and atomic oxygen erosion, so as to maximize the service life of spacecraft
components. Currently, materials used by spacecraft components are mostly stainless steel
and titanium alloy. However, the feedback of in-orbit use proves that the stainless steel
cannot meet the requirements of lightweight, and the titanium alloy has lower hardness
and wear resistance, and shorter service life.

Zirconium alloy has better corrosion resistance, creep resistance, and radio resistance,
which makes it a potential material for spacecraft components [1–3]. Previous studies
have revealed that Al in Zr-Al alloy, as a stable element of α phase, increases the α-β
phase transition temperature of Zr, and then increases the strength of the alloy [4–6].
In addition, Al as a lightweight element, comprehensively optimizes the strength and
lightweight properties of the Zr-Al alloy, and the content of Al in the alloy ranges from
1.24 to 2.78 (at.%), Zr-Al alloy can form short-range ordered structure, improve the strength
and hardness, but also maintain the particularly important plasticity. Therefore, Zr-Al alloy
provides a new direction for the development of spacecraft structural materials [7,8].
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The studies of Zr-Al compounds have found that the Zr2Al phase has high hardness
and almost no plasticity at room temperature. Conversely, the Zr3Al phase has a face-
centered cubic structure, because of the large number of actuated slip systems and good
isotropic properties, so it has excellent plasticity, and is more suitable as an ideal matrix
phase for structural materials [9].

Li et al. [10,11] prepared Zr-Al alloy by smelting method, the effects of aluminum
content (6.0, 7.0, 8.0 at.%), annealing temperature, and annealing time on the phase com-
position and mechanical properties of Zr-Al alloy were analyzed. They found that there
is no Zr3Al phase in the as-casting Zr-Al alloy and almost no plasticity when the phase
composition is Zr2Al + α-Zr. The annealing process is an effective way to obtain the Zr3Al
+ α-Zr phases, and the alloy has certain plasticity when the phase composition is Zr3Al
+ α-Zr, and with the increase of Al content, the tensile strength and microhardness of Zr3Al
based alloy increase, while the ductility decreases.

Tewari et al. [12] studied the microstructural evolution of Zr3Al upon long-time
annealing treatments. The formation of various phases, temperature regime of their stability,
chemical composition, and volume fraction of these phases during prolonged annealing
were ascertained. The morphology and distribution of the Zr3Al phase have been explained
on the basis of long-range diffusion as the rate-controlling step, and a pseudobinary phase
diagram with varying niobium concentration was developed.

Ren et al. [13] determined the self-diffusion mechanism of Zr3Al by systematic first-
principles calculations based on density functional theory. The formation energies of four
intrinsic point defects were calculated and the relationship between concentration of differ-
ent point defects and temperature was determined. The effect of defect types on the stability
of the system was explored after analyzing the electronic density of different supercells.

Yuan et al. [14] investigated elastic and thermodynamic properties of the L12 type
structure Zr3Al intermetallic compound under high pressure and temperature using ab
initio plane-wave pseudopotential density functional theory (DFT) within the generalized
gradient approximation (GGA). They found the elastic modulus and compressional and
shear wave velocities are increasing monotonically with increasing pressure.

Arıkan [15] investigated the elastic, electronic, and phonon properties of the inter-
metallic compounds Zr3Al in the L12 structure by employing an ab initio pseudopotential
method and a linear-response technique within a generalized gradient approximation
(GGA) of the density-functional theory (DFT) scheme. The electronic band structures of
Zr3Al show that at the Fermi level, a major part of the contribution comes from Zr 4d (Sc
3d) states.

The above studies on Zr-Al alloy show that Zr3Al has good comprehensive properties
with great application potential. In addition, a large number of studies have shown that
multiple alloying can further improve the comprehensive properties of Zr-Al alloy. For
example, the addition of Sc element can effectively improve the recrystallization resistance
of Zr-Al alloy, and it also can obviously improve the depletion zone of the precipitated
phase of Zr-Al binary alloy, making the precipitated phase tend to be evenly distributed.
First-principle calculations also confirm that adding Sc in Zr-Al alloy can effectively inhibit
the transformation of Al3Zr from metastable L12 phase to high temperature stable D023
phase, thus maintaining the recrystallization resistance of the alloy [16,17]. The addition
of Ti element can reduce the lattice mismatch, and then stabilize the metastable phase
L12-Al3Zr [18,19]. Furthermore, the Nb element can improve the ductility when retained
by the alloy up to the composition Zr3Al0.5Nb0.5 [20].

In the studies of the effect of adding elements, what appeals to us is the research by
Li et al. [21]. They analyzed the effect of B element on the microstructure and mechanical
properties of Zr3Al-based alloy. The results show that B element can significantly refine
the grain size of Zr3Al-based alloy. The grain size of Zr3Al-based alloy decreases from
500 µm to 30 µm with by adding 0.1 (wt.%) B element. The reason why we are interested is
that B element has an excellent grain refining effect, and B element has a lower cost and is
more accessible.
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At present, the billet of Zr-Al alloy is mainly made by smelting method, which is
not only expensive, but also complicated, has low production efficiency and raw material
utilization rate. In comparison, hot-pressing sintering is a more flexible preparation method
for alloys and composites, with good formability and applicability [22]. Hot-pressing sinter-
ing has been successfully applied to the preparation of a variety of alloys and composites,
such as, Nickel-based superalloy [23,24], AA6082-ZTA composites [25], Ti-Zr alloys [26],
Al-Ti-Zr alloys [27], Ti35Zr28Nb [28], SiC/Al-Zn-Mg-Cu [29], (Ti,Zr)B2-(Zr,Ti)C [30], Zr-
1.2Sn1Nb-0.4Fe, and Zr-1.2Bi-1Nb-0.4Fe [31], etc.

In view of the above background, Zr-6Al-0.1B alloy rich in Zr3Al phase is prepared
by hot-pressing sintering in this study. The microstructure of hot-pressing sintered Zr-
6Al-0.1B alloy is analyzed by OM and SEM microscopic imaging techniques. The thermal
deformation behavior and microstructure evolution of hot-pressing sintered Zr-6Al-0.1B
alloy are analyzed by isothermal compression tests. This study verified the feasibility
of hot-pressing sintering to prepare Zr-6Al-0.1B alloy rich in Zr3Al phase and laid the
foundation of “hot-pressing sintering + canning hot-extrusion” process of Zr-6Al-0.1B alloy
components.

2. Materials and Methods
2.1. Preparation of Zr-6Al-0.1B Alloy

The mixed powder of 93.9% pure zirconium powder (200 mesh) + 6% pure aluminum
powder (200 mesh) + 0.1% aluminum boron alloy powder (providing boron element)
is obtained through low energy ball milling using a planetary ball mill. The model of
planetary ball mill is DECO-30L manufactured by Changsha Deke Instrument Equipment
Co., Ltd. in Changsha, Hunan Province, China. First, the three kinds of powder are loaded
into a stainless-steel ball mill tank, and several stainless-steel balls are added in ball mill
ratio 1:1. Then high purity argon (99.99%) is used to exclude the air in the tank to protect
the powder from oxidation and ignition during ball milling [32,33]. The powder mixing
time is 30 min at the mixing speed 100 r/min. The macroscopic morphology and SEM
image of the mixed powder after ball milling are shown in Figure 1.
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Figure 1. Mixed powder: (a) Macroscopic morphology of mixed powder; (b) SEM image of mixed powder.

Zr-6Al-0.1B alloy is prepared by vacuum hot-pressing sintering using the mixed
powder. It should be pointed out that the hardness of Zr2Al phase is extremely high and
there is almost no plasticity at room temperature. Rather, Zr3Al phase is a face-centered
cubic structure with more slip systems, so it has good isotropy and more suitable plasticity
for processing. Therefore, the key of vacuum hot-pressing sintering is to obtain Zr3Al
phase, and the sintering temperature is a very crucial process parameter.

The hot-pressing sintering temperature should be ensured within the formation condi-
tions of Zr3Al, at the same time, it should be conducive to powder diffusion. According to
the phase diagram of Zr-Al binary alloy as shown in Figure 2 [34], Zr has two allotropic
crystals, α-Zr with HCP crystal structure and β-Zr with BCC crystal structure, the phase
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transition temperature is 863 ◦C. As a stable element of α phase, Al can increase the phase
transition temperature. When the mass fraction of Al is 6% (as shown in red dotted line
in Figure 2), α-Zr transform intoβ-Zr and the peritectic reaction “β-Zr + Zr2Al�Zr3Al”
occurs when the temperature is higher than 910 ◦C. However, when the temperature is
higher than 1019 ◦C, the Zr3Al is decomposed into β-Zr and Zr2Al. In Zr-Al alloy, boron
element has little effect on phase transition temperature, and its main function is to retard
grain growth and prevent oxidization. Therefore, the hot-pressing sintering temperature is
selected as 950 ◦C.
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Figure 2. Phase diagram of Zr-Al binary alloy.

The vacuum hot-pressing sintering equipment is SMVB120/3 manufactured by Zhengzhou
Golden Highway Co., Ltd. in Zhengzhou, Henan Province, China. Equipment parameters
are as follows, the rated current of equipment is 182 A, the maximum heating power is
120 kW, the maximum sintering temperature is 1200 ◦C, the maximum compression force
is 400 kN, the maximum sintering area (including mold) is 180 cm3, the maximum vacuum
degree is 76 mmHg.

Graphite die is used for hot-pressing sintering, as shown in Figure 3. In order to
prevent adhesion between metal powder and graphite die during hot-pressing sintering
process, the surface of graphite die is evenly coated with a layer of boron nitride, and
then mixed powder is loaded into the die, the fastening screw is tightened and put into
the vacuum hot-pressing sintering furnace. In order to ensure the sintering effect, the
bidirectional pressure mode is used to apply 15 MPa pre-pressure on the graphite die. Then
the furnace chamber pumped a vacuum. When the vacuum degree reaches 6 × 10−2 Pa,
the die is heated to 500 ◦C at a rate of 10 ◦C/s. Hold for 3 min to eliminate the temperature
gradient and pressurize evenly at the same time. When the temperature rises to the
specified hot-pressing sintering temperature 950 ◦C, the pressure rises correspondingly to
40 MPa, and the holding time is 5 min. Stop heating after the holding and pressure process.
Stop pressurizing when the temperature drops to 500 ◦C, and then the furnace body and
the graphite die are cooled by the circulation water outside the furnace.
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Figure 3. Graphite die and installation: (a) Graphite die; (b) Die Installation.

The sintered Zr-6Al-0.1B alloy workpieces are shown in Figure 4. The workpiece
size is Φ30 mm × 20 mm. It can be seen that there is no crack on the surface and the
forming effect is good. The theoretical density of Zr-6Al-0.1B is 5.98 g/cm3, the actual
density of the workpieces is 5.85 g/cm3, the compactness reached 97.91%, the hardness is
614.5 HV. The microstructure of the sintered Zr-6Al-0.1B alloy is observed by ZEISS Axio
Vert.A1 optical microscope (OM) manufactured by Carl Zeiss in Oberkochen, Germany.
And ZEISS ULTRA55 field emission scanning electron microscope (SEM) manufactured
by Carl Zeiss in Oberkochen, Germany. The phase analysis is performed by D/MAX-2500
X-ray diffractometer (XRD) manufactured by Rigaku Japan Sales Division in Shibuya-ku,
Tokyo, Japan. The distribution of alloying elements is detected by SEM-EDS.
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2.2. Isothermal Compression Tests

The thermal deformation behavior of sintered Zr-6Al-0.1B alloy is analyzed by isother-
mal compression tests using a Gleeble-3500 thermal simulation machine manufactured by
Data Sciences International, INC. in Delaware, USA. The isothermal compression samples
with the size of Φ6 mm × 9 mm are cut by wire cutting from the sintered Zr-6Al-0.1B
alloy workpieces. Because Zr-6Al-0.1B is a low plastic alloy, it is necessary to add steel
capsule on the outer surface of the sample to prevent the sample from collapsing during
isothermal compression, so as to obtain continuous stress-strain data. The addition of steel
capsule is also compliance with the process design of “hot-pressing sintering + canning
hot-extrusion”.

The two end surfaces of the canned samples are covered with graphite flake to elimi-
nate the effect of friction. The thermocouple is welded to the side wall of the samples to
control the deformation temperature. The isothermal compression tests are carried out
at deformation temperatures of 950, 1050, and 1150 ◦C with strain rates of 0.01, 0.1, and
1 s−1. Under vacuum condition, the sample is heated to the deformation temperature at
a heating rate of 10 ◦C/s and held for 30 s to eliminate the temperature gradient. The
axial compression ratio is 50%, i.e., the true strain reaches 0.69. After the compression
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deformation, the specimen is quickly quenched into cold water to keep the microstructure.
The samples after canning and isothermal compression are shown in Figure 5.
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To observe the microstructures of deformed specimens, they are sectioned parallel to
the compression axis using wire cut electrical discharge machining (WEDM) and then the
cut surface is polished. The microstructures are observed using ZEISS Axio Vert.A1 optical
microscope (OM) and ZEISS ULTRA55 field emission scanning electron microscope (SEM)
after etching with metallographic etchant (5% HF + 15% HNO3 + 80% H2O).

3. Results and Discussion
3.1. Microstructure of Sintered Zr-6Al-0.1B Alloy

The microstructures of sintered Zr-6Al-0.1B alloy are shown in Figure 6. It can be
seen from Figure 6a that the composed of microstructures are the light-colored Zr-Al phase
and dark-colored Zr phase, and the distribution is relatively uniform. The morphology of
sintered Zr-Al alloy is obviously different from that of melted Zr-Al alloy [9,21]. The XRD
result of the workpieces is shown in Figure 7. The results show that the microstructures are
mainly composed of Zr3Al and α-Zr, indicating that under the above hot-pressing sintering
conditions, the peritectic reaction “β-Zr + Zr2Al�Zr3Al” is complete, the Zr2Al phase is
fully transformed into Zr3Al phase, and the decomposition of Zr3Al phase does not occur.
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EDS analysis is carried out by SEM. The surface scanning results of alloying elements
distribution are shown in Figure 8. The atomic percent of elements in regions P1 and P2
are listed in Table 1. The atomic ratios of Zr/Al of the two regions are 16.59 and 3.19,
respectively. It can be known that the P1 region is mainly Zr, and the P2 region is mainly
Zr-Al. It can be seen from Figure 8b that the distribution of Al element corresponds to the
Zr-Al phase distribution, and slight segregation occurs along the grain boundary. As can
be seen from Figure 8c, Zr elements are evenly distributed in the form of Zr matrix. As can
be seen from Figure 8d, B element is distributed uniformly among alloying elements, but
a trace amount of B element is also segregated along the grain boundary of Zr-Al phase,
indicating that part of B element is solid dissolved in this phase, which plays a role in
reducing the alloy diffusion coefficient and hindering the grain growth of the alloy.
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3.2. Thermal Deformation Behavior of Sintered Zr-6Al-0.1B Alloy

The true stress-strain curves obtained by isothermal compression tests are shown in
Figure 9. It can be seen that the variation trend of the true stress-strain curves under different
deformation conditions is similar. At the early stage of thermal deformation, the stress
increases rapidly with the increase of strain under the influence of work hardening and then
reaches the peak value. Subsequently, the stress decreases with the increase of strain under
the softening effect of dynamic recovery and dynamic recrystallization. On the whole, the
true stress-strain curve shifts to the high stress area with the increase of strain rate or the
decrease of deformation temperature, which belongs to the temperature and strain rate
sensitive material, that is similar to that of sintered Ti-6Al-4V [35], SiC/AA6061 [36], Al2024-
TIN [37], and Fe-25Al-1.5Ta [38], but with a more pronounced softening phenomenon.
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It should be pointed out that, due to a steel capsule being used to prevent the failure
of the sintered samples during the isothermal compression tests, the obtained stress-strain
curves describe the mechanical response of both steel capsule and sintered Zr-6Al-0.1B
alloy. It is impossible to separate the contribution of each material to the flow stress. For
that reason, the thermal deformation behavior can only be analyzed qualitatively, but
not quantitatively. It only provides a reference for the hot-working character of sintered
Zr-6Al-0.1B alloy.

3.3. Microstructure Evolution of Sintered Zr-6Al-0.1B Alloy

The OM and SEM images of isothermal compression samples of Zr-6Al-0.1B alloy at
1050 ◦C under different strain rates are shown in Figure 10. As shown in Figure 10a,d, when
the deformation rate is 0.01 s−1, most of the grains are unbroken with flat and slender form,
and a few unclosed holes are distributed in the matrix. As shown in Figure 10b,e, when the
deformation rate is 0.1 s−1, the microstructure of the alloy tends to be uniform, internal
grain refinement has been improved, but there are obvious holes in the material. As shown
in Figure 10c,f, when the deformation rate is 1 s−1, the microstructure of the alloy is more
uniform and the grain refinement is the highest, but the porosity is obviously increased.
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1 s−1.

On the whole, for sintered Zr-6Al-0.1B alloy, the high deformation rate can provide a
large recrystallization nuclear force, which is conducive to improving the grain refinement.
However, because sintered Zr-6Al-0.1B alloy is a low plastic material, a too high deforma-
tion rate will exceed the deformation capacity of the material, resulting in an increase in
defects of hole. Through an overall consideration, it is suggested to adopt relatively high
strain rate in the subsequent selection of plastic processing technology. It is necessary to
adopt the processing technology with three compressive stress states, such as extrusion, to
improve the degree of material microstructure refinement and inhibit the generation and
expansion of holes [39–41].

The OM and SEM images of isothermal compression samples of Zr-6Al-0.1B alloy
at 0.1 s−1 under different deformation temperatures are shown in Figure 11. As shown
in Figure 11a,d, when the deformation temperature is 950 ◦C, the deformation of the
material is more uniform, the Zr-Al phase can be evenly distributed, and the internal
holes are relatively few. As shown in Figure 11b,e, when the deformation temperature
is 1050 ◦C, although the increase of deformation temperature promotes the migration of
grain boundary and accelerates the dynamic recrystallization inside the material, the grain
refinement degree is slightly improved. However, Zr and bright white Zr-Al phases are
fibrous and have poor microstructure uniformity. As shown in Figure 11c,f, when the
deformation temperature is 1150 ◦C, dynamic recrystallization is more sufficient and grain
size is more refined. However, a large number of obvious holes appear in the material,
which is because at this temperature, Zr3Al phase with good plasticity is decomposed into
Zr2Al phase with poor plasticity. There is a great difference between the plasticity of Zr2Al
phase and Zr phase, so the deformation coordination of the material is reduced, leading to
the generation of defects.
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Figure 11. Microstructure of Zr-6Al-0.1B alloy at 0.1 s−1: (a) OM image of 950 ◦C; (b) OM image of
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On the whole, the increase of deformation temperature contributes to grain refinement.
However, when the temperature is too high, due to the decomposition of Zr3Al phase
the deformation coordination of the material decreases. It will lead to the increase of the
probability of the occurrence of defects, such as holes. Through an overall consideration, it
is suggested that the deformation temperature should be higher than the phase transition
temperature of α-Zr to β-Zr (863 ◦C), but lower than the decomposition temperature of
Zr3Al (1019 ◦C). β-Zr and Zr3Al both have relatively good plasticity, which is beneficial to
improve the uniformity of microstructure and reduce the possibility of defects [9–11].

4. Conclusions

(1) Zr-6Al-0.1B alloy rich in Zr3Al phase can be prepared by vacuum hot-pressing
sintering using the following parameters: powder composition is 93.9% pure zirconium
powder (200 mesh) + 6% pure aluminum powder (200 mesh) + 0.1% aluminum boron alloy;
powder mixing time is 30 min with ball mill ratio 1:1 at the mixing speed 100 r/min; the
hot-pressing sintering temperature is 950 ◦C with sintering pressure 40 MPa and sintering
time 5 min. The density of the sintered Zr-6Al-0.1B alloy is 5.85 g/cm3, the compactness
can reach 97.91%, the hardness can reach 614.5 HV.

(2) The sintered Zr-6Al-0.1B alloy belongs to the temperature and strain rate sensitive
material. At the early stage of thermal deformation, the stress increases rapidly with the
increase of strain under the influence of work hardening and then reaches the peak value.
Under the softening effect of dynamic recovery and dynamic recrystallization, the stress
decreases with the increase of strain. On the whole, the true stress–strain curve shifts to the
high stress area with the increase of strain rate or the decrease of deformation temperature.

(3) The high deformation rate is conducive to improving the grain refinement of
sintered Zr-6Al-0.1B alloy, but a too high deformation rate will exceed the deformation
capacity of the material, resulting in an increase in defects. The increase of deformation
temperature contributes to grain refinement, but when the temperature is too high, due to
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the decomposition of Zr3Al phase, the deformation coordination of the material decreases,
leading to the increase of the probability of the occurrence of defects.
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