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Abstract: Spherical molybdenum nano-powders were in-situ ultrafast synthesized from ammonium
paramolybdate (APM) raw materials in a one-step reduction method by radio frequency (RF) hydro-
gen plasma. Due to the extreme conditions of the RF plasma torch such as its high temperature and
large temperature gradient, the injected raw APM powder was quickly gasified and then reduced
into nano-sized metal molybdenum (Mo) powder. The influences of APM powder delivery rate
and H2 concentration on the properties of the obtained powders were investigated. Field-emission
scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffraction
(XRD), nanolaser particle analyzer, and specific surface area method were used to characterize the
morphology, phase, and particle size distribution of the powders. The results showed that the nano-
sized Mo powder obtained by hydrogen plasma treatment had a quasi-spherical morphology and an
average particle size of about 30 nm. The particle size could be successfully adjusted by varying H2

concentrations. In addition, spherical nano-sized MoO3 powder could be obtained when no H2 was
added into the RF plasma.

Keywords: RF hydrogen plasma treatment; reduction; APM powder; nano-sized molybdenum powder

1. Introduction

Because of its high melting points, good thermal conductivity, and superior corrosion
resistance, as well as high yield strength and elastic modulus at high temperature, molybde-
num and its alloys have become excellent materials for high-temperature structural parts in
the fields of aerospace chemical, metallurgy, and nuclear [1,2]. Due to its high melting point
of 2610 ◦C, molybdenum alloy components are generally prepared by powder metallurgy.
The properties of molybdenum powder such as its particle size, purity, morphology, and
dispersion have a great influence on the performances of molybdenum alloy components [3,4].
At present, the industrial production of high-quality molybdenum powder is always achieved
through two-stage reduction of MoO3 (hydrogen reducing MoO3 to MoO2 at 600–700 ◦C,
and further reducing MoO2 to Mo at 850–1100 ◦C). The molybdenum powders prepared by
the hydrogen reduction method usually have large particle sizes of several microns because
the molybdenum nucleation and growth process are difficult to control [5,6]. In addition,
the sintering temperature of the micron-molybdenum powder must reach 1800–2000 ◦C and
be maintained for several hours to obtain 90% of its theoretical density; the grain size of
the compact is tens of microns [7–9]. Studies have shown that Mo nano-particles can be
sintered at 1200 ◦C for one hour to prepare compacts over 95% of their theoretical density
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with an average grain size of 1.4 µm [10]. Alternatively, adding a small amount of nano-sized
powder to the traditional micron-sized powder can also significantly reduce the sintering
temperature of the traditional powder [9]. It can be seen that nano-molybdenum powder
plays an important role in the sintering process of traditional parts. In addition, due to its
size effect and activity, molybdenum nano-powders are often used as magnetic materials,
metallurgical additives, chemical catalysts, etc. [11–14]. Mo nano-powders can be prepared
by many methods such as high-energy ball milling, electric explosion, and other complex
chemical reaction methods [15–19]. However, most of these methods require complicated
procedures and cannot be used for industrial-scale mass production.

Over the last few decades, thermal plasma technology has attracted wide attention
in synthesizing ultra-fine powders through gas-phase reaction due to its high tempera-
ture, high enthalpy, high quenching rate, clean reaction atmosphere, and wide range of
controllable conditions [20–25]. Compared with DC plasma, radio frequency (RF) plasma
has advantages such as a cleaner reaction atmosphere, higher energy, a larger reaction
chamber, and being more suitable for synthesizing high-purity materials because of no
electrode contamination. The spheroidization and refinement of many refractory metals
and ceramic powders have been achieved using RF plasma, such as tantalum, tungsten,
and AlO3 powders [26–31]. However, there are few reports on the preparation of spheri-
cal molybdenum powder by RF plasma, especially ultra-fine molybdenum powder [32].
In this paper, irregular ammonium paramolybdate (APM) powders under the carrying
of powder delivery gas entered the hydrogen plasma flame (up to 8000 ◦C), underwent
rapid cracking, reduction, and then were quenched to synthesize ultra-fine spherical metal
molybdenum particles. Spherical molybdenum nano-powders were continuously pre-
pared under dynamic hydrogen plasma in a one-step pathway from APM within a few
seconds. The influences of H2 concentration and powder delivery rate on the obtained
powder performance were examined. At the same time, the particle size of the as-obtained
products was adjusted by changing the H2 concentration. The obtained rules can also
be extended and applied to guide the preparation of other refractory metal and ceramic
ultrafine spherical powders.

2. Materials and Methods
2.1. Experimental Equipment and Raw Materials

The preparation experiments of molybdenum nano-powder were carried out on RF
plasma equipment. The experimental equipment included a radio frequency generator
(36 kW, 4 MHz), a plasma generator, a double-layer stainless steel water-cooled chamber,
and a bottom powder collector. The schematic diagram of the equipment is shown in
Figure 1. The powder feeder is homemade, and its feed rate can be adjusted by the screw
speed [33].

The raw material powders of APM (ammonium paramolybdate, (NH4)6Mo7O24·2H2O,
99.9%) were purchased from Jinduicheng Molybdenum Co., Ltd. (Xi’an, Shaanxi Province,
China), in which the content of MoO3 was 81.55%. They are large white monoclinic crystals
with a bulk density of 1.4 g/cm3, with almost no fluidity. The FESEM image and XRD
pattern of the APM raw material are shown in Figure 2. It can be seen from Figure 2a that
the APM precursor powders have a white flaky structure with particle sizes ranging from
10 µm to 50 µm. XRD patterns in Figure 2b indicate its good crystallization.

The hydrogen (H2) and argon (Ar) used in the experiment were both purchased from
Xi’an Yatai Gas Company, with a purity of 99.9%.
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The plasma center gas and sheath gas used Argon (Ar, 99.9%). The powder-carrying 

gas was a mixture of argon and hydrogen (H2, 99.9%), and the ratio of hydrogen and argon 
can be adjusted according to the experiment’s needs. After the plasma torch heated the 
reaction chamber to a stable state for about 5 min, the dried APM precursor powders were 
delivered into the RF hydrogen plasma torch continuously using the mixture of Ar and 
H2 as the carrier gas. At the same time, hydrogen gas also played the role of reducing 
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Figure 2. FESEM image (a) and XRD patterns (b) of the raw material APM powder.

2.2. Experiment Procedure

The plasma center gas and sheath gas used Argon (Ar, 99.9%). The powder-carrying
gas was a mixture of argon and hydrogen (H2, 99.9%), and the ratio of hydrogen and argon
can be adjusted according to the experiment’s needs. After the plasma torch heated the
reaction chamber to a stable state for about 5 min, the dried APM precursor powders were
delivered into the RF hydrogen plasma torch continuously using the mixture of Ar and
H2 as the carrier gas. At the same time, hydrogen gas also played the role of reducing
agent. APM powder underwent melting, evaporation, and reduction during the plasma
processing. The resulting metallic molybdenum species condensed and formed spherical
nano-particles with the help of the high quenching rate. Most of the as-obtained nano-sized
powders fell freely to the bottom of the reaction chamber under the action of gravity to be
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collected. To maintain the stable operation of the plasma torch, it is crucial to set plasma
parameters. The plasma parameter values in this work are arranged as shown in Table 1.

Table 1. The values of experimental parameters for APM reduction by the RF plasma.

Parameter Value (25 ◦C, 86.1 kPa)

Plasma power 30 kW
Central gas (Ar) 15 L/min
Sheath gas (Ar) 45 L/min

Carrier gas (H2 + Ar) 8 L/min
Powder delivery rate 30–60 g/min

2.3. Characterization

The thermal decomposition of APM was analyzed by thermogravimetry (TG, Setaram
Setsys Comprehensive Thermal Analyser in Franc). The phase composition of the raw
powders and products was examined by X-ray diffractometer (XRD, D8 Advance A25,
Bruker, Rheinstetten, Germany) in the 2θ-range from 20◦ to 90◦ with Cu Ka radiation
(λ = 0.1540598) at a scanning speed of 4 deg·s−1. The morphology and microstructure of the
particles were detected by field-emission scanning electron microscope (FESEM, Gemini
300, Oberkauchen, Germany) equipped with energy-dispersive X-ray spectroscopy (EDS),
and a transmission electron microscope (TEM, Hitachi H-800, Tokyo, Japan). The chemical
compositions of the product were measured by energy dispersive X-ray spectrometer (EDS,
equipped on FESEM), Oxygen Nitrogen analyzers, and inductively coupled plasma atomic
emission spectroscopy (ICP-AES, Optima 5300 DV, Shelton, WA, USA), tested three times
under the same conditions, taking the average value as the final chemical composition
value. The particle size of the powder was determined by high-resolution laser particle-
size analyzer (LS13320, Beckman Coulter, Kraemer Boulevard, Brea, CA, USA), Nitrogen
adsorption BET specific surface analyzer (ASAP-2020, Micromeritics, Norcross, GA, USA),
and Nano measure statistical analysis software based on TEM.

The powder samples for both FESEM and TEM observation were ultrasonically dis-
persed for 15 min before testing. Then, the powder sample for FESEM was dried for 30 min,
and three drops of the sample for TEM were dropped onto the carbon-coated copper mesh
with a dropper and dried before the examination.

3. Results and Discussion
3.1. Preparation of the Molybdenum Nano-Powders by RF Hydrogen Plasma Reduction

Generally, the raw APM powder is easily decomposed when heated in the air, and
the decomposition product is MoO3 [34]. In this work, the RF plasma used argon as the
working gas. The thermogravimetric (TG) analysis of APM powder in the Ar atmosphere
was carried out to study its decomposition process at high temperatures. The TG analysis
curve of APM decomposition in argon (heating rate 5 ◦C/min) is shown in Figure 3a,b, i.e.,
the XRD patterns of the resultant product in the TG experiment. It was found that the initial
decomposition temperature of APM powder in this TG experiment was 190 ◦C, and the
whole decomposition included three steps: the loss of H2O (about 190 ◦C), NH3 (320 ◦C),
and H2O-NH3 (390 ◦C), respectively. APM was completely decomposed into MoO3 near
400 ◦C. The TG results of APM in this work were almost consistent with those reported
by Xiang Tiegen et al. [35]. Figure 3c,d shows the FESEM image and the XRD patterns of
its decomposed product in an RF pure argon plasma torch. It can be seen that all peaks
in the XRD patterns were indexed to the MoO3 structure when no H2 was added. The
temperature of RF argon plasma (>3000 ◦C) can decompose almost arbitrary precursors.
When APM powders were delivered into the high-temperature area of the argon plasma
torch without adding H2 gas, it quickly lost H2O and NH3, cleaved, and decomposed into
MoO3 fragments with an average particle size of about 30 nm, as shown in Figure 3c. This
plasma treatment route without H2 addition can also be an effective method for preparing
MoO3 nano-powders.
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Figure 3. (a) TG analysis curve of APM decomposition in argon (heating rate 5 ◦C/min); (b) XRD
patterns of resultant product in TG experiment; (c) FESEM image of obtained powders in an RF pure
argon plasma without H2; (d) XRD patterns of the obtained product in a pure argon plasma.

When a certain amount of H2 was added into the carrier Ar gas, nano-sized metal
molybdenum particles could be obtained from APM in one-step RF plasma treatment
because RF plasma provided a high concentration of active substances (H and H+ in this
work) [28]. Figure 4 showed the morphology and structure of the resultant products
when the APM powder delivery rate was 30 g/min and the ratio of H2 was five times the
stoichiometric level. It can be seen from Figure 4a, combined with the manual visual inspec-
tion, that the product comprised black soot-like loose powders. In contrast, conventional
micron-sized molybdenum powder is generally gray or dark gray. It is due to the small
size effect of nano-sized powders, and the finer the powder particles, the darker the color.
The FESEM image with high-magnification of the product in Figure 4b indicates that the
obtained powders were quasi-spherical or an open-structure agglomerate composed of
several quasi-spherical single particles. The chemical composition of the reduction product
was evaluated with EDS, XRD, and Oxygen Nitrogen analyzers, respectively. Figure 4c is
the EDS plane scan spectrum of area 2 in Figure 4b, indicating that the oxygen content of
the reduced powder was extremely low, only 500 ppm, which approximately coincided
with the result of 550 ppm measured by the oxygen and nitrogen analyzer. XRD patterns
in Figure 4d reveal that the obtained powders were pure metal molybdenum without de-
tectable oxides or other impurities. The difference from the EDS results is mainly attributed
to the XRD accuracy of only 5%. The impurity contents in the powder before and after
hydrogen plasma reduction measured by ICP-AES are shown in Table 2. It can be seen that
the hydrogen plasma treatment greatly reduced the impurity content while reducing APM
in one step, especially for low-melting-point elements. The reduced product powder was
of high purity. Therefore, RF plasma also provides a way to purify substances.
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Table 2. Composition results of the ICP-AES analysis of the powders before and after RF treatment
(µg/g).

Element Fe Si Mn Al Mg Ni Ti V Co P Sb Cu Cr W

Raw APM powder <8 <8 <4 <6 <6 <3 <10 <10 <4 <5 <5 <3 <10 <100
Reduced powder <4 <2 <3 <0 <0 <1 <4 <6 <3 <3 <3 <1 <6 <98

TEM observation was carried out to confirm the microstructure of the reduction product.
The TEM image in Figure 5a further demonstrates that the obtained powders had quasi-
spherical morphology. HRTEM in Figure 5c further reveals the crystalline characteristics of
a representative particle. The clarity of the crystal lattice fringes image indicates that the
obtained powder had good crystallinity. The distance between adjacent lattice planes was
0.22 nm, which corresponds to the (110) crystal plane of Mo. Nano-measuring statistical
analysis software equipped with TEM was used to calculate the particle size. The more
particles measured in the statistical process, the more accurate the final statistical result.
In this work, 100 particles with clear edges and uniform dispersion in TEM images were
randomly selected as the measurement object. The statistical results are shown in Figure 5b,
indicating that the particle size distribution of the reduction product was between 20 nm
and 90 nm, and the particle size distribution was relatively narrow. At the same time, the
average particle size of the obtained particles was only 30 nm. The laser particle size testing
results in Figure 5d show that the average particle size was 65 nm, which is higher than that
of the TEM method. It is because the laser particle-size testing method measures the particle
size in a liquid medium, and agglomeration occurs between the product particles. At the
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same time, the product particles movement in the medium during the test will also cause
the test results to be high. To further confirm the average particle size of the nano-powders,
the specific surface area of the product was tested by a Nitrogen adsorption BET-specific
surface analyzer at the same time. Assuming that the tested sample particles are rigid
spheres, the average particle size of the product can be calculated by the formula D = 6

Aρ

(where A is the specific surface area of the powder sample (m2/g), and ρ is the density of
the sample (g/m3)). In this study, the test result of the specific surface area A of the product
was 20.1 m2/g. The average particle size of the product nano-particles was calculated to be
32.4 nm, which was similar to the statistical result of 30 nm observed under TEM. Based on
the above, excluding the influence of laser particle-size testing conditions, the particle size
of the prepared nano-powder was about 30 nm.
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Figure 5. Characterization results of the obtained powders prepared by the hydrogen plasma at a
delivery rate of APM: 30 g/min, H2 ratio: five times the stoichiometric level: (a) TEM micrograph;
(b) particle-size distribution statistics based on TEM image; (c) HRTEM image; and (d) laser particle-
size distribution curve.

The above studies show that when the powder feeding rate of APM was 30 g/min, the
ratio of carrying gas H2 was five times the stoichiometric value, and that when RF plasma
process parameters were set as in Table 1, spherical pure molybdenum nano-sized powders
with a narrow and uniform powder particle size distribution with an average particle size
of about 30 nm could be prepared.

Conventional micron-sized molybdenum powder is stable in air and oxygen at room
temperature, but its high-temperature oxidation resistance is very poor [36]. It started to
oxidize when the ambient temperature reaches 400 ◦C, and rapidly oxidized into MoO3 at
500–600 ◦C. To comprehensively evaluate the oxidation resistance of the nano-sized molyb-
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denum powders prepared by RF plasma in this study, thermogravimetric experiments((TG)
were carried out under an air atmosphere. Figure 6 shows the thermogravimetric curve of
the reduction product in an air atmosphere. It can be seen that the obtained nano-sized
molybdenum powders were easily oxidized in an air atmosphere, and the oxidation re-
action started at about 200 ◦C, which is about 200 ◦C lower than that of conventional
molybdenum powders, and the oxidation speed was very fast. No significant change
occurred after 400 ◦C, and all of them were oxidized to MoO3. It can be seen that with the
further refinement of the particle size of molybdenum powder, its activity was enhanced
and more easily oxidized. Therefore, when nano-sized molybdenum powders are prepared,
it must be ensured that the RF plasma system used is strictly sealed. After the reaction, the
equipment system should continue to be protected by inert gas to prevent the nano-sized
molybdenum powders from oxidizing and spontaneously igniting due to contact with air.
The collection chamber can be opened to take out the nano-molybdenum powder product
until the entire system and the product are completely cooled. Similarly, when the prepared
nano-sized molybdenum powder is heated or sintered, it must be isolated from air and
oxygen at high temperatures. It can only be processed in a reducing atmosphere, an inert
atmosphere, or an air atmosphere below 200 ◦C.
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Because of a series of properties such as extremely high temperature, excellent heat
conductivity, strong reducibility, large reaction chamber, and rapid quenching rate, RF
plasma can be used to synthesize metal Mo powders with nano-sized particles and spherical
morphology. Figure 7 is a schematic illustration of the mechanism comparison between
the plasma one-step reduction of APM to prepare nano-molybdenum powder and the
traditional APM hydrogen reduction to prepare molybdenum powder. It can be seen that
in the traditional hydrogen reduction method, the APM is first baked at a low temperature
of 450–500 ◦C for several hours to obtain MoO3, and then the product MoO3 is reduced at
600–700 ◦C and 850–1000 ◦C, respectively, to obtain micron-sized molybdenum powder. As
shown in Figure 7a, the reduction reaction is carried out from the outside to the inside in a
static state, and the particle size and morphology are hereditary to a certain extent. Since
the particle size of the raw material powder is in the micron scale, the product molybdenum
powder can only be in the micron scale, rather than nanoscale. The whole calcination and
reduction process are carried out in static state, each stage requires several hours, the
preparation cycle is long, and the cost is high [37,38]. Compared with the traditional static
reduction of MoO3 for several hours to prepare commercial Mo powder, it takes only a
few seconds to prepare ultra-fine Mo powder by the hydrogen plasma-reducing APM in
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one step, which is a continuous dynamic process. Because the temperature of the plasma
torch is as high as 3000 ◦C, when the APM raw powders are fed into the plasma flame,
they are immediately decomposed and vaporized. The decomposition product of MoO3
undergoes a reduction reaction with the highly active hydrogen in plasma to generate
metal molybdenum nuclei. Due to the high quenching rate in the plasma flame tail, the
newly formed molybdenum nuclei do not have enough time to grow, agglomerate, and
finally form ultra-fine metal molybdenum particles under the surface tension. During the
transformation of APM into Mo, both physical phase transition and chemical reaction occur
simultaneously. The equation for a possible reaction can be expressed as:

(NH4)6Mo7O24(s) = 2 MoO3(s) + 2 NH3(g) + H2O(g) (1)

MoO3(s) = MoO3(g) (2)

MoO3(g) + H2(g) = Mo(g) + H2O(g) (3)

Mo(g) = Mo(s) (4)
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The reactions (1)–(3) occur in the heating section of the plasma torch, while the re-
action (4) occurs in the quenching section. Reaction (1) is a fast thermal decomposition
reaction in which APM is rapidly decomposed into MoO3 at the extremely high temperature
of the plasma torch. After that, the solid MoO3 particles are evaporated into gaseous MoO3
under the action of high-temperature plasma, and reduced by hydrogen. Theoretically, the
physical phase transition in reaction (2) and the reduction of MoO3 by hydrogen in reaction
(3) compete and proceed simultaneously. The hydrogen reduction reaction of MoO3 can
proceed spontaneously in both gaseous and solid MoO3. However, due to the slow-speed of
the gas-solid reduction reaction between hydrogen and MoO3, which is carried out from the
surface to the inside, and the rapid gasification of MoO3 being completed instantaneously
by contrast, it can be deduced the chemical reaction should be carried out according to
the gas-gas reduction reaction. The morphology change of the raw material before and
after the reaction further proves that the reduction of APM in the plasma is a gas-gas
reaction. This is because if it is a gas-solid reaction, the flake morphology of APM powders
would be preserved instead of spherical. The reduction reaction with gaseous MoO3 takes
only a few seconds in the plasma. Finally, the reduced product Mo vapor is cooled under
the quenching condition of the tail of the plasma flame. The high quenching rate makes
the nucleus grains have not enough time to grow and agglomerate, and form ultra-fine
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metal molybdenum particles under surface tension. The extremely high temperature of
the hydrogen plasma torch and the extremely high quenching rate of the flame tail are
the main reasons for the rapid reduction of APM and its retention of the products in the
form of nano-molybdenum powder. It is worth noting that all the plasma processes are
completed in flowing gas in a continuous way in a few seconds, indicating the effectiveness
of the synthetic route, which can be easily carried out on a large scale without pollution.

RF hydrogen plasma provides an effective way to produce nano-sized molybdenum
powders in a one-step way, and the method is also promising to be extended to other
refractory metals. In particular, two factors that have an influence on the formation of Mo
nano-sized powders were investigated as follows.

3.2. Influence of H2 Concentration

Experiments were performed by changing the ratio of H2 to H2 needed to reduce
APM (that is, the stoichiometric level) for exploring the influence of H2 concentration. The
delivery rate of APM was set at 30 g/min, and the other experimental parameters were
selected as the values in Table 1. The products consisted of only the MoO3 phase when
APM powder was injected into pure Ar plasma flame without H2. When the added H2
concentration exceeded the stoichiometric level, the MoO3 disappeared, and the product
became pure metal Mo at last, as shown in Figure 8. The TEM images of the Mo nano-
powders with different H2 concentrations in Figure 9 reveal that the particle size of the
prepared nano-powder decreased with the increase of H2 concentration. When no hydrogen
was added to the Ar plasma, spherical MoO3 particles with an average particle size of
90 nm could be obtained. The average size of the product Mo powders was about 70 nm
when the H2 concentration was 1.5 times the stoichiometric value and reduced to 30 nm as
the ratio raised to 5.0. This variation can also be further verified by the laser particle-size
testing results in Figure 10. With the increment of H2 ratio, the concentration of active H+

and H in the RF plasma torch increased, contributing to the increment of plasma torch
temperature, and the APM precursor powders can be broken into smaller fragments which
were reduced into smaller nano-sized metal Mo powder. Therefore, the particle size of the
obtained Mo nano-powders can be controlled by adjusting the ratio of H2 to stoichiometric
H2. In addition, pure Ar RF plasma is also a new way to prepare MoO3 nano-powders
using APM as a raw material directly.
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Figure 10. Laser particle−size distributions of the obtained ultrafine Mo powders at different r:
H2/stoichiometric H2.

3.3. Influence of the Raw APM Powder Delivery Rate

Experiments were carried out to determine the influence of the APM powder delivery
rate on the formation of Mo nano-powders through changing the feeding weight of APM
powder per minute (in which the ratio of H2 to stoichiometric H2 was 1.0, the other
experimental parameter were set as the values in Table 1). When the precursor powder
APM was delivered dispersedly into the RF plasma torch, the gray and loose nano-sized
metal Mo powders were prepared, and the feeding rate had an influence on their chemical
compositions, as shown in Figure 11. The purity of metal Mo ultra-fine powders can
be adjusted by the raw APM powder delivery rate. When APM was delivered into the
high-temperature plasma torch at the delivery rate of 30 g/min or 40 g/min, as shown
in the XRD pattern in Figure 11a,b, the product powder was composed of only metal
molybdenum phase. No impurities such as molybdenum oxide were detected. While, as
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the APM delivery rate was increased to 50 g/min or more, as shown in Figure 11c,d, there
were some molybdenum oxides (Mo4O11 and MoO2) included in the product molybdenum
powders. The reduction of APM is an endothermic process. When the amount of APM
powder added to the plasma flame is excessive, the fed powder does not have enough
energy to absorb. The reaction cannot be entirely carried out, resulting in the decreasing
of the purity. Therefore, to ensure the purity of the obtained nano-sized Mo powder, the
powder delivery rate must be controlled within the appropriate range.
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4. Conclusions

In the present study, a new RF hydrogen plasma reduction method was proposed
for the ultra-fast synthesis of spherical nano-sized molybdenum powders. Then, the
micromorphology, chemical composition, and particle size distribution of the reduction
products were explored. In addition, the effects of H2 concentration and powder feeding
rate were examined. The following conclusions can be drawn:

(1) Pure metallic Mo nano-powders with spherical morphology can be ultra-fast prepared
in a one-step way by hydrogen plasma reduction in a few seconds using APM powder
as the precursor.

(2) The average size of the obtained Mo powder was about 30 nm with uniform particle
size distribution and narrow range.

(3) The phase compositions of nano-sized powders can be adjusted by changing the
delivery rate of the APM precursor, and the particle size of the synthesized Mo
nano-powders can be adjusted through varying H2 concentrations.

(4) RF hydrogen plasma develops a straightforward pathway to prepare Mo nano-
powders from raw APM powders on a large scale. In addition, pure Ar plasma
without H2 also provides a new way to prepare high-purity MoO3 nano-powders
directly from APM precursors.
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