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Abstract: The continuum damage model should be regularized to ensure mesh-insensitive results in
simulations of strain localization, e.g., for concrete cracking under tension. The paper confronts the
conventional gradient damage model with its upgrade including a variable internal length scale. In
these models, the Helmholtz free energy depends additionally on an averaged strain measure and its
gradient. In the formulation for dynamics the equations of motion are discretized simultaneously
with an averaging equation. If gradient regularization is employed with a constant internal length
parameter, then an artificially expanded damage zone can occur in the strain softening analysis. This
broadening effect can be inhibited by a gradient activity function. The localizing character of the
gradient activity has physical motivation—the nonlocal interactions in the fracture zone are reduced
with the damage growth. The internal length can decrease exponentially or as a cosine function.
After presentation of the theory, including the free energy definition, the finite element analyses of
three different examples connected with tensile cracking in concrete are discussed: static tension
of a double-edge-notched specimen, dynamic direct tension for a configuration without or with a
reinforcing bar and tension of an L-shaped specimen under static and dynamic loading.

Keywords: localizing gradient damage; gradient activity function; tension; concrete cracking; impact
load; dynamics; finite element method

1. Introduction

Continuum damage mechanics in the most basic version [1] introduces the idea of
scalar damage measure reducing the elastic stiffness. A modelling of softening in quasi-
brittle materials such as concrete without any regularization leads to results dependent
on the introduced discretization. The (initial) boundary value problem—(I)BVP becomes
ill-posed when the onset of strain localization occurs in the analysis, cf. [2]. In the finite
element method (FEM) a simulation of cracking in concrete is represented by the localization
zone limited to a band of one-element width; hence, the density of finite element (FE) mesh
erroneously decides about the numerical solution. This deficiency can be partly overcome
if the FE size is connected with a certain width derived from the fracture energy, see [3,4].
A regularization should be taken into account in proper modelling of composites, especially
of quasi-brittle materials as concrete. There are many concepts to make the concrete model
regularized, but in this paper a higher-order theory including a gradient term is employed,
according to the fundamentals given in [5].

The scalar damage model with a gradient enhancement was first proposed in [6].
Based on [7,8], the Helmholtz free energy for the damage model with the presence of
averaged strain measure is shown in the paper. In the formulation for dynamics an extra
averaging equation is added to the equation of motion. The gradient damage model after
discretization has independent interpolations of the displacement and averaged strain
fields. The gradient activity related to the internal length scale influences the zone of
nonlocal interactions, i.e., the width of the crack band is not governed by the density of the
FE mesh. It is proved that this model in the implicit version for static as well as dynamic
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problems (i.e., for wave propagation problems) is truly nonlocal (see [9]). A wide overview
of gradient-enhanced and other nonlocal models for concrete is performed in [10,11].

When the internal length scale in the conventional gradient damage model (CGD)
is assumed to be constant as, e.g., in [6,12], then the issue of an artificially expanded
damage zone can occur. In fact, the intensity of averaging is the same during the whole
localization process and it induces nonlocal mapping of the active damage zone into its
enlarged neighbourhood. This shortcoming of the CGD model was first observed by
Geers [13,14]. Gradient models can be upgraded by the so-called over-nonlocal formulation
presented, e.g., in [15,16]. This approach comes from [17] and it is applied over the years in
integral nonlocal models (see, e.g., [18–20]). A linear combination of local and nonlocal state
variable (e.g., equivalent strain measure) is used and, moreover, its proportion may change
during the loading history, cf. [21,22]. Another upgrade is suggested in [23], where the
internal length scale is not represented by a scalar variable, but using a second order tensor
as a function of principal stresses at a material point. The idea is known from the CGD
model, where in two dimensions the region of averaging determined by a circle transforms
into an area specified by an ellipse oriented according to the principal stresses. When
the directions of nonlocality are distinguished that way, the modelling of the localization
zone becomes anisotropic. Some modification of this approach is the so-called smoothing
gradient damage model, where the averaging region depends additionally on a coefficient
related to the equivalent strain and smoothly decreasing interaction [24,25].

The constant value of the internal length scale can be replaced by a function of gradient
activity. It was first proposed in [13,14], where apart from the averaging equation, one
more extra continuity equation for damage or gradient activity variable was introduced.
It means that the formulation includes three fields and additional degrees of freedom are
present in the finite element. The third field is interpolated to stabilize the iteration process
during the computations. This approach can be called the transient gradient damage model
(TGD) and it can be modified according to [26]. The gradient activity function is shifted
to the denominator in the averaging equation and because of that two primary fields are
preserved in the FE interpolation. In [26], the gradient activity increases with the equivalent
strain. Another concept is the so-called localizing gradient damage model (LGD) originated
in [27,28], where the damage zone is controlled through a reduction of the gradient activity
and at the same time the averaging region. An overview of different damage formulations
with constant or variable internal lengths, based on the benchmark of one-dimensional
tensile bar, is shown in [29]. A comparison and generalization of TGD and LGD models
is widely discussed in [30]. Based on [27,31], Figure 1 depicts the idea of a change of the
interaction domain in the specimen under uniaxial tension. It is seen that the averaging
region narrows when diffuse microcracks progress to the formation of a macrocrack. The
decreasing function of gradient activity seems to be more physical, i.e., the influence of
nonlocality should be reduced together with the increase of damage.

Formation

Coalescence

Interaction domain

Diffuse
microcracks

of microcracks

of macrocrack

ε

σ

Figure 1. Idea of localizing interaction domain for microcracks in tensile specimen.
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The averaging equation given in [27,28] has a different form from the one commonly
known and written originally in [6]. The gradient operator is also applied to the function of
evolving length scale, not only to the averaged strain. The LGD model has been intensively
explored in recent years. Extensive research of this model is presented in [31], also in the
context of verification using different examples, not only for concrete, but also for other
composite materials. As shown in [32], the model is able to reproduce the size effect. The
Ottosen equivalent strain measure as an alternative loading function [33] can be applied
in the LGD model to simulate properly a mixed-mode concrete cracking. A so-called
micro inertia effect can be considered in the formulation to analyze cracking in dynamic
problems (see [34,35]). Moreover, the LGD model can be used in an advanced multi-field
analysis [36], where the mechanical problem is coupled to water transport and thermal
problems. Different methods of mesh adaptation for this model are suggested in [37].

In this paper, a formulation for dynamics, but without the micro inertia effect, is taken
into account. The results for the CGD and LGD models are confronted. Both of them are
implemented by the author in the FEAP package [38]. When the LGD model is used, two
different functions can decide about the decrease of the gradient activity. The first one
has the exponential character and it is known from [27,28], while the second one changes
according to the cosine function.

In the paper, the finite element (FE) analysis focuses on the modelling of the cracking
phenomenon in concrete for tension tests. Based on the experiments of uniaxial tension
for different composite materials, not only the tensile strength can be estimated, but
also the fracture energy when the post-peak response is observed. Direct tension can
be experimentally investigated using symmetric specimens with two rectangular (see,
e.g., [39]) or triangular (see, e.g., [40]) notches as well as dog-bone shaped specimens (see,
e.g., [41]). Typically, specimens in the experiments are gripped on opposite flat sides and
pulled on one or both sides. Mode I fracture is obtained. It is also possible to examine
concrete cracking using large-scale specimens as for example in [42]. However, it is known
that the size effect can be validated using direct tension tests, cf. [41]. Another type of
a experimental test is compact tension of a composite specimen, e.g., [14,43]. The first
benchmark in the current paper is a double-edge-notched specimen under direct static
tension according to [39]. In addition, based on the numerical analysis presented in [44],
a study of the LGD model is performed for a dynamic direct tension test of plain and
reinforced concrete bar. A slightly different investigation refers to fracture in an L-shaped
concrete specimen. The final example presented in this paper for the CGD and LGD models
is based on the experiment in [45]. A similar experimental study of L-specimen under
different loading rates is shown in [46]. The induced tension in the L-shaped specimen
is still direct, but the character of failure can evolve from mode I to mixed mode. Next,
a separate group are indirect tests. The splitting test was carried out experimentally
and reported by many researchers (see, e.g., [47–49]). The compression between the
platens activates a perpendicular tension in the middle of the cylinder, hence primary and
secondary cracks are generated. This experiment is able to provide the tensile strength for
quasi-brittle materials. The split in the concrete cylinder under a static as well as an impact
loading can be reproduced using different regularized models, cf. [44,50–53]. The tensile
strength is also determined for notched or unnotched beams under three-point bending.
The size effect for such beams has been examined in many papers (see, e.g., [54–57]). Quite
a broad overview of experimental and numerical tension tests is described in [58].

The content of the paper is as follows. After introduction, Section 2 describes the the-
ory connected with the gradient damage model, in sequence: consequences of postulating
a gradient-dependent free energy, the formulation with its discretization and juxtaposition
of functions employed in the computations. Section 3 shows three examples: static uniaxial
tension of a notched bar, dynamic tension of an unnotched bar without and with reinforce-
ment and finally static and dynamic tension of the L-shaped configuration. Sections 4 and 5
summarize the work and the results presented in the paper.
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2. Fundamentals of Implemented Model
2.1. Thermodynamic Analysis

The description of the theory starts by defining an internal variable ε̄ which is related
to deformation and will turn out to be an averaged (nonlocal) strain measure. It is postu-
lated that the Helmholtz free energy depends on this variable and its gradient as follows,
cf. [7,8,27,28,59]:

Ψ(ε, ε̄,∇ε̄, ω) = Ψ1(ε, ω) + Ψ2(ε, ε̄) + Ψ3(∇ε̄) (1)

Absolute tensor notation is used in this subsection. The individual components on the right
side of this equation are defined as:

Ψ1(ε, ω) =
1
2
(1−ω) ε : De : ε, Ψ2(ε, ε̄) =

1
2

H (ε̃− ε̄)2, Ψ3(∇ε̄) =
1
2

A∇ε̄ · ∇ε̄ (2)

where ε is the strain tensor, ω ∈ [0, 1] is the scalar damage parameter, De is the fourth
order tensor of elastic stiffness, ε̃(ε) is an equivalent strain measure, H is a constant and
A is proportional to the square of an internal length scale. In [8,59] an alternative form
of the free energy is written in terms of damage and its gradient. A more complex form
of the Helmholtz free energy can be postulated for a coupled gradient damage-plasticity
model [60].

For a nonlocal continuum formulation the use of the global form of the Clausius–
Duhem dissipation inequality for isothermal processes is needed:

Ḋ =
∫
B
(σ : ε̇− Ψ̇)dV ≥ 0 (3)

where Ḋ denotes the time rate of dissipation and σ is the stress tensor. It is defined
for a certain domain B, occupied by the material body. Next, the time derivative of Ψ
is calculated:

Ψ̇ =
∂ Ψ
∂ ε

: ε̇ +
∂ Ψ
∂ ε̄

: ˙̄ε +
∂ Ψ

∂∇ε̄
· ∇ ˙̄ε +

∂ Ψ
∂ ω

: ω̇ (4)

and further:
∂ Ψ
∂ ε

= (1−ω)De : ε + H (ε̃− ε̄) s, s =
∂ ε̃

∂ ε
(5)

∂ Ψ
∂ ε̄

= −H (ε̃− ε̄),
∂ Ψ

∂∇ε̄
= A∇ε̄,

∂ Ψ
∂ ω

= −1
2

ε : De : ε = −Y (6)

where Y is the damage energy release rate. Substituting Equation (4) into inequality (3) gives:

Ḋ =
∫
B

[
(σ − ∂ Ψ

∂ ε
) : ε̇− ∂ Ψ

∂ ε̄
: ˙̄ε− ∂ Ψ

∂∇ε̄
· ∇ ˙̄ε− ∂ Ψ

∂ ω
ω̇

]
dV ≥ 0 (7)

The first term provides the definition of stress:

σ =
∂ Ψ
∂ ε

= (1−ω)De : ε + H (ε̃− ε̄) s (8)

and, to retrieve the classical form of σ, it has to be assumed that the second component
of the above definition is very small in comparison with the first one. This is obvious
for elasticity (H � E, E is Young’s modulus) and doubtful close to failure when ω → 1,
but this term is consequently neglected. Upon substitution of Equations (6) and (8) into
inequality (7) it reads:

Ḋ =
∫
B
[H (ε̃− ε̄) ˙̄ε− A∇ε̄ · ∇ ˙̄ε + Y ω̇]dV ≥ 0 (9)

Next, the second term is integrated by parts:
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∫
B
−A∇ε̄ · ∇ ˙̄ε dV =

∫
B
∇(A∇ε̄) ˙̄ε dV −

∫
∂B

A∇ε̄ · N ˙̄ε dS (10)

where N is the normal to the domain surface ∂B. As noted in [7] the formulation is in fact
nonlocal already in the elastic state, since if it is assumed there is no damage growth (i.e.,
ω̇ = 0) and the dissipation must be equal to zero, then:

Ḋ =
∫
B
[H (ε̃− ε̄) +∇(A∇ε̄)] ˙̄ε dV −

∫
∂B

A∇ε̄ · N ˙̄ε dS = 0 (11)

The sufficient conditions for Equation (11) to hold are the following equations:

H (ε̃− ε̄) +∇(A∇ε̄) = 0 in V (12)

∇ε̄ · N = 0 on S (13)

Assuming H > 0 all terms in Equation (12) can be divided by H. Therefore, a gradient
scaling factor ϕ = A/H can be introduced to obtain the averaging equation for the CGD
model in the following form:

ε̄−∇(ϕ∇ε̄) = ε̃ (14)

When damage grows (i.e., ω̇ > 0), the dissipation is:

Ḋ =
∫
B

Y ω̇ dV > 0 (15)

which proves the second law of thermodynamics is satisfied. It is also pointed out that
in [35,61] an interpretation of the model as a special case of two-scale micromorphic
gradient-enhanced continuum is provided, where Equation (14) couples macro- and micro-
morphic variables.

Next, the case when the gradient activity function depends on damage is taken into
account, i.e., A = A(ω). The Helmholtz free energy becomes:

Ψ(ε, ε̄,∇ε̄, ω) = Ψ1 + Ψ2 +
1
2

A(ω)∇ε̄ · ∇ε̄ (16)

so that:
∂ Ψ
∂ ω

=
∂ Ψ1

∂ ω
+

1
2

dA
dω
‖∇ε̄‖2 (17)

and the gradient norm now influences the dissipation:

Ḋ =
∫
B
(Y− 1

2
dA
dω
‖∇ε̄‖2) ω̇ dV > 0 (18)

This inequality is satisfied provided that:

dA
dω
≤ 2 Y
‖∇ε̄‖2 (19)

The averaging equation for the LGD model is as follows:

ε̄−∇(ϕ(ω)∇ε̄) = ε̃ (20)

while Equation (13) holds.
In the conventional gradient-enhanced damage model one assumes the loading fun-

ction which satisfies:

F = ε̄− κd ≤ 0, κ̇d ≥ 0, F κ̇d = 0 (21)
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where κd = max(κo, ε̄) and κo is the damage threshold. Damage ω is a function of the
history variable κd and hence for the active process ω is a function of ε̄. Then the Helmholtz
free energy depends only on ε, ε̄ and ∇ε̄ and one can derive:

∂ Ψ
∂ ε̄

= −Y
dω

dε̄
− H(ε̃− ε̄) +

1
2

dA
dω

dω

dε̄
‖∇ε̄‖2 (22)

and express the dissipation as:

Ḋ =
∫
B
(Y− 1

2
dA
dω
‖∇ε̄‖2)

dω

dε̄
˙̄ε dV > 0 (23)

which is equivalent to Equation (18).
Following [8], the potential energy functional for dynamic problems can be written as

a difference between the potentials of internal and external forces:

Π = Πint −Πext =
∫
B

Ψ dV +
∫
B

u · ρü dV −
∫
B

u · b dV −
∫

∂B
u · t dS (24)

where u is the displacement vector, b is the body force vector, ρü defines inertia forces
with the density ρ and the acceleration vector ü, t is the traction vector on boundary ∂B.
Minimization of the above functional leads to the weak form of the equation of motion:∫

B
δε :

∂Ψ
∂ε

dV +
∫
B

δu · ρü dV =
∫
B

δu · b dV +
∫

∂B
δu · t dS ∀ δu (25)

On the other hand, the weak form of the averaging Equation (20) can be obtained by
multiplication of this equation by a variation of the averaged strain δε̄ and integration
over domain B. Next, integration by parts according to Green’s formula is applied to the
gradient term:∫

B
δε̄[∇(ϕ∇ε̄)]dV = −

∫
B
∇δε̄ · ϕ∇ε̄ dV +

∫
∂B

δε̄ ϕ∇ε̄ · N dS (26)

Knowing that the homogeneous natural boundary condition (13) holds, the weak form of
the averaging equation is:∫

B
δε̄ ε̄ dV +

∫
B
∇δε̄ · ϕ∇ε̄ dV =

∫
B

δε̄ ε̃ dV ∀ δε̄ (27)

Notice that Equation (27) has the same nature regardless of whether the gradient activity is
constant or is a function of ω. Equations (25) and (27) are the starting point for interpolation
and linearization.

2.2. System of Matrix Equations

Henceforth, Voigt’s notation (also called matrix-vector notation) is used. The formu-
lation for the LGD model has two primary fields, hence independent interpolations of
displacements u and of the averaged strain measure ε̄ are introduced:

u = N a and ε̄ = hTe (28)

where N and h contain appropriate shape functions. Small strains are assumed for the
(I)BVP. The secondary fields ε and ∇ε̄ can be computed as:

ε = B a and ∇ε̄ = gTe (29)

where B = L N and gT = ∇hT. Matrix L consists of differential operators. The correspond-
ing variations are also interpolated, respectively. Equations (25) and (27) in a discretized
form are as follows:
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δaT
∫
B

BTσ dV + δaT
∫
B

NTρN ä dV = δaT
∫
B

NTb dV + δaT
∫

∂B
NTt dS (30)

δe
∫
B

h hTe dV + δe
∫
B

g ϕ gTe dV = δe
∫
B

h ε̃ dV (31)

Tractions and body forces do not depend on deformation.
The IBVP is linearized and equilibrium has to be achieved at each time step. The

detailed derivation for the LGD model can be found in [30]. It finally leads to the following
system of the matrix equations for dynamic problems:[

Maa 0
0 0

][
ät+∆t

ët+∆t

]
+

[
Kaa Kae
Kea Kee + KLGD

ee

][
∆a
∆e

]
=

[
f t+∆t

ext − f t
int

f t
ε − f t

e

]
(32)

The incremental nodal displacements ∆a and the incremental averaged strain ∆e are
solved for in each time step. Equilibrium is retrieved after iterations in subsequent time
steps. The consistent mass matrix is determined in a standard way:

Maa =
∫
B

NTρN dV (33)

Obviously, this matrix is not taken into consideration for static problems. The subma-
trices given in Equation (32) are defined as follows:

Kaa =
∫
B

BT (1−ω) D B dV, Kae = −
∫
B
G BT D ε hT dV (34)

Kea = −
∫
B

h sTB dV, Kee =
∫
B

(
h hT + ϕ g gT

)
dV (35)

KLGD
ee =

∫
B

g gTe ϕ, ω G hT dV (36)

where D is the elastic stiffness matrix. Additionally, the following notation has been introduced:

G =
∂ω

∂κd
∂κd

∂ε̄
and ϕ, ω =

∂ϕ

∂ω
(37)

It should be noted that KLGD
ee does not exist for the CGD model (where ϕ is constant).

The subvectors on the right-hand side in Equation (32) are defined below, the subscript t
is skipped:

f t+∆t
ext =

∫
B

NTbt+∆t dV +
∫

∂B
NTtt+∆t dS, f int =

∫
B

BTσ dV (38)

f ε =
∫
B

h ε̃ dV, f e = Kee e (39)

2.3. Applied Functions

In the computations included in the paper, the equivalent strain measure is determined
by the modified von Mises definition [62]:

ε̃(ε) =
(k− 1)Iε

1
2k(1− 2ν)

+
1
2k

√(
(k− 1)Iε

1
1− 2ν

)2

+
12kJε

2
(1 + ν)2 (40)

where k = fc/ ft is the ratio of uniaxial compressive and tensile strengths, ν is Poisson’s
ratio, Iε

1 and Jε
2 are the strain tensor invariants.

In the literature, there are different functions representing the damage growth (see,
e.g., [13]). According to the experiment [39] uniaxial softening for tension in concrete can
be approximated by an exponential function. The damage history parameter κd, after
exceeding the threshold κo, causes damage ω to grow asymptotically to 1 [12,63]:
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ω(κd) = 1− κo

κd

(
1− α + αe−η(κd−κo)

)
(41)

where the parameters η and α are respectively associated with material ductility and
residual stress which tends to (1− α)Eκo (in one dimension). Hence, the latter parameter
prevents the complete loss of material stiffness for α < 1 and makes the numerical response
more stable. The former one is related to fracture energy G f of concrete.

The third recalled function decides about the gradient activity. Function ϕ = ϕ(ω) is
able to change the averaging region during the damage process. When the CGD model [6]
is considered, then the gradient activity remains constant:

ϕ0 = cmax > 0 (42)

The parameter cmax is related to the internal length scale l as shown in [64], i.e., cmax = 0.5 l2.
When the LGD model [27,28] is taken into account, the gradient activity is reduced together
with the damage growth:

ϕ1(ω) = cmax
(1− R) exp (−n ω) + R− exp (−n)

1− exp (−n)
(43)

where cmax is still the half of maximum internal length scale squared, R is the residual
level of interaction between microprocesses within the localization band and n is the
power which changes the intensity of the gradient activity. The character of this function
is localizing, because the gradient activity can only decrease. The derivative of function
ϕ1 equals:

∂ϕ1

∂ω
= cmax

(R− 1) n exp (−n ω)

1− exp (−n)
(44)

In this paper, an alternative definition of the gradient activity function is also used. The
relation ϕ = ϕ(ω) and its corresponding derivative can be determined by cosine and
sine functions:

ϕ2(ω) = cmax [0.5 (cos(πωn) + 1)(1− R) + R] (45)

∂ϕ2

∂ω
= 0.5 π cmax n (R− 1)ω(n−1) sin(πωn) (46)

The character of function ϕ2 is also decreasing. Functions ϕ1(ω) and ϕ2(ω) as well as their
derivatives are depicted in Figure 2. Values cmax = 8.0 mm2 and R = 0.01 refer to first
computed benchmark, discussed in the next section. The function ϕ1 is compared for two
cases of the intensity parameter, i.e., n = 1.0 or n = 5.0, while for ϕ2 this is n = 1.0. It is
seen for all cases that non-increasing functions ϕ corresponds to derivatives ∂ϕ/∂ω which are
negative or zero at most. More details on gradient activity functions can be found in [30].
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∂
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(b) Derivative ∂ϕ/∂ω.

Figure 2. Gradient activity functions with different intensity n, cmax = 8.0 mm2, R = 0.01.

3. Numerical Examples of Direct Tension
3.1. Static Tensile Cracking on Double-Edge-Notched Specimen

The first example is connected with the experiment presented in [39] for specimens
with different dimensions, subjected to direct tension. In [65], the gradient plasticity model
was verified using this test to show the size effect and different responses for configurations
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of direct tension without or with admissible rotation of the free edge. The CGD model
was analyzed in [12,66], where the results for symmetric and asymmetric behaviour are
obtained and the size effect is demonstrated.

In this paper, only a symmetric response is simulated for one selected set of dimensions.
Attention is focused on the mesh-objectivity study and highlighting the difference between
results for CGD and LGD models. The plain lightweight concrete bar is notched on both
longer edges. The length of the specimen is L = 250 mm, the height is H = 60 mm, the
thickness is T = 50 mm. Plane stress conditions are assumed. In the numerical analysis
the specimen is set horizontally, see Figure 3. Suitable boundary conditions constrain
the displacements on the left, while a uniform static load acts on the right. The total
elongation is measured at point E, but indirect displacement control is monitored at point
C. The red points, which are adjacent to this point in one line, are linked to have the same
horizontal displacement. In other words, all marked points on the right of the zone of mesh
densification control the symmetric deformation of the specimen. In the computations four
meshes (named A–D) with eight-noded finite elements (FEs) are employed with double
densification in the middle, as depicted in Figure 3 for mesh B. Quadratic interpolation of
displacements a and linear interpolation of averaged strain e together with 2× 2 Gauss
integration is applied in FEs. Mesh A includes 2401 nodes and 536 FEs, mesh B—7113 nodes
and 1976 FEs, mesh C—13,199 nodes and 3816 FEs and mesh D—24,321 nodes and 7328 FEs.
The elasticity data of the concrete model are: Young’s modulus E = 18,000 MPa, Poisson’s
ratio ν = 0.2. The modified von Mises definition of the equivalent strain in Equation (40) is
applied with the ratio k = 10. The tensile strength is initially established as ft = 3.4 MPa,
but actually the threshold κo is adjusted to the maximum stress from the experiment [39]
with the corresponding value captured for mesh B. In a similar way the values of parameters
α and η defined in Equation (41) are fitted to reproduce the experimental diagram as close
as possible. All computed cases for this benchmark are listed in Table 1. The maximum value
for the gradient activity function is adopted as cmax = 8.0 mm2. This is the constant internal
length parameter for the CGD model. The LGD model is used with the minimum level of
gradient interaction R = 0.01. The results for this model are compared considering functions
ϕ1 (with n = 1.0 or n = 5.0) and ϕ2 (n = 1.0). These functions are depicted in Figure 2a.

Table 1. Computational cases for static tension test on double-edge-notched specimen (in order of
appearance in figures).

Acronym Model Type of ϕ Mesh κo ×10−4 α η n

CGD-A CGD ϕ0 A 1.845 0.96 720
CGD-B CGD ϕ0 B 1.845 0.96 720
CGD-C CGD ϕ0 C 1.845 0.96 720
CGD-D CGD ϕ0 D 1.845 0.96 720
LGD-A LGD ϕ1 A 1.975 0.95 90 5.0
LGD-B LGD ϕ1 B 1.975 0.95 90 5.0
LGD-C LGD ϕ1 C 1.975 0.95 90 5.0
LGD-D LGD ϕ1 D 1.975 0.95 90 5.0

LGD-n1-A LGD ϕ1 A 1.835 0.95 100 1.0
LGD-n1-B LGD ϕ1 B 1.835 0.95 100 1.0
LGD-n1-C LGD ϕ1 C 1.835 0.95 100 1.0
LGD-n1-D LGD ϕ1 D 1.835 0.95 100 1.0

LGD-c-A LGD ϕ2 A 1.805 0.95 90 1.0
LGD-c-B LGD ϕ2 B 1.805 0.95 90 1.0
LGD-c-C LGD ϕ2 C 1.805 0.95 90 1.0
LGD-c-D LGD ϕ2 D 1.805 0.95 90 1.0

Figures 4 and 5 show the results for the CGD model. In Figure 4a, the diagrams of
total force at the right edge versus total bar elongation measured at point E are compared
for all meshes; hence, the global response is inspected. A so-called ligament stress versus
average strain is plotted in Figure 4b. The concept of the ligament stress can be introduced
as follows:

σlig =
F

Blig T
(47)
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where F is the force and Blig is the ligament width, i.e., the width of the bar minus the depths
of both notches. The average strain is the average extension of the measurement length
over Lm. The measurement base Lm (see Figure 3) is in accordance with the experiment.
The placement of extensometers is distinguished by the red points. The average extension
is calculated as a difference between the mean of horizontal displacements on the right (in
one line with point C) and the mean of horizontal displacements observed analogically on
the left. Therefore, Figure 4b presents the diagrams of nominal values. It is clearly seen
that mesh-objective results are obtained. The equilibrium paths depicted in both figures
overlap, however the softening branch for the coarsest mesh A marginally deviates in
the middle of the descent. Figure 5 illustrates contour plots of average strain measure ε̄
and damage ω prepared for the final stage of the loading. The range of view is limited
to the area in the vicinity of the notches. There are presented the results for only the two
utmost cases CGD-A and CGD-D, i.e., for the coarsest mesh A and for the finest mesh D.
It is confirmed that the solution is insensitive to the adopted mesh. The localization zone
appears between the notches as expected. Nevertheless, a shortcoming is noticeable. The
distribution of active damage in Figure 5c,d in comparison to the distribution of averaged
strain in Figure 5a,b widens excessively sideways in the ligament area.

Lm

C E

Figure 3. Configuration of static tension test together with mesh B, indirect displacement control at
point C, elongation measured at point E.
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Figure 4. Static tension test, diagrams for CGD model, mesh-sensitivity study.

(a) ε̄, mesh A (CGD-A). (b) ε̄, mesh D (CGD-D). (c) ω, mesh A (CGD-A). (d) ω, mesh D (CGD-D).

Figure 5. Static tension test, CGD model, distribution of averaged strain ε̄ and damage ω for two
utmost cases.
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Next, the results for the LGD model are presented. Figure 6 shows diagrams analogical
to those presented in Figure 4, but here the LGD model with exponential function ϕ1 and
intensity n = 5.0 is used. Both subfigures, with force-bar elongation diagrams as well as
with ligament stress-average strain diagrams, indicate that this model seems to be mesh-
dependent. The load-carrying capacity for mesh A is clearly larger than for the other three.
However, together with an increasing density of the mesh, differences between subsequent
diagrams vanish and finally the solutions for meshes C and D almost overlap, cf. cases
LGD-C and LGD-D in Figure 6. Furthermore, in this test the snapback effect is observed
and it is stronger for the solution obtained for the LGD model than for the CGD model, cf.
Figures 4a and 6a. Figure 7 depicts diagrams where for function ϕ1 the intensity parameter
is five times smaller, i.e., n = 1.0. There are cases from LGD-n1-A to LGD-n1-D. It is visible
in Figure 7a that the snapback is delayed if n = 1.0. Just after the peak the equilibrium
paths run down, but forward and only then backward. The convergence of solutions for
subsequent denser and denser meshes has the same character as for the case when the
power n = 5.0.
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Figure 6. Static tension test, diagrams for LGD model using function ϕ1 with n = 5.0, mesh-sensitivity study.
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Figure 7. Static tension test, diagrams for LGD model using function ϕ1 with n = 1.0, mesh-sensitivity study.

The contour plots in Figures 8–10 illustrate the results for the LGD model with function
ϕ1, but the distributions of damage ω in Figures 9 and 10 differ if the intensity parameter
n = 5.0 or 1.0, analogically to the diagrams presented above. It is common that the crack is
initiated near the notch. It should be noticed that the width of the notch has the width of
one FE for mesh A and next it is divided into two (mesh B), three (C) or four (D) FEs along
the notch width. The active localization zone for the averaged strain measure ε̄ in the case
of the CGD model (see Figure 5a,b), is smeared and insensitive to the size of the notch. In
reality, the shape and the size of the notch can influence the initiation point of the crack (see,
e.g., experimental results in [39,40]). Moreover, due to the presence of the notches and the
fact that concrete exhibits softening in the tension regime, the snapback effect is possible in
this test. The solution for the LGD model is influenced by the division of the notch width.
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Cracking starts in the left corners for mesh A (case LGD-A) (see Figure 8a). It should be
recalled that the left edge of the specimen is constrained in the analysis. For mesh B (case
LGD-B) as shown in Figure 8b, the dominant averaged strain runs along the symmetry axis
between the notches. For meshes C and D (cases LGD-C and LGD-D) cracking is observed
along the nearest line adjacent to the symmetry axis. Hence, the solutions for meshes C
and D seem to optimal in terms of energy release during the cracking process and can be
recognized as mesh-objective. Of course, it can be questioned that the response depends on
the division of the notch width; however, the solutions for meshes C and D are very similar.
Despite the fact that the distributions of averaged strain measure ε̄ look almost the same
for the LGD model with n = 5.0 or 1.0, the distributions of damage ω are different, see
Figure 8 and then Figures 9 and 10. It is noticed that the responses for n = 1.0 and meshes
C and D (cases LGD-n1-C and LGD-n1-D) are almost identical, analogically to the solution
with n = 5.0 for meshes C and D. However, for smaller intensity n = 1.0 the distribution of
active damage ω is evidently wider than for n = 5.0. On the other hand, it is clear that the
damage zone is not spuriously broadened as for the CGD model; hence, the solution for
the LGD model with ϕ1 and the power n = 1.0 is acceptable.

(a) Mesh A (LGD-A). (b) Mesh B (LGD-B). (c) Mesh C (LGD-C). (d) Mesh D (LGD-D).

Figure 8. Static tension test, LGD model using function ϕ1 with n = 5.0, distribution of averaged
strain ε̄, mesh-sensitivity study.

(a) Mesh A (LGD-A). (b) Mesh B (LGD-B). (c) Mesh C (LGD-C). (d) Mesh D (LGD-D).

Figure 9. Static tension test, LGD model using function ϕ1 with n = 5.0, distribution of damage ω,
mesh-sensitivity study.

(a) Mesh A (LGD-n1-A). (b) Mesh B (LGD-n1-B). (c) Mesh C (LGD-n1-C). (d) Mesh D (LGD-n1-D).

Figure 10. Static tension test, LGD model using function ϕ1 with n = 1.0, distribution of damage ω,
mesh-sensitivity study.
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The results for the LGD model when the gradient activity decreases according to
the cosine function ϕ2 are presented separately. Again, Figure 11 depicts the force-bar
elongation diagrams on the left and the ligament stress-average strain diagrams on the
right. The character of all equilibrium paths is similar to the case when for the LGD model
function ϕ1 with n = 1.0 is taken into account. Again, together with increasing densification
of meshes, subsequent responses converge to a mesh-objective solution. Similarly, damage
distributions in Figure 12 for meshes A (case LGD-c-A) and B (case LGD-c-B) differ from
those obtained for meshes C and D (cases LGD-c-C and LGD-c-D). The character of the
localization zone for ω when the cosine function ϕ2 is used in the LGD model is more
diffusive for smaller damage values, but finally, for the largest values of damage (ω → 1.0),
it reminds the distribution obtained for the exponential function ϕ1 and n = 5.0. Based on
these results it can be stated that function ϕ2 can be applied in the LGD model.
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Figure 11. Static tension test, diagrams for LGD model using function ϕ2, mesh-sensitivity study.

(a) Mesh A (LGD-c-A). (b) Mesh B (LGD-c-B). (c) Mesh C (LGD-c-C). (d) Mesh D (LGD-c-D).

Figure 12. Static tension test, LGD model using function ϕ2, distribution of damage ω, mesh-
sensitivity study.

Moreover, in this test the response for the LGD model with function ϕ2 is more stable
during the iteration process. Figure 13 shows a comparison of the diagrams obtained for
the total force versus the elongation at the point E, which are zoomed when the peak is
attained during the loading process. When the gradient activity strongly decreases as for
function ϕ1 with the intensity parameter n = 5.0, an instability in the computations for the
onset of the strain localization is clearly seen. This undiserable effect is overcome for ϕ1
and n = 1.0 as shown in Figure 13b and for ϕ2 as shown in Figure 13c. In Figure 14, the
distributions of the gradient activity functions ϕ1 and ϕ2 are illustrated for mesh C. The
scale of the values is reversed, so the black colour denotes the smallest values of function ϕ,
which correspond to the weakest nonlocal interaction. These distributions reflect the active
damage zones. The range of the gradient activity is the widest for function ϕ1 with milder
intensity n = 1.0. The distribution of the gradient activity for function ϕ2 (with the cosine)
is slightly thinner. Based on this observation and taking into account the possible issue
of instability for ϕ1 with n = 5.0 as indicated by the diagrams in Figure 13a, the choice of
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function ϕ2 can be an effective alternative and a reasonable compromise when the LGD
model is used.
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Figure 13. Static tension test, different options for LGD model, diagrams of force vs. bar elongation
zoomed near peak.

(a) ϕ1, n = 5.0 (LGD-C, re-
versed scale).

(b) ϕ1, n = 1.0 (LGD-n1-C,
reversed scale).

(c) ϕ2 (LGD-c-C, reversed
scale).

Figure 14. Static tension test, mesh C, distribution of gradient activity function for LGD model.

Figure 15 presents a comparison between the applied models and with reference to
the experiment [39]. The average displacement given on the horizontal axis is actually
the average extension measured over the base Lm shown in Figure 3 between marked red
points and it is consistent with the measurement performed in the experiment [39]. The
results in Figure 15a for mesh B and in Figure 15b for mesh C do not differ substantially,
but the ones for mesh C exhibit a slightly more brittle response. Only the equilibrium paths
for cases LGD-n1-B and LGD-n1-C, i.e., when the intensity parameter n equals 1.0, diverge
from the others. In subsequent analyses, this case is no longer considered.
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Figure 15. Static tension test, comparison with experiment [39], ligament stress vs average displace-
ment, diagrams for meshes B and C.

Summarizing the above considerations, the LGD model is more sensitive to the dis-
cretization than the CGD model. In this example, the solution for subsequent meshes
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approaches the final mesh-objective result. Hence, a sufficiently dense mesh should be
employed in the computations. The intensity parameter n for exponential function ϕ1,
which decides about the rate of gradient activity for the internal length scale, should be
larger than 1.0 (see also [30,31]).

3.2. Direct Tension Test under Impact Loading
3.2.1. General Data

The second example concerns a dynamic analysis of tensile wave propagation in a
concrete specimen without or with reinforcement. The results of an analogical test, but
only for one discretization, were presented in [44]. There were compared two regularized
models: Hoffman viscoplasticity and conventional gradient damage (CGD). A similar
confrontation—gradient plasticity versus gradient damage, however using only a plain
concrete bar, has been carried out in [67]. In this subsection the results obtained for the LGD
model are shown for both options: plain and reinforced concrete (RC). The presentation of
diagrams for the CGD model is given as a reference solution.

The configuration of the test is illustrated in Figure 16a. This bar is supported along
both symmetry axes and normal traction on both (left and right) edges is applied. The load
is time-dependent according to a linear-constant function which is drawn in Figure 16b.
The traction intensity pi = 2.4 MPa becomes constant for time ti = 3× 10−5 s = 30 µs. Each
time step equals 1 µs. Plane stress conditions with the thickness T = 50 mm are assumed
again. The length of the specimen is L = 240 mm, the height is H = 56 mm. This test is just
to compare dynamic responses of the models; hence, L and H are adjusted to FE meshes.
However, they are similar to the previous example, but the concrete bar is unnotched.
Three meshes are applied. Mesh A has 2811 nodes, 960 FEs for RC configuration and the
square FE size equals 4 mm. Mesh B has 10,659 nodes, 3600 FEs for RC configuration and
the square FE size is 2 mm. Mesh C has 41,475 nodes, 13,920 FEs for RC configuration and
the square FE size equals 1 mm. Mesh B with eight-noded FEs (and the same interpolation
as previously) is depicted in Figure 16a. When reinforced concrete is taken into account,
the rebar is discretized by truss elements located along the horizontal axis.

E

(a) Configuration with mesh B.

ti time t

pi

intensity p
traction

(b) Loading history.

Figure 16. Dynamic direct tension test—definition of specimen and loading history.

The material data for concrete are: Young’s modulus E = 18,000 MPa, Poisson’s
ratio ν = 0.0 and density ρ = 2320 kg/m3. Exponential damage growth function given
in Equation (41) is applied with threshold κo = 1.8889 × 10−4 (which corresponds to
ft = 3.4 MPa) and parameter α = 0.99 to keep a small residual stress. Other parameters
are juxtaposed in Table 2. The first column provides acronyms for the cases where plain
concrete is considered in the analysis. The second column informs about acronyms for
the analyses of RC models. A blank field means that only the case without reinforcement
is analyzed. The equivalent strain measure is determined by the modified von Mises
definition—Equation (40), k = 10. In the computations two or three different values of cmax
(connected with the maximum internal length scale) are compared. Both gradient activity
functions are examined as well. The data for the steel reinforcement are: E = 200,000 MPa,
ν = 0.0, ρ = 7800 kg/m3 and the yield strength is fy = 355 MPa for the perfect plasticity
model. Cross section Ar = 28 mm2 indicates that the reinforcement ratio is 1%. In the case
of RC, full bond between the concrete matrix and the reinforcement is adopted.



Materials 2022, 15, 1875 16 of 33

Table 2. Computational cases for dynamic direct tension test.

Plain Concrete Reinforced Concrete Model Type
of ϕ

Mesh cmax
[mm2] η R n

dc-CGD-C-8 rc-CGD-C-8 CGD ϕ0 C 8.0 400
dc-LGD-A-2 rc-LGD-A-2 LGD ϕ1 A 2.0 180 0.04 5.0
dc-LGD-B-2 rc-LGD-B-2 LGD ϕ1 B 2.0 180 0.04 5.0
dc-LGD-C-2 rc-LGD-C-2 LGD ϕ1 C 2.0 180 0.04 5.0
dc-LGD-A-8 rc-LGD-A-8 LGD ϕ1 A 8.0 180 0.04 5.0
dc-LGD-B-8 rc-LGD-B-8 LGD ϕ1 B 8.0 180 0.04 5.0
dc-LGD-C-8 rc-LGD-C-8 LGD ϕ1 C 8.0 180 0.04 5.0

dc-LGD-A-32 LGD ϕ1 A 32.0 180 0.04 5.0
dc-LGD-B-32 LGD ϕ1 B 32.0 180 0.04 5.0
dc-LGD-C-32 LGD ϕ1 C 32.0 180 0.04 5.0

dc-LGD-C-8-R01 LGD ϕ1 C 8.0 180 0.01 5.0
dc-LGD-C-8-R16 LGD ϕ1 C 8.0 180 0.16 5.0

dc-LGD-C-8-e400 LGD ϕ1 C 8.0 400 0.04 5.0
dc-LGDc-A-2 rc-LGDc-A-2 LGD ϕ2 A 2.0 180 0.04 1.0
dc-LGDc-B-2 rc-LGDc-B-2 LGD ϕ2 B 2.0 180 0.04 1.0
dc-LGDc-C-2 rc-LGDc-C-2 LGD ϕ2 C 2.0 180 0.04 1.0
dc-LGDc-A-8 rc-LGDc-A-8 LGD ϕ2 A 8.0 180 0.04 1.0
dc-LGDc-B-8 rc-LGDc-B-8 LGD ϕ2 B 8.0 180 0.04 1.0
dc-LGDc-C-8 rc-LGDc-C-8 LGD ϕ2 C 8.0 180 0.04 1.0

3.2.2. Results for Plain Concrete

A survey of the test results commences with the comparison of CGD and LGD models
based on the diagrams shown in Figure 17. The details for cases dc-CGD-C-8, dc-LGD-C-8
and dc-LGDc-C-8 are listed in Table 2. The parameters for them are selected to fit the
elongation-time diagrams. In particular, this concerns parameter η. It is known, based on
the comparison of CGD and LGD models for statics in [27,30] as well as in the previous
benchmark, that the value of parameter η specifying the rate of damage growth should be
much smaller for the LGD model than for the CGD model. This rule is also valid in the
dynamic analysis, hence here η = 400 for the CGD model corresponds to η = 180 for the
LGD model. The elongation history is monitored at point E, so the horizontal displacement
is observed as a function of time. The diagrams in Figure 17 intersect each other.
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Figure 17. Dynamic tension test, plain concrete, mesh C, l = 4 mm or cmax = 8 mm2, comparison of
models for elongation history.

Figure 18 juxtaposes time-elongation diagrams for all cases solved for the dynamic
direct tension test using the LGD model and exponential gradient activity function ϕ1
(see Equation (43). It is noticed that the elongation at point E goes to infinity for all
cases. It is also seen in Figure 18a,b that the results depend on the mesh, however for
larger cmax the difference between the solutions for mesh B (case dc-LGD-B-8) and C
(dc-LGD-C-8) is smaller than for cmax = 2 mm2. It should be explained here that the
assumed value of the maximum internal length scale influences in the whole change of the
gradient activity function. For example when cmax = 2 mm2, then value of ϕ1 ranges to
R× cmax = 0.04× 2 mm2 = 0.08 mm2 corresponding to the minimum level of nonlocal
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interaction, but when cmax = 8 mm2, then ϕ1 approaches R× cmax = 0.32 mm2. Hence
for cmax = 32 mm2 (R× cmax = 1.28 mm2) the time-elongation diagrams are very close
to each other (see Figure 18c). It is observed that together with the increase of cmax and
simultaneously with more influential gradient activity function ϕ1 in the LGD model, the
diagrams get nearest to one another, but the same level of the elongation at point E is
attained slower. The parameter R connected with the residual level of averaging decides
about the elongation rate as shown in Figure 18d. Assuming the same cmax = 8 mm2, the
same mesh C and different values of R which is equal to 0.01 for case dc-LGD-C-8-R01, 0.04
for case dc-LGD-C-8 and 0.16 for dc-LGD-C-8-R16, the differences between the paths are
significant. Additionally, the diagram for case dc-LGD-C-8-e400 is drawn in Figure 18d,
where the parameter η equals 400 for the LGD model, exactly as the one introduced for the
CGD model. The comparison presented here confirms that η should be smaller, otherwise
the elongation goes to infinity the fastest of all the cases considered in this section.
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(a) cmax = 2 mm2, mesh-sensitivity.
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(b) cmax = 8 mm2, mesh-sensitivity.
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(c) cmax = 32 mm2, mesh-sensitivity.
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(d) Influence of η and R.

Figure 18. Dynamic tension test, plain concrete, elongation history for LGD model using function ϕ1.

Figures 19–23 display contour plots for the LGD model using function ϕ1. All next
contour plots in this subsection are zoomed on the same central part of the bar which is
subjected to impact on the edges. Such impact loading causes formation of two waves
which propagate from the sides to the center, then superpose and if only the elastic limit
is exceeded for the stress, the wave stops which involves strain localization. In that case
one damage zone in the middle is expected. That result is compatible with the analytical
solution for the bar with strain softening, cf. [68]. Damage distributions in Figure 19 are
made for cases with cmax = 2 mm2, subsequently for meshes A (dc-LGD-A-2), B (dc-LGD-
B-2) and C (dc-LGD-C-2). The obtained responses are different. Not only two, but even
three standing waves corresponding to localization zones occur (case dc-LGD-C-2 for mesh
C); hence, this response results from an artificial numerical effect and the FEM analysis is
mesh-dependent. When cmax is increased to 8 mm2, then one central zone of localization is
anticipated based on the results for the CGD model shown in [44], but still two damage
zones appear. The case of mesh A (dc-LGD-A-8) deviates from those of meshes B (dc-LGD-
B-8) and C (dc-LGD-C-8). Figure 20 depicts the distribution of averaged strain measure ε̄
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and Figure 21 shows damage ω at time instant t = 0.0003 s. It is visible that the localization
zones for mesh A are closer than for meshes B and C. In addition, it can also be noticed that
the relation between ε̄ and ω is consistent with the results presented in Section 3.1—please
confront Figure 8 with Figure 9 and then Figure 20 with Figure 21. The results become fully
mesh-independent of the discretization for the case with cmax = 32 mm2 (see Figure 22).
One standing wave is present in the middle of the bar for each mesh (cases dc-LGD-A-32,
dc-LGD-B-32 and dc-LGD-C-32). Moreover, the width of the active damage zone is quite
narrow, despite the fact that cmax = 32 mm2 is introduced. This value would rather be
perceived as too large and causing too broad damage zone in the case of the CGD model
with l = 8 mm. Therefore, the gradient activity function can significantly reduce the
width of the damage zone. Figure 23 includes the contour plots for the additional cases of
the analysis of the direct dynamic tension test for plain concrete. It is confirmed that the
parameter R, responsible for final nonlocal interaction, truly influences the results for the
LGD model. The following cases can be investigated in a sequence: dc-LGD-C-8-R01 with
R = 0.01 in Figure 23b, dc-LGD-C-8 with R = 0.04 in Figure 21c and dc-LGD-C-8-R16 with
R = 0.16 in Figure 23c. The same mesh C and cmax = 8 mm2 are considered. For R = 0.01
and 0.04 two spurious localization zones appear. For R = 0.16 one proper zone occurs due
to the presence of the standing wave in the centre of the specimen, similar to the case with
cmax = 32 mm2 and R = 0.04. However, the distribution of active damage ω for R = 0.16
has a more diffusive character. The above remarks coincide with the description of the
elongation-time diagrams discussed in the previous paragraph, cf. Figure 18d. The contour
plot of damage ω in Figure 23a for case dc-LGD-C-8-e400 with η = 400 for the LGD model
again exhibits two zones. The value of parameter η cannot be the same as for the CGD
model. Generally, the response for the LGD model is more brittle.

(a) Mesh A (dc-LGD-A-2). (b) Mesh B (dc-LGD-B-2). (c) Mesh C (dc-LGD-C-2).

Figure 19. Dynamic tension test, plain concrete, LGD model using function ϕ1 with cmax = 2 mm2,
distribution of damage ω at t = 0.0003 s, mesh-sensitivity study.

(a) Mesh A (dc-LGD-A-8). (b) Mesh B (dc-LGD-B-8). (c) Mesh C (dc-LGD-C-8).

Figure 20. Dynamic tension test, plain concrete, LGD model using function ϕ1 with cmax = 8 mm2,
distribution of averaged strain ε̄ at t = 0.0003 s, mesh-sensitivity study.
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(a) Mesh A (dc-LGD-A-8). (b) Mesh B (dc-LGD-B-8). (c) Mesh C (dc-LGD-C-8).

Figure 21. Dynamic tension test, plain concrete, LGD model using function ϕ1 with cmax = 8 mm2,
distribution of damage ω at t = 0.0003 s, mesh-sensitivity study.

(a) Mesh A (dc-LGD-A-32). (b) Mesh B (dc-LGD-B-32). (c) Mesh C (dc-LGD-C-32).

Figure 22. Dynamic tension test, plain concrete, LGD model using function ϕ1 with cmax = 32 mm2,
distribution of damage ω at t = 0.0003 s, mesh-sensitivity study.

(a) η = 400 (dc-LGD-C-8-e400). (b) R = 0.01 (dc-LGD-C-8-R01). (c) R = 0.16 (dc-LGD-C-8-R16).

Figure 23. Dynamic tension test, plain concrete, LGD model using function ϕ1 with cmax = 8 mm2,
mesh C, distribution of damage ω at t = 0.0003 s, influence of parameters η or R.

The last paragraph in this subsection describes results for the LGD model, but function
ϕ2 for variable gradient activity is introduced. This function decreases according to cosine
as defined in Equation (45). Figure 24 shows the elongation at point E as the function of
time. The diagrams in Figure 24a for cmax = 2 mm2 (cases dc-LGDc-A-2, dc-LGDc-B-2
and dc-LGDc-C-2) starting from time t ≈ 0.00017 diverge in a slightly different directions,
while the diagrams in Figure 24b for cmax = 8 mm2 (cases dc-LGDc-A-8, dc-LGDc-B-8 and
dc-LGDc-C-8) are near to one another and only the elongation rate for mesh A is a bit
smaller. It indicates that mesh-objective results can already be obtained for cmax = 8 mm2

when function ϕ2 is employed for the LGD model. Damage distributions for cmax = 2 mm2,
i.e., for dc-LGDc-A-2, dc-LGDc-B-2 and dc-LGDc-C-2 shown in Figure 25, although quite
narrow damage bands are formed, are different and the width of these bands is also
distinctive for each mesh. On the other hand, the increase of cmax to 8 mm2 provides
very similar damage distributions as illustrated in Figure 26. One active damage zone
in the middle is clearly visible. In the contrast to function ϕ1 it can be concluded that
the application of ϕ2 in the LGD model allows one to obtain results independent of the
discretization even for a smaller value of maximum internal length parameter cmax.
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(a) cmax = 2 mm2, mesh-sensitivity.
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(b) cmax = 8 mm2, mesh-sensitivity.

Figure 24. Dynamic tension test, plain concrete, elongation history for LGD model using function ϕ2.

(a) Mesh A (dc-LGDc-A-2). (b) Mesh B (dc-LGDc-B-2). (c) Mesh C (dc-LGDc-C-2).

Figure 25. Dynamic tension test, plain concrete, LGD model using function ϕ2 with cmax = 2 mm2,
distribution of damage ω at t = 0.0003 s, mesh-sensitivity study.

(a) Mesh A (dc-LGDc-A-8). (b) Mesh B (dc-LGDc-B-8). (c) Mesh C (dc-LGDc-C-8).

Figure 26. Dynamic tension test, plain concrete, LGD model using function ϕ2 with cmax = 8 mm2,
distribution of damage ω at t = 0.0003 s, mesh-sensitivity study.

3.2.3. Results for Reinforced Concrete

In this subsection the results for the RC configuration subjected to dynamic tension
are presented. The solution for the LGD model with function ϕ1 defined in Equation (43)
is illustrated in Figures 27–29. The elongation-time diagrams given in Figure 27 show
that the presence of the rebar precludes a progress to infinite displacements. Each curve
oscillates around some value of elongation. However, the diagrams for cmax = 2 mm2 in
Figure 27a are different for each mesh. The denser the mesh is, the smaller amplitude is
observed. Contour plots in Figure 28 for damage ω at the final time instant t = 0.0006 s
depict the localization zones placed near the centre analogically to the distributions when
plain concrete specimen is considered, cf. the case with ϕ1 and cmax = 8 mm2 (Figure 21)
or with ϕ2 and cmax = 2 mm2 (Figure 25). In the subsequent plots of Figure 28 these
vertical zones slightly move away from each other. In addition, the presence of the rebar
along the horizontal symmetry is seen, where damage does not activate. Actually, the
most active damage is present away from the reinforcing bar. This solution is possible
when full bond between the steel rebar and the concrete matrix is assumed. However,
composite structures of such type can also be modelled with a representation of bond-slip
by so-called interface elements, which leads to generation of many localization zones in
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the vicinity of the reinforcement, see, e.g., [69,70]. Moreover, it is possible to employ an
interface zone called an interphase as in [71,72]. It is formed by a layer (or more layers)
of FEs with non-zero thickness and represents a transition between the concrete matrix
and the reinforcement as weaker concrete. The simplifying assumption of full bond as in
the current computations is more suitable for modelling of RC structures with ribbed bars.
The diagrams in Figure 27b for the cases with cmax = 8 mm2 almost overlap and curves
oscillate around 0.019 mm. When the maximum internal length cmax is increased, then the
strain localization starts from the centre points of the horizontal edges. It is observed for
the distributions of damage ω in Figure 29. These cases are analogical to the results for
plain concrete when ϕ1 and cmax = 32 mm2 (Figure 22) or ϕ2 and cmax = 8 mm2 (Figure 26)
are assumed. The damage zones given in Figure 29 are quite narrow. Hence, it is shown
for the RC bar under the impact loading that the LGD model with the gradient activity
represented by function ϕ1 is able to ensure the mesh-objective solution together with a
proper (not too wide) distribution of active damage.
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(b) cmax = 8 mm2, mesh-sensitivity.

Figure 27. Dynamic tension test, reinforced concrete, elongation history for LGD model using
function ϕ1.

(a) Mesh A (rc-LGD-A-2). (b) Mesh B (rc-LGD-B-2). (c) Mesh C (rc-LGD-C-2).

Figure 28. Dynamic tension test, reinforced concrete, LGD model using function ϕ1 with
cmax = 2 mm2, distribution of damage ω at t = 0.0006 s, mesh-sensitivity study.

(a) Mesh A (rc-LGD-A-8). (b) Mesh B (rc-LGD-B-8). (c) Mesh C (rc-LGD-C-8).

Figure 29. Dynamic tension test, reinforced concrete, LGD model using function ϕ1 with
cmax = 8 mm2, distribution of damage ω at t = 0.0006 s, mesh-sensitivity study.

All previous results described in Sections 3.1 and 3.2.2 for the LGD model with
application of function ϕ2 defined in Equation (45) constituted a reasonable alternative for
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the gradient activity determined by ϕ1. The results for the case with ϕ2 and cmax = 2 mm2

seem to deny this possibility. The elongation history at point E, shown in Figure 30a,
strongly differs for the following meshes. In case rc-LGDc-A-2 for coarse mesh A, after the
initial extension, the response oscillates around 0.02 mm. In cases rc-LGDc-B-2 for medium
mesh B and rc-LGDc-C-2 for fine mesh C this horizontal displacement runs to infinity, but
for the latter case the elongation is more rapid. Differences are also clearly visible for the
contour plots in Figure 31. The distribution of damage ω for rc-LGDc-A-2 in Figure 31a is
as expected and its character is similar to the one presented for rc-LGD-A-8 in Figure 29a.
Active damage develops from the centre points of both horizontal edges. The damage plots
for the next meshes, i.e., for cases rc-LGDc-B-2 and rc-LGDc-C-2 depicted in Figure 31b,c,
exhibit that the solution is sensitive to the adopted discretization. Damage grows also
along the reinforcing bar, which seems to be an undesirable consequence of the full bond
assumption. This issue vanishes if larger cmax = 8 mm2 is introduced. The diagrams in
Figure 30b are the same for each mesh. Again, the reinforcement in the specimen inhibits
the displacements going to infinity. The contour plots for damage ω in Figure 32 are almost
the same for each mesh, as well. The zones of active damage are wider than for the case with
function ϕ1 and cmax = 8 mm2 (cf. Figure 29), but the solution with ϕ2 is still satisfactory.
Figure 33 compares the time-elongation diagrams for the CGD and LGD models. The case
rc-LGDc-C-8 differs slightly from the others. However, all the diagrams have a similar
character—amplitudes have a comparable range, maximum values of elongation are visible
at close time instants and the horizontal displacement at point E does not go to infinity.
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(a) cmax = 2 mm2, mesh-sensitivity.
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Figure 30. Dynamic tension test, reinforced concrete, elongation history for LGD model using
function ϕ2.

(a) Mesh A (rc-LGDC-A-2). (b) Mesh B (rc-LGDC-B-2). (c) Mesh C (rc-LGDC-C-2).

Figure 31. Dynamic tension test, reinforced concrete, LGD model using function ϕ2 with
cmax = 2 mm2, distribution of damage ω at t = 0.0006 s, mesh-sensitivity study.



Materials 2022, 15, 1875 23 of 33

(a) Mesh A (rc-LGDC-A-8). (b) Mesh B (rc-LGDC-B-8). (c) Mesh C (rc-LGDC-C-8).

Figure 32. Dynamic tension test, reinforced concrete, LGD model using function ϕ2 with
cmax = 8 mm2, distribution of damage ω at t = 0.0006 s, mesh-sensitivity study.
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Figure 33. Dynamic tension test, reinforced concrete, comparison of models for elongation history,
mesh C, l = 4 mm or cmax = 8 mm2.

3.3. L-Shaped Specimen under Static and Dynamic Tensile Cracking

The third example is based on the experiment described in [45]. An L-shaped concrete
specimen with a fixed lower edge is subjected to tensile cracking from a corner by a vertical
load originating from a pull-up clamp. In [45] this structural member is investigated also
with different combinations of steel reinforcing bars or orthogonal grids, but the numerical
analysis presented below focuses only on plain concrete. The response of the L-specimen
can be influenced by different loading rates as shown in [73] for the numerical study
with the microplane model for concrete. Furthermore, dynamic fracture of the L-shaped
concrete specimen is meticulously reported in [46], where authors’ experimental tests
are compared with the numerical study. The gradient-enhanced damage model linked
with the microplane damage model is verified in [74] by means of a static analysis for
the L-specimen. This test for statics is analyzed using the LGD model, see [31,37]. In the
current paper, the numerical analysis is carried out for statics as well as for dynamics and
the results for the CGD and LGD models are confronted.

Figure 34 presents the L-shaped specimen together with the illustration of the fixed
edge and the place where the loading is applied. The geometry of the L-specimen is
determined by the characteristic size D = 250 mm. The area of crack pattern for the
experiment performed in [45] for plain concrete configuration is also depicted in Figure 34.
In the computations three meshes are employed. The basic mesh A shown in Figure 34 is
homogeneous and square FEs have the side of 5 mm. The number of eight-noded elements
is 7500, the number of nodes is 23,604. The next mesh B has 16,875 square eight-noded
FEs with the side of 3 1

3 mm for each element, 52,279 nodes and is also uniform. The third
mesh C is structural and divided into some regions with rectangular and square FEs. The
number of elements is 13,218. The number of nodes is 41,796. However, the region with
expected cracking is most densely discretized by FEs with the element size equal to 2.5 mm.
For the static analysis the Newton–Raphson method with the arc length control is used. For
dynamics the standard Newmark algorithm is applied. The dynamic loading is enforced
according to a linear function, but different rates are considered. The list of examined cases
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is given in Table 3. The loading with average rate is 10 times slower than for the case with
the fast rate and 5 times faster than for the case with the slow rate.

Table 3. Cases of loading rates for L-shaped specimen.

Loading Rate Time
Step [µs]

Number
of Steps Final Time tfin [µs] Final Intensity pfin [MPa]

Slope
pfin/tfin
[MPa/s]

fast 4.0 150 600.0 24.0 40,000.0
average 5.0 300 1500.0 6.0 4000.0

slow 10.0 366 3660.0 2.928 800.0

0.16 D

D

D

D0.84 D

Q

Figure 34. Configuration of L-shaped specimen together with mesh A and area of crack pattern for
experiment with static loading performed in [45].

The elastic constants are the same for CGD and LGD models: Young’s modulus
E = 25,850 MPa and Poisson’s ratio ν = 0.18. When dynamics is analyzed the density ρ
equals 2400 kg/m3. The plane stress configuration with thickness T = 100 mm is assumed.
The damage threshold κo = 1.0445× 10−4 corresponds to tensile strength ft = 2.7 MPa.
Exponential softening law given in Equation (41) is employed with α = 0.96 and η = 400
for the CGD model or with α = 0.95 and η = 112.5 for the LGD model. The equivalent
strain measure is introduced for both models by the modified von Mises definition (40)
with k = 11.4815, which reflects to compressive strength fc = 31.0 MPa. The constant
internal length parameter cmax is equal to 12.5 mm2 for the CGD model. The LGD model
is applied with cmax as the half of maximum internal length scale squared. Two options
are considered: the gradient activity is determined by function ϕ1 defined in Equation (43)
with R = 0.01 and n = 5.0 or function ϕ2 defined in Equation (45) with the same R and
n = 1.0, cf. Figure 2.

Figure 35 shows the diagrams for the load sketched in blue in Figure 34 versus the
vertical displacement measured at point Q. The equilibrium paths for the CGD model in
Figure 35a almost coincide and are consistent with the experimental result. It is confirmed
in Figure 36, where the zones of active damage have the same shape for each mesh and
coincide with the region of cracking illustrated in Figure 34. Excessive broadening of the
damage zone occurs as shown in Section 3.1 for the results of the CGD model. Again, it is
demonstrated that the LGD model is able to overcome this problem. Figure 37 presents
analogical contour plots for damage distributions when the LGD model is used with
function ϕ1. The width of the damage zone is much narrower in the comparison to
corresponding plots for the CGD model. On the other hand, a ragged area of damage
occurs in a part of the localized zone starting from the corner. It is visible especially for
coarse mesh A, see Figure 37a. This effect is connected with too coarse discretization for
the LGD model, despite the fact that 7500 FEs is used. The LGD model demands really
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refined meshes in the computations, see also [27,30,31]. The problem of the zone with a
non-smooth edge vanishes together with a denser mesh, cf. Figure 37b for mesh B and
Figure 37c for mesh C. Moreover, the ragged areas in the damage distributions are less
distinct when the LGD model with the gradient activity using the cosine function ϕ2 is
taken into account (see Figure 38). The zone of active damage for mesh C in Figure 38c has
fully smooth shape and this solution resembles the cracked area from the experiment, cf.
Figure 34. The load-displacement diagrams for the LGD model are depicted in Figure 35b
for function ϕ1 and in Figure 35c for function ϕ2. They are in the limit of the gray region
obtained for the experiment [45], but vary for the solutions obtained for subsequent meshes.
The difference between meshes B and C is smaller for both the functions ϕ1 and ϕ2. It can
be assumed that the density of mesh B is enough to achieve a quite objective solution. As
shown for the first example in Section 3.1 the LGD model provides the results independent
of the discretization.
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Figure 35. L-shaped test, statics, diagrams of load vs vertical displacement at point Q, mesh-
sensitivity study.

(a) Mesh A. (b) Mesh B. (c) Mesh C.

Figure 36. L-shaped test, statics, CGD model, distribution of damage ω, mesh-sensitivity study.

(a) Mesh A. (b) Mesh B. (c) Mesh C.

Figure 37. L-shaped test, statics, LGD model using function ϕ1, distribution of damage ω, mesh-
sensitivity study.



Materials 2022, 15, 1875 26 of 33

(a) Mesh A. (b) Mesh B. (c) Mesh C.

Figure 38. L-shaped test, statics, LGD model using function ϕ2, distribution of damage ω, mesh-
sensitivity study.

The last part of this section is devoted to the analysis of the L-specimen subjected to the
dynamic loading which grows linearly. The attention is focused on the comparison of the
models, not the mesh-sensitivity study, hence only mesh B is selected in the computations.
The material data for the CGD and LGD models are the same as for statics. Three cases with
different rates (fast, average and slow) of the loading are analyzed, according to Table 3.
The diagrams of vertical displacement or velocity or acceleration at point Q versus time for
these three rates are depicted in Figure 39. It is shown that they correspond to one another
for all the applied models and vary with the loading rate. In Figure 39a the displacement
around 0.6 mm is attained for time of about 0.5 ms for the fast rate, approximately 1.3 ms
for the average rate and close to 3.6 ms for the slow rate. The acceleration can be confronted
the velocity, see Figure 39b,c. It is noticed that amplitudes of the acceleration are largest for
the fast rate and the maximum value achieved are over 1.5× 107 mm/s2. They are strongly
reduced to around 2.0× 106 mm/s2 for the average rate and finally the acceleration becomes
very small for the slow rate. Figures 40–42 show corresponding damage distributions. It is
visible in Figure 40 that if the fast rate is investigated the damage zone is directed almost
vertically, independently of the used model. Analogically, for the average rate damage
develops diagonally for each model (see Figure 41). When the slow rate is taken into
account, the damage growth in Figure 42 has a similar direction to those obtained for static
computations, but at the end it goes up. The change of the fracture direction from extending
upwards for the fast rate to propagating horizontally for the slow rate is also observed
for the computations discussed in [46,73]. It is seen for the CGD model that the damage
zone is the widest, regardless of the loading rate. For the LGD model this zone is much
narrower, however the ragged areas still occur. This problem is reduced if function ϕ2 is
employed (see, e.g., Figure 41c). For cases with fast or average rates of the loading it can be
distinguished that the distribution of the active damage expands and forms an elliptic area
perpendicularly to the initial direction of the damage zone. It is probably connected with a
transformation of mode I to mixed mode for strain localization. Moreover, branching in
cracking of the concrete L-specimen investigated in the experiment can be simulated as
shown in [46]. Here, the gradient-enhanced model in both implemented versions (CGD
and LGD) is not able to reproduce the branching effect. This effect requires a recognition of
the crack tip and for instance an extra projection method for the strain tensor [75].
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Figure 39. L-shaped test, dynamics, response histories, comparison of models and different rates
of loading.

(a) CGD. (b) LGD, ϕ1. (c) LGD, ϕ2.

Figure 40. L-shaped test, dynamics, fast rate of loading, distribution of damage ω for
available models.
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(a) CGD. (b) LGD, ϕ1. (c) LGD, , ϕ2.

Figure 41. L-shaped test, dynamics, average rate of loading, distribution of damage ω for
available models.

(a) CGD. (b) LGD, ϕ1. (c) LGD, ϕ2.

Figure 42. L-shaped test, dynamics, slow rate of loading, distribution of damage ω for
available models.

4. Discussion

In the paper, the localizing gradient damage model (LGD) is examined in the reference
to standard version of this model, called the conventional gradient damage model (CGD).
The range of the study is limited to the analysis of tension tests. The results of simulations
are widely discussed in Section 3. A summary of performed computations is presented
in Table 4. The first part of the table shows that both versions of this nonlocal model
(CGD and LGD) are considered, but the dynamic direct tension test is carried out using
only the LGD model. Two different functions of the gradient activity are employed in this
model. The considered specimens are subjected to static or dynamic tension. The results
for double-edge-notched test are compared with the experiment performed in [39]. The
second numerical test with dynamic direct tension caused by impact loading is carried out
for the configuration without or with reinforcement and it is a continuation of the research
published in [44]. The last example concerns tension in the L-shaped specimen, for which
static or dynamic problem is solved. Computations for statics are based on the experiment
presented in [45] and they are comparable with those presented in [31,74]. The results for
dynamics have a rather similar character to those shown in [46]. In the analysis, three
or four meshes are used in order to demonstrate a reliable mesh-sensitivity study. The
same type of eight-noded FE with Serendipity shape functions for nodal displacements a
and bilinear Lagrange shape functions for nodal averaged strains e as well as 2× 2 Gauss
integration is applied in all the computations. More details of discretization are included in
Table 4 or in the description of the model for each example. Conclusions resulting from the
survey described in Section 3 are listed below.
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Table 4. Summary of computed examples.

Section Section 3.1 Section 3.2 Section 3.3

Concrete models CGD, LGD LGD CGD, LGD
Gradient activity ϕ0, ϕ1, ϕ2 ϕ1, ϕ2 ϕ0, ϕ1, ϕ2

Specimen double-edge-notched unnotched L-shaped
Concrete plain plain reinforced plain
Analysis statics dynamics statics dynamics

Increment indirect displacement standard Newmark arc length standard
procedure control control Newmark
Loading static impact, static dynamic,

linear-constant linear

Number of meshes 4 3 3
Mesh type densified near the notches uniform uniform or structural uniform

Shape square, rectangular, square square, square
of FEs trapezoidal rectangular

Minimum size of FE 0.625 mm 1 mm 2.5 mm 3 1
3 mm

5. Conclusions

The paper contains the study of the localizing gradient damage model (LGD). The
model [27,28] is compared with its precursor [6], i.e., the conventional gradient damage
model (CGD). Both models are able to simulate cracking in quasi-brittle composite materials,
in particular concrete. When the CGD model is used, a spuriously widening zone of
damage occurs in simulations. This problem is overcome by means of the LGD model. The
theory presentation starts from the definition of the Helmholtz free energy which depends
on the strain tensor, averaged strain measure and its gradient. The averaging equation
with constant or variable gradient activity is derived from this definition, cf. [7,8]. The
formulation of the LGD model leads to the linearization and discretization of the (I)BVP.
For dynamics the mass matrix is additionally defined, but the two-field formulation known
from the CGD model holds. Both the models are implemented in the FEAP package [38].
The gradient activity in the LGD model has a localizing character, because the nonlocal
interaction domain shrinks with the damage growth (see Figure 1). The gradient activity
function is assumed to decrease exponentially as in [27,28] or according to a cosine function
as proposed in Equation (45).

When the gradient activity function has the exponential character, then the power n
called here the intensity parameter can affect the localizing process of nonlocal averaging
significantly. In the computations usually n = 5.0 is introduced, but as shown in the
example of the double-edge-notched bar it can lead to convergence disturbance at the onset
of strain localization, see Figure 13a. A smaller value n = 1.0 causes the gradient activity to
decrease slower, but then the damage zone becomes wider. In most computational cases the
exponential function ϕ1 with n = 5.0 provides mesh-objective results with an appropriately
narrow zone of active damage.

However, the gradient activity function ϕ2 can be an alternative to ϕ1. The localization
zone is then more smeared for smaller damage values, but it is similar to the distribution
obtained for ϕ1 for damage values approaching 1.0. The convergence disturbance vanishes.
Generally, function ϕ2 provides correct results in the modelling of concrete cracking using
the LGD model, unless a small value of cmax defined as the maximum internal length scale
squared is applied. For instance, poor results are obtained for cmax = 2 mm2 in the direct
dynamic tension test for the reinforced concrete (RC) configuration (see Figures 30a and 31).

The application of the LGD model removes the issue of artificially broadening damage
zone, but the results become more dependent on the discretization. In the paper static and
dynamic tension of concrete is analyzed. Based on the results for all discussed examples, it is
realized that only a reasonably refined mesh can assure a fully mesh-objective solution. As
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demonstrated for the L-specimen test, a problem of ragged areas in the damage distribution
can occur for too coarse meshes, but it disappears upon mesh densification.

The double-edge-notched test of static tensile cracking should be computed with an
extra care to keep the symmetry and proper convergence. In the dynamic direct tension
test for plain concrete one zone of active damage related to a standing wave in the center is
expected. The selection of values for the model parameters influences the correctness of the
dynamic response. The parameter cmax and even more the parameter R associated with the
residual interaction cannot be too small, because then two or more localization zones can
appear. In the dynamic analysis of the L-shaped specimen, the change of direction of the
damage growth zone is reproduced depending on different rates of loading, analogically
to [46,73]. However, branching in concrete cracking cannot be simulated using the LGD
model in this version, so in this respect it requires a further enhancement in the future.

Summarizing, the LGD model guarantees mesh-objective solution with a correct zone
of active damage for static and dynamic problems, and performs better than the CGD
model, but it calls for a careful selection of the values of its parameters and requires the use
of denser meshes.
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18. Bobiński, J.; Tejchman, J. Modelling of strain localization in quasi-brittle materials with nonlocal continuum models. In

Proceedings of the EURO-C 2006 Conference, Mayrhofen, Austria, 27–30 March 2006; Taylor & Francis: London, UK; Leiden,
The Netherlands, 2006; pp. 301–307.

19. Grassl, P.; Jirásek, M. Plastic model with non-local damage applied to concrete. Int. J. Num. Anal. Meth. Geomech. 2006, 30, 71–90.
[CrossRef]

20. Jirásek, M.; Desmorat, R. Localization analysis of nonlocal models with damage-dependent nonlocal interaction. Int. J. Solids
Struct. 2019, 174–175, 1–17. [CrossRef]

21. Bui, Q.V. Initiation of damage with implicit gradient-enhanced damage models. Int. J. Solids Struct. 2010, 47, 2425–2435.
[CrossRef]

22. Nguyen, G.D. A damage model with evolving nonlocal interactions. Int. J. Solids Struct. 2011, 48, 1544–1559. [CrossRef]
23. Vandoren, B.; Simone, A. Modeling and simulation of quasi-brittle failure with continuous anisotropic stress-based gradient-

enhanced damage models. Comput. Methods Appl. Mech. Eng. 2018, 332, 644–685. [CrossRef]
24. Nguyen, T.H.A.; Bui, T.Q.; Hirose, S. Smoothing gradient damage model with evolving anisotropic nonlocal interactions tailored

to low-order finite elements. Comput. Methods Appl. Mech. Eng. 2018, 328, 498–541. [CrossRef]
25. Vuong, C.D.; Bui, T.Q.; Hirose, S. Enhancement of the smoothing gradient damage model with alternative equivalent strain

estimation for localization failure. Eng. Fract. Mech. 2021, 258, 108057. [CrossRef]
26. Saroukhani, S.; Vafadari, R.; Simone, A. A simplified implementation of a gradient-enhanced damage model with transient length

scale effects. Comput. Mech. 2013, 51, 899–909. [CrossRef]
27. Poh, L.H.; Sun, G. Localizing gradient damage model with decreasing interaction. Int. J. Numer. Meth. Eng. 2017, 110, 503–522.

[CrossRef]
28. Sun, G. Localizing Gradient Damage Models for the Fracture of Quasi-Brittle Materials. Ph.D. Dissertation, National University

of Singapore, Singapore, 2017.
29. Jirásek, M. Regularized continuum damage formulations acting as localization limiters. In Proceedings of the Conference on

Computational Modelling of Concrete and Concrete Structures (EURO-C 2018), Bad Hofgastein, Austria, 26 February–1 March
2018; CRC Press/Balkema: London, UK, 2018; pp. 25–41.

30. Wosatko, A. Comparison of evolving gradient damage formulations with different activity functions. Arch. Appl. Mech. 2021, 91,
597–627. [CrossRef]

31. Sarkar, S.; Singh, I.; Mishra, B.; Shedbale, A.; Poh, L. A comparative study and ABAQUS implementation of conventional and
localizing gradient enhanced damage models. Finite Elem. Anal. Des. 2019, 160, 1–31. [CrossRef]

32. Zhang, Y.; Shedbale, A.S.; Gan, Y.; Moon, J.; Poh, L.H. Size effect analysis of quasi-brittle fracture with localizing gradient damage
model. Int. J. Damage Mech. 2021, 30, 1012–1035. [CrossRef]

33. Shedbale, A.S.; Sun, G.; Poh, L.H. A localizing gradient enhanced isotropic damage model with Ottosen equivalent strain for the
mixed-mode fracture of concrete. Int. J. Mech. Sci. 2021, 199, 106410. [CrossRef]

34. Wang, Z.; Poh, L.H. A homogenized localizing gradient damage model with micro inertia effect. J. Mech. Phys. Solids 2018, 116,
370–390. [CrossRef]

35. Wang, Z.; Shedbale, A.S.; Kumar, S.; Poh, L.H. Localizing gradient damage model with micro intertia effect for dynamic fracture.
Comput. Methods Appl. Mech. Eng. 2019, 355, 492–512. [CrossRef]

36. Tong, T.; Hua, G.; Liu, Z.; Liu, X.; Xu, T. Localizing gradient damage model coupled to extended microprestress-solidification
theory for long-term nonlinear time-dependent behaviors of concrete structures. Mech. Mater. 2021, 154, 103713. [CrossRef]

37. Sarkar, S.; Singh, I.; Mishra, B. Adaptive mesh refinement schemes for the localizing gradient damage method based on
biquadratic-bilinear coupled-field elements. Eng. Fract. Mech. 2020, 223, 106790. [CrossRef]

38. Taylor, R. FEAP—A Finite Element Analysis Program, Version 7.4, User Manual; University of California at Berkeley: Berkeley, CA,
USA, 2001.

http://dx.doi.org/10.1177/10567895211068174
http://dx.doi.org/10.1177/10567895211063227
http://dx.doi.org/10.1002/(SICI)1099-1484(1998100)3:4<323::AID-CFM51>3.0.CO;2-Z
http://dx.doi.org/10.6100/IR477352
http://dx.doi.org/10.1016/S0045-7825(98)80011-X
http://dx.doi.org/10.1016/j.ijsolstr.2005.03.038
http://dx.doi.org/10.1016/j.ijplas.2009.01.003
http://dx.doi.org/10.1002/nag.479
http://dx.doi.org/10.1016/j.ijsolstr.2019.06.011
http://dx.doi.org/10.1016/j.ijsolstr.2010.05.003
http://dx.doi.org/10.1016/j.ijsolstr.2011.02.002
http://dx.doi.org/10.1016/j.cma.2017.12.027
http://dx.doi.org/10.1016/j.cma.2017.09.019
http://dx.doi.org/10.1016/j.engfracmech.2021.108057
http://dx.doi.org/10.1007/s00466-012-0769-8
http://dx.doi.org/10.1002/nme.5364
http://dx.doi.org/10.1007/s00419-021-01889-2
http://dx.doi.org/10.1016/j.finel.2019.04.001
http://dx.doi.org/10.1177/1056789520983872
http://dx.doi.org/10.1016/j.ijmecsci.2021.106410
http://dx.doi.org/10.1016/j.jmps.2018.04.007
http://dx.doi.org/10.1016/j.cma.2019.06.029
http://dx.doi.org/10.1016/j.mechmat.2020.103713
http://dx.doi.org/10.1016/j.engfracmech.2019.106790


Materials 2022, 15, 1875 32 of 33

39. Hordijk, D.A. Local Approach to Fatigue of Concrete. Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands,
1991.

40. Rhee, I.; Lee, J.S.; Roh, Y.S. Fracture parameters of cement mortar with different structural dimensions under the direct tension
test. Materials 2019, 12, 1850. [CrossRef] [PubMed]

41. van Mier, J.G.M.; van Vliet, M.R.A. Experimental investigation of size effect in concrete and sandstone under uniaxial tension.
Eng. Fract. Mech. 2000, 65, 165–188. [CrossRef]

42. Lee, S.K.; Woo, S.K.; Song, Y.C. Softening response properties of plain concrete by large-scale direct tension test. Mag. Concr. Res.
2008, 60, 33–40. [CrossRef]

43. Ožbolt, J.; Bošnjak, J.; Sola, E. Dynamic fracture of concrete compact tension specimen: Experimental and numerical study. Int. J.
Solids Struct. 2013, 50, 4270–4278. [CrossRef]

44. Wosatko, A.; Winnicki, A.; Pamin, J. Simulations of concrete response to impact loading using two regularized models. Comput.
Assist. Methods Eng. Sci. 2020, 27, 27–60. [CrossRef]

45. Winkler, B.; Hofstetter, G.; Niederwanger, G. Experimental verification of a constitutive model for concrete cracking. Proc. Inst.
Mech. Eng. Part L J. Mater. Des. Appl. 2001, 215, 75–86. [CrossRef]

46. Ožbolt, J.; Bede, N.; Sharma, A.; Mayer, U. Dynamic fracture of concrete L-specimen: Experimental and numerical study. Eng.
Fract. Mech. 2015, 148, 27–41. [CrossRef]

47. Carneiro, F.L.L.B.; Barcellos, A. Tensile strength of concretes. RILEM Bull. 1953, 13, 97–123.
48. Rocco, C.; Guinea, G.V.; Planas, J.; Elices, M. Mechanisms of Rupture in Splitting Tests. ACI Mater. J. 1999, 96, 52–60. [CrossRef]
49. Suchorzewski, J.; Tejchman, J.; Nitka, M. Experimental and numerical investigations of concrete behaviour at meso-level during

quasi-static splitting tension. Theor. Appl. Fract. Mech. 2018, 96, 720–739. [CrossRef]
50. Ruiz, G.; Ortiz, M.; Pandolfi, A. Three-dimensional finite-element simulation of the dynamic Brazilian tests on concrete cylinders.

Int. J. Numer. Meth. Eng. 2000, 48, 963–994. [CrossRef]
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