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Abstract: Developed and patented more than 30 years ago, the system of slabs with plastic inserts
has become very popular, and it is used all over the world today due to the significantly reduced
cost of building construction. Experimental tests have shown that the behaviour of simple bending
voided slab structures with plastic inserts during loading is very similar to that of solid slabs.
However, their deflection and crack resistance are both slightly inferior to those of solid slabs.
When using pretensioned reinforcement, the deflection and crack resistance of voided slabs exceed
the above parameters for solid slabs. However, when using plastic inserts to form inner voids in
slabs, their cross-section along the span becomes variable. In determining the stiffness of such slab,
a problem arises in estimating the moment-of-inertia when the cross-section is variable. To estimate
the influence of the voids formed by the plastic inserts on the deflection of prestressed concrete slabs,
bending tests of two life-size reinforced concrete slabs were performed. The bending results obtained
during the experiment were compared with the results obtained from the numerical model and
analytical calculations.

Keywords: bubble slab; prestressed concrete slab; deflection; inertia moment; finite element method;
numerical model; voided slab

1. Introduction

The first hollow-core floor slabs were created in the 1950s. This was an innovative
system that became very popular due to its advantages over older solid slab systems.
The first voided slabs reduced the cost of building construction and the time required to
complete buildings. However, due to tubular voids, the production of slabs could only take
place in special factories for reinforced concrete structures, and only one-way slabs could
be produced [1]. In 1990, Breuning developed a new system for voided slabs. The newly
proposed system was close to the system for solid slabs, but it used less concrete [2,3]. This
system was designed for the installation of monolithic two-way slabs [4–8], in which voids
were formed by plastic hollow inserts.

Research has identified the main factors influencing the behaviour of voided slabs [9].
One is the type of insert system. Depending on the chosen system of plastic inserts, the form
of the inserts, and the arrangement of the inserts in the slabs, the concrete content in the slab
can be reduced by 20% to 39%. Consequently, the cross-section and stiffness of the slabs
also depend on the type of insert system. Depending on the shape of the insert, the slab
moment-of-inertia is not constant and determines the stiffness of the structure. Cube,
sphere, and elliptical plastic inserts are currently the most commonly manufactured and
offered. These inserts form voids in slabs by removing some of the concrete content from
the cross-sectional areas of the slabs under tensile and compressive stresses [9]. Research [9]
has also determined that slabs with inserts forming conical voids are less resistant to
cracking than slabs with spherical inserts. Due to the reduced concrete in the tensile zone
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of the slab, cracks in the slab formed at 19% less bending load than in a solid slab. The
first crack formed in slabs with spherical inserts at 14.26% less bending load than in a
solid slab. The decrease in the cracking limit was due to higher stresses in the tensile
reinforcement, due to the thinning of the lower cross-section. The above study showed that
despite previous cracking, the conical inserts did not have a significant effect on the bearing
capacity. Investigations show that the cracking of concrete sections involves reduced
stiffness and increase deflection of reinforced concrete constructions [10]. Consequently,
the load-bearing capacity of slabs with conical inserts was the same as that of the solid slab,
and the load-bearing capacity of slabs with spherical inserts was 13.15% higher than that of
the solid slab and slabs with conical inserts. Under the same maximum load, the deflection
was found to be 21.5% lower in slabs with conical inserts than in solid slabs under the
maximum bending load. Under the same load, the deflection in slabs with spherical inserts
was 11.54% lower than in the solid slab, and 12.75% higher than in slabs with conical inserts.
Thus, conical inserts do not affect the bearing capacity of the slab but increase the stiffness
of the slab more than spherical inserts [9]. Another paper [2] described a test, during which
it was found that slabs with ellipsoidal plastic inserts withstand a higher load than slabs
with spherical inserts. Changing the insert spacing from 70 mm to 25 mm decreases the
load-bearing capacity of voided slabs compared to solid ones. The decrease is from 10 to
19% [11].

An evaluation of the results of the field tests already performed showed that the
bearing capacity of slabs with plastic void-forming inserts is slightly lower than that of
solid slabs [12–15].

Due to the reduced mechanical properties of voided slabs, various technological
variants of slab production have been tested to find the optimal solution to reduce the
self-weight of the slab, without losing the load-bearing capacity and stiffness. One way to
increase the stiffness and load-bearing capacity of voided slabs is to change the reinforce-
ment intensity. Tests have shown that voided slabs usually crack in the normal section, but
hollow core slabs with a reinforcement intensity of 0.52% crack in the diagonal section [16].

In the search for other ways to increase the stiffness of voided slabs while maintaining
reduced self-weight, it is advisable to use prestressing reinforcement instead of conventional
reinforcement nets. Additionally, losses of prestress should be taken into account to
avoid unnecessary reduction of stiffness and damages [17]. According to the results
of author’s [18] research, the use of prestressing reinforcement allows increased crack
resistance and stiffness for slabs with void-forming inserts, without increasing the cross-
section area of the slab. To date, most experimental and numerical simulation tests have
been performed with slabs reinforced with conventional reinforcements, while few tests
have been performed with prestressing reinforcements. The experiments estimated the
influence of the magnitude of the compressive stress caused by prestressing reinforcements
on reinforced concrete construction with a partial prestressing ratio (PPR) [5] or degree
of prestressing (µp) [19] ranging from 0.0 to 1.0. The study with voided slabs found that
the load-bearing capacity of a voided slab with different PPR values ranges from 82% to
85% of the load-bearing capacity of a similar solid slab. The obtained results showed a
huge impact of compressive stress on cracking in voided slabs. A decrease in the maximum
crack width and the number of open cracks was recorded compared to voided slabs of the
same size, reinforced with nets. Raising the PPR value to 0.81 (or less frequently to 0.71)
with an increasing number of prestressing reinforcement bars resulted in an increase in the
maximum destructive force of the voided slab to 13.9%, a decrease in the deflection under
maximum force by 21%, and an increase in crack resistance of about 41.3% [5].

Numerical studies of the slab were performed using a finite element modelling pro-
gram [20]. The influence of the insert diameter of the slab height ratio (D/H) on the slab
stiffness was determined from the numerical modelling results [20]. When the D/H ratio
was between 0.67 and 0.80, the weight of the reinforced concrete slab could be reduced by
27 to 34% compared to a solid slab. Voided slabs with a D/H ratio between 0.64 and 0.80
can withstand 87–85% of the breaking load of a solid slab. Maintaining a D/H ratio between
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0.64 and 0.80, and increasing the number of prestressing bars (from 0 to 3), increases the
bearing capacity from 40% to 73% and reduces deflection from 50% to 70%. In numerical
modelling, changing the value of the D/H ratio resulted in a uniform cracking pattern that
resembled the letter “X”, wherein the cracks began at the corners of the numerical model
slab and intersected at the load application point.

The mentioned research mostly considered the behaviour of voided slabs, but the
methodology for calculating the deflection was not provided. The stiffness calculation of
solid slabs is quite simple, due to the solid cross-section. However, it is difficult to determine
moment-of-inertia in slabs with void-forming inserts because the cross-sectional area is
variable. We aimed to develop a methodology for calculating the deflection of voided slabs
and to compare calculated deflections with deflections of experimental life-size prestressed
voided reinforced slabs and numerical model deflection results.

2. Experimental Studies
2.1. Test Specimens

For the experimental test, two reinforced concrete floor slabs with pretensioned main
longitudinal reinforcement were designed and manufactured. Below is a scheme of the
production of the designed reinforced concrete slabs, with the intended arrangement of the
elliptical plastic void-forming inserts and reinforcement bars and nets used (Figure 1).
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Figure 1. Designed reinforced concrete slab. (a) General scheme of the slab, (b) slab cross-section 1-
1, 1. Plastic insert; 2. Pretensioned reinforcement bars; 3. Stirrup to tie the reinforcement nets; T-1 
and T-2 upper and lower reinforcement net. 
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scheme. First, a reinforcing (lower) net (T-1) was placed in the concreting moulds on the 
plastic blocks to form a 16 mm thick protective layer of concrete. Above the T-1 net, four 
reinforcement bars of 12-mm-diameter were placed and anchored into each slab (Figure 
2). During production of the slabs, the main bars were prestressed at 530 MPa. ± 7%. The 
initial prestressing load was reduced, taking into account the prestressing losses. 

Figure 1. Designed reinforced concrete slab. (a) General scheme of the slab, (b) slab cross-section 1-1;
1. Plastic insert; 2. Pretensioned reinforcement bars; 3. Stirrup to tie the reinforcement nets; T-1 and
T-2 upper and lower reinforcement net.

Sample preparation was performed sequentially according to the prepared slab scheme.
First, a reinforcing (lower) net (T-1) was placed in the concreting moulds on the plastic
blocks to form a 16 mm thick protective layer of concrete. Above the T-1 net, four rein-
forcement bars of 12-mm-diameter were placed and anchored into each slab (Figure 2).
During production of the slabs, the main bars were prestressed at 530 MPa ± 7%. The
initial prestressing load was reduced, taking into account the prestressing losses.
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Figure 2. Manufacturing of tested slabs. (a) Slab moulds, (b) mould with lower slab reinforcement
net, (c) mould with void-forming inserts and reinforcement, (d) moulds prepared for concreting,
(e) concreting.

After the anchoring of the reinforcements, plastic inserts were placed in the moulds
of slabs, arranged in three rows of thirteen inserts in one row. The inserts were inserted
into the longitudinal bars of the lower reinforcing net T-1. A second (upper) reinforcing
net (T-2) was placed on the plastic inserts. The upper and lower reinforcement nets
were interconnected by stirrups to maintain the design position of plastic inserts during
concreting. For the T-1 and T-2, reinforcing nets were used with a 4-mm-diameter smooth
surface S500 class reinforcement.

The technical data of the two reinforced concrete floor slabs with pretensioned rein-
forcements intended for the study are given in Table 1, and the prepared slab is shown in
Figure 3.
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Table 1. The technical data of reinforced concrete floor slabs.

Slab No. Slab Length,
mm

Average Slab
Width,

mm

Slab Height,
mm

Number of
Inserts,

pcs.

Total Volume of
Inserts in Slabs,

m3

Concrete
C30/37 Content,

m3

Reinforcement
Intensity

% 1

I pl. 5100 1175 220 39 0.3682 0.95015 0.172
II pl 5100 1175 220 39 0.3682 0.95015 0.172

1 Reinforcement intensity was calculated for the slab’s total cross-sectional area without excluding the area of the voids.
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2.2. Material

In both reinforced concrete slabs prepared for testing, voids were formed by elliptical
plastic inserts, Cobiax SL-M-160-180, manufactured by “Cobiax” in Cobiax International
GmbH, Bielefeld, Germany (Figure 4). The inserts consisted of two shells that were assem-
bled before concreting.
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for concreting.

Using plastic inserts of the selected size, the concrete content was reduced by 27.89%
compared to the concrete content requirement of a solid slab. The preliminary technical
characteristics of plastic inserts are given below (Table 2).

Table 2. Technical characteristics of inserts [21].

Line No. The Name of the Insert Parameter Unit Size Value

1 Diameter of insert mm 315
2 Height of insert mm 160
3 Weight of insert g 379.2
4 Internal volume of insert m3 0.00944
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A concrete mix of class C30/37 was used for the production of the slabs. During
the production of prestressed concrete slabs, concrete cubes (100 × 100 × 100 mm) were
formed to determine the mechanical properties of concrete (Figure 5). Concrete cubes were
tested under compression static load with servohydraulic test machine D2000 according
to [22]. From the obtained compressive strength of the concrete cubes, the cylindrical and
tensile strength of the concrete, and the elastic modulus of the concrete, were calculated.
Additionally, reinforcement bars were tested under static load with servohydraulic dynamic
test machine LFV600 (manufactured by Walter + Bai Testing Machines in Löhningen,
Switzerland) according to [23,24]. The determined mechanical parameters of the concrete
and reinforcement are presented in Tables 3 and 4. Additionally, the reduced prestressing
loads are listed in Table 4.
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nation of the compressive strength of concrete cubes, (b) tensile strength of reinforcements.

Table 3. Concrete technical characteristics.

Slab No f c,cub,100
1

[MPa]
f c,cub,150

2

[MPa]
fcm

3

[MPa]
fct

4

[MPa]
Ec

5

[GPa]

I pl 44.00 41.80 31.86 2.49 30.44
II pl 44.59 42.36 32.24 2.51 30.54

1 Average concrete cube compressive strength, when the cube’s dimensions were 100 × 100 × 100 mm; 2 Average
concrete cube compressive strength, when the cube’s dimensions were 150 × 150 × 150 mm; 3 Average concrete
cylindrical compressive strength; 4 Concrete tensile strength; 5 Concrete elastic modulus.

Table 4. Characteristics of pretensioned reinforcements.

ø [mm] As [m2] 1 f y,02 [MPa] 2 Es [GPa] 3 σp,I [MPa] 4 σp,II [MPa] 5

12 0.000111436 869.72 182.83 372.3 373.7
1 Bar cross-sectional area; 2 Reinforcement strength according to yield point; 3 Reinforcement elastic modulus;
4 Stresses in pretensioned reinforcement bars of the first slab; 5 Stresses in pretensioned reinforcement bars of the
second slab.

2.3. Test Methodology

During the experiment, the deflections and strains of the slab were measured in the
compressive zone of the slab, in the tensile zone of the slab, and at the level of the working
reinforcement of the slab. In the upper part of the slab, six strain gauges measured the
compressive strains of the concrete area. Strains in the tensile area of the slab were measured
by six strain gauges in the lower part of the slab. In these areas, the strain gauges were
mounted in the area of the central insert. Eleven strain gauges were mounted to the slab
wall at the level of the main reinforcement, between the load application points (1-1. I-1:
I-11 strain gauges at the level of the tensioned reinforcement; I-12: I-17 strain gauges on the
top of the slab, in the compressed part of the slab; I-18: I-23 strain gauges at the bottom
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of the slab, in the tensile part of the slab; I-34: I-41 displacement gauges at the ends of
the slabs; I-24: I-33 deflection gauges). At the ends of the slab, displacement gauges were
attached to the pretensioned reinforcements to monitor their displacement. The deflections
of the slab were recorded with deflection gauges placed on both sides of the slab, spread
over the entire length of the slab: four at the supports; four under load transfer points, and
two in the centre of the slab (Figure 6).
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Prestressed concrete voided slab tests were performed under static loading with the
universal testing frame PLF 2MN, according to the four-point bending scheme. The load
was transmitted to the slab through two rigid transverse beams at a distance of 1900 mm.
The view of the tested slab is shown in Figure 7.
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Figure 7. General view of the slab test.

A force-controlled static load test was performed under a constant speed of 0.5 kN/s.
Every 5 kN the test was stopped and measurements were recorded.

The slip of reinforcement at the ends of the slab was measured with mechanical strain
gauges (I-34: I-41) (Figure 6) with an accuracy of 0.001 mm. Additionally, strains on the
surface of the concrete (I-1: I-11) and deflection of the slab (I24: I33) were measured by a
linear variable displacement transducer (LVDT) with an accuracy of 0.001 mm (Figure 6).

3. Deflection Design Model

An experimental study showed that the development of cracks at certain cross-
sectional areas depends on the level of load. Therefore, the calculation of the deflection
is divided into stages that correspond to the opening of certain cracks. In the first stage,
the deflection is calculated up to the opening of the crack in the cross-section with the
void. In the second stage, the deflection is calculated until the crack opens in the solid
cross-section (transversal web). In the third stage, the deflection is calculated to the yielding
of the tensile reinforcement.

Three cross-sections were distinguished in the slab under consideration (Figure 8).
Section I-I was through the weakest part of the cross-section, where the smallest cross-
sectional area and moment of inertia are in the place where the perimeter of the void is
greatest (Figure 9). Section II-II was in the parts of the slab where the voids did not have
a smooth bottom and top surface. In this section, the cross-sectional flanges take on a
trapezoidal shape. In section III-III, the cross-section of the slab was solid and rectangular.
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Figure 9. Slab cross-section I-I, where the perimeter of the void is greatest.

The cross-section of the longitudinal fragment along the span is variable. Existing
deflection calculation methods estimate the moment of inertia of the cross-section when the
cross-section of the beam or slab along the span is not variable. Figure 10 shows a scheme
for determining the position of section II-II, in which the transformed moment of inertia of
the cross-section must be determined. A triangle is formed at the void, perpendicular at
0.5·lb, and the distance between section II-II and section I-I is 2

3 ·0.5·lb, or from the edge of
the void 1

3 ·0.5·lb = lb/6.
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The moment of inertia of the uncracked cross-section of the slab, when the cross-section
is variable along the section III-III and I-I, is determined by the equation:

Ired.c =

(
Ired.I I ·

0.5·lb
0.5·bw.t + 0.5·lb

+ Ired.I I I ·
0.5·bw.t

0.5·bw.t + 0.5·lb

)
·kshape (1)

where Ired.I I is the moment of inertia of the transformed cross-section determined in section
II-II about the axis of the centre of gravity of the transformed cross-section; and Ired.I I I is the
moment of inertia of the transformed cross-section determined in section III-III about the
axis of the centre of gravity of the transformed cross-section. Coefficient kshape evaluates the
ratio of the areas of regions (Acrv and Atr); there, the mixture law is used to determine Ired.c.
The void quarter was transformed into the rectangular and roundness was not assessed.
The approximate value of kshape for this type of void is 0.6.

The position of the centre of gravity of the cross-section highlighted in sections II-II
(Figure 11) is determined by the following equation:

yc.I I =
Sred.I I
Ared.I I

(2)
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where Sred.I I is the static moment of the transformed cross-section (in section II-II) about the
lower edge of the cross-section, and Ared.I I is the correspondingly reduced cross-sectional
area. The mentioned geometrical parameters are determined according to:

Sred.I I = b f 1.I I · h f 1.I I ·
( h f 1.I I

2 + hw.I I + h f 2.I I

)
+ bw.I I · hw.I I ·

(
hw.I I

2 + h f 2.I I

)
+

b f 2.I I · h f 2.I I ·
h f 2.I I

2 + aI I.t·hI I.t·
(

h f 2.I I + hw.I I − 1
3 ·hI I.t

)
+

aI I.b·hI I.b·
(

h f 2.I I +
1
3 ·hI I.b

)
+
(
αp1 − 1

)
· Ap1 · ap1.I I ;

Ared.I I = b f 1.I I · h f 1.I I + bw.I I · hw.I I + b f 2.I I · h f 2.I I + aI I.t·hI I.t +

aI I.b·hI I.b +
(
αp1 − 1

)
· Ap1.

(3)
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Figure 11. Analysed cross-section II-II; (a) edge parameters; (b) parameters of the triangular sections
of the cross-section.

The moment of inertia of the transformed cross-section (II-II) is determined by:

Ired.I I =
b f 1.I I ·h3

f 1.I I
12 + b f 1.I I · h f 1.I I ·

(
h f 2.I I + hw.I I +

h f 1.I I
2 − yc.I I

)2
+

bw.I I ·h3
w.I I

12 +

bw.I I · hw.I I ·
(

h f 2.I I +
hw.I I

2 − yc.I I

)2
+

b f 2.I I ·h3
f 2.I I

12 + b f 2.I I · h f 2.I I ·
(

yc.I I −
h f 2.I I

2

)2
+

2·
[

aI I.t ·h3
I I.t

36 + 1
2 ·aI I.t·hI I.t·

(
h f 2.I I + hw.I I − 1

3 ·hI I.t − yc.I I

)2
]
+

2·
[

aI I.b ·h3
I I.b

36 + 1
2 ·aI I.b·hI I.b·

(
h f 2.I I +

1
3 ·hI I.b − yc.I I

)2
]
+(

αp1 − 1
)
· Ap1 ·

(
yc.I I − ap1.I I

)2.

(4)

The position of the centre of gravity of the cross-section highlighted in sections III-III
(Figure 12) is determined by the following equation:

yc.I I I =
Sred.I I I
Ared.I I I

(5)

where Sred.I I I is the static moment of the transformed cross-section (in section III-III) about
the lower edge of the cross-section, and Ared.I I I is the corresponding area of the transformed
cross-section. The mentioned geometrical parameters are determined by the formulas:

Sred.I I I = bI I I · hI I I ·
hI I I

2
+
(
αp1 − 1

)
· Ap1 · ap1.I I I . (6)
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Ared.I I I = bI I I · hI I I +
(
αp1 − 1

)
· Ap1. (7)
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The moment of inertia of the transformed cross-section (III-III) is determined by:

Ired.I I I =
bI I I · h3

I I I
12

+ bI I I · hI I I ·
(

yc.I I I −
hI I I

2

)2
+
(
αp1 − 1

)
· Ap1 ·

(
yc.I I I − ap1.I I I

)2. (8)

By setting the geometrical parameters of the cross-section, the deflection of the slab
can be calculated until the cracking moment in the cross-section with the void is reached.
Slab deflection from the external load until the moment (Mq.crc.I) of cracking:

ωs.q.I = k·
Mq.crc.I

Ec·Ired.c
·l2

s (9)

where the coefficient k evaluates the loading type. The cracking moment can be calculated
by the equation:

Mq.crc.I = fct
Ired.I
yc.I

+ Pm(eI + rI) (10)

where fct is the concrete tensile strength; Pm is the prestress force; eI is the distance from
the centre of gravity of cross-section to the prestress force; and rI =

Wred.I
Ared.I

is the core radius.
When the external load reaches the moment of cracking, the stiffness of the slab is

significantly reduced due to the open cracks. The increment of deflection becomes faster.
First, cracks open primarily at the voids (Figure 13), and as the load increases, they also
open at the section III-III position.
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Deflection of the slab from the external load, when the slab is cracked at the parts with
the voids until new cracks open in the solid cross-section, (transversal web, Mq.crc.I I I):

ωs.q.cr.I I = k· 1
rm

·l2
s . (11)

The following equation evaluates the mean curve when the parts with the voids are
cracked and parts within the solid cross-section (transversal web) are not cracked:

1
rm

=
Mq.crc.I

Ec·Ired.c
·
(

Mq.crc.I

Mq.crc.I I I

)2

+
Mq.crc.I I I

Ec·Ired.crc.c
−

Mq.crc.I I I

Ec·Ired.crc.c
·
(

Mq.crc.I

Mq.crc.I I I

)2

(12)

where Ired.crc.c is the moment of inertia of the cracked cross-section of the slab, when the
cross-section is variable along the section III-III and I-I, which is determined by the equation:
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Ired.crc.c =

(
Ired.crc.I I ·

0.5·lb
0.5 · bw.t + 0.5·lb

+ Ired.I I I ·
0.5 · bw.t

0.5 · bw.t + 0.5·lb

)
·kshape (13)

where Ired.crc.I I is the moment of inertia of the transformed cross-section (II-II) with cracks
about the axis with respect to the neutral axis (depth xI I).

The depth xI I of the neutral axis (Figure 14) of the cracked cross-section:

xI I =
−BI I +

√
B2

I I + 4·AI I ·CI I

2·AI I
. (14)
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Figure 14. Cracked cross-section within section II-II, when xI I > h f 1.I I .

Used designations:
AI I = b f 1.I I ·0.5; (15)

BI I = (αs2 − 1)·As2·
1

ks2.I I
+ αp·Ap·

1
kp.I I

; (16)

CI I = (αs2 − 1)·As2·as2·
1

ks2.I I
+ αp·Ap·d·

1
kp.I I

. (17)

If xI I > h f 1.I I , then the moment of inertia:

Ired.crc.I I =
b f 1.I I ·h3

f 1.I I
12 + b f 1.I I · h f 1.I I ·

(
xI I −

h f 1.I I
2

)2
+

bw.I I ·(xI I−h f 1.2)
3

12 +

bw.I I ·
(

xI I − h f 1.I I

)
·
( xI I−h f 1.I I

2

)2
+

2·
[

aI I.t ·(xI I−h f 1.I I)
3

36 + 1
2 ·aI I.t·

(
xI I − h f 1.I I

)
·
(

2
3 ·
(

xI I − h f 1.I I

))2
]
+

αp1 · Ap1 ·
(

h f 1.I I + hw.I I + h f 2.I I − xI I − ap1.I I

)2
.

(18)

If xI I ≤ h f 1.I I (Figure 15), then the moment of inertia:

Ired.crc.I I =
b f 1.I I · x3

f I I

12
+ b f 1.I I · xI I ·

( xI I
2

)2
+ αp1 · Ap1 ·

(
h f 1.I I + hw.I I + h f 2.I I − xI I − ap1.I I

)2
. (19)
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The cracking moment in section III-III can be calculated by the equation:

Mq.crc.I I I = fct
Ired.I I I
yc.I I I

+ Pm(eI I I + rI I I). (20)
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Deflection of the slab when the slab is cracked at the parts with the voids and in the
solid cross-section parts (transversal webs):

ωs.q.cr.I I I = k· 1
rm

·l2
s . (21)

The following equation evaluates the mean curve when the parts with the voids and
solid cross-section (transversal web) are cracked:

1
rm

=
Mq.crc.I
Ec ·Ired.c

·
(

Mq.crc.I
Mq.u

)2
+

Mq.crc.I I I
Ec ·Ired.crc.c

·
(

Mq.crc.I I I
Mq.u

)2
− Mq.crc.I I I

Ec ·Ired.crc.c
·
(

Mq.crc.I
Mq.u

)2
+

Mq.u
Ec ·Ired.crc.u

·
(

Mq.u
Mq.u

)2
− Mq.u

Ec ·Ired.crc.u
·
(

Mq.crc.I I I
Mq.u

)2
(22)

where Ired.crc.u is the moment of inertia when the voids and solid cross-section (transversal
web) are cracked, which is determined by the equation:

Ired.crc.u =

(
Ired.crc.I I ·

0.5·lb
0.5 · bw.t + 0.5·lb

+ Ired.crc.I I I ·
0.5 · bw.t

0.5 · bw.t + 0.5·lb

)
·kshape. (23)

Ired.crc.I I I is the moment of inertia of the transformed cross-section (III-III) with cracks
about the neutral axis with respect to the neutral axis (depth xI I I).

The depth xIII of the neutral axis (Figure 16) of the cracked cross-section:

xI I I =
−BI I I +

√
B2

I I I + 4·AI I I ·CI I I

2·AI I I
. (24)
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Used designations:
AI I I = b f 1.I I ·0.5; (25)

BI I I = (αs2 − 1)·As2·
1

ks2.I I I
+ αp·Ap·

1
kp.I I I

; (26)

CI I I = (αs2 − 1)·As2·as2·
1

ks2.I I I
+ αp·Ap·d·

1
kp.I I I

. (27)

Moment of inertia for Figure 16 cross-section:

Ired.crc.I I I =
bI I I · x3

I I I
12

+ bI I I · xI I I ·
( xI I I

2

)2
+ αp1 · Ap1 ·

(
hI I I − xI I I − ap1.I I I

)2. (28)

Equations to predict depth of the neutral axis contain coefficients ks2.I I ; ks2.I I I and
kp.I I ; kp.I I I . These coefficients evaluate slower increments of deformation in sections II-II
and III-III. Therefore, the depth of the neutral axis in section II-II is greater than in section
I-I. The depth of the neutral axis in section III-III is greater than in section II-II. Coefficients
kp.I I ; kp.I I I were predicted, taking into account developed deformations in the experimental
slabs (Figure 17 blue line). Values of these coefficients are depicted in Figure 17 by green
dots. For section III-III, the base value is 66 mm, because this is the width of the web. For
section II-II, the base value is 166 mm; this is the distance between both sections II-II.
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Figure 17. Relative coefficients for the prediction of the depth of the neutral axis in section II-II and
III-III; (a) slab 1; (b) slab 2.

Calculations may be made up to a bending moment that does not exceed the load-
bearing capacity.

4. Numerical Slab Analysis

Three-dimensional numerical models of the analysed slabs were created by the finite
element program Diana IE 10.3 [25,26]. The models were created taking into account the
predicted cross-sectional parameters. Instead of a plastic insert, a void was created, and the
effect of the plastic insert itself on the slab behaviour was not evaluated. The volume of the
slab was meshed with eight-node hexa-quad type finite elements, estimating the desired
edge length of the finite element to be 20 mm. The total amount of elements in the first slab
(I pl) was 300,537 and in the second slab (II pl) was 309,323. To fill the three-dimensional
volume of slabs with finite elements, the program could additionally use tetra-triangle
type elements. The developed finite element models are shown in Figure 18. A total strain-
based crack model was assigned to the slab concrete to evaluate the development of cracks
according to the rotating method. In the FEA, concrete tensile behaviour was evaluated by
an exponential tensile curve, which requires tensile strength and tensile fracture energy.
The compressive behaviour parabolic compression curve, which requires the compressive
strength and compressive fracture energy, was also evaluated.

The experimental slabs were supported on steel supports. Beneath the steel plates
were steel hinges, which ensured the degrees of freedom of the freely supported, statically
calculated beams. Appropriately modelled reinforced concrete slabs were also supported
on steel plates. These support plates can be divided into separate parts to form the middle
edges, to which the support conditions can be assigned. The right-hand support was
evaluated in the model as mobile hinged support, so its lower centre edge was assigned a
displacement constraint only to the vertical z-axis. The left-hand support was considered to
be hinged support, and its lower centre edge was assigned with a displacement constraint
to the vertical z and longitudinal x-axis. Since the entire volume of the slabs was modelled,
the offset of the central edges of the support plates was constrained by the displacement in
the transverse direction of the slab to the y-axis. Steel support plates and load transfer plates
are considered to be bodies of elastic material that meet the elastic characteristics of steel.
In the numerical model, the external load is transmitted through steel plates. These plates,
like the lower support plates, were filled with hexa-quad type finite elements. In the inner
volume of the slabs, the embedded steel reinforcement was evaluated, which consisted of
pretensioned reinforcement bars, bottom reinforcement mesh, top reinforcement mesh, and
transverse mounting bars. Elasto-plastic work was assigned to all reinforcement elements.
The plasticity of reinforcement was evaluated using the Von-Mises criteria.
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Three load sets were created for each numerical slab model. The first load set provided
prestress to the four main reinforcement bars. The second load set evaluated the self-weight
of all elements involved in the model. In the third load set, a pressure corresponding to
1 kN was added to the upper steel plate. The steps of nonlinear numerical analysis were
evaluated according to the order of load transfer. In the first stage, a nonlinear calculation
was performed by transferring the prestress force to the slab, creating the initial state
of stresses in the slab. In the second stage, a nonlinear calculation was performed by
estimating the influence of the self-weight of the elements. In the third stage, the slab was
loaded in steps with an external load provided pressure. When large displacements were
reached, the numerical analysis was terminated because the strength limit was exceeded in
the concrete or reinforcement (large displacements occurred).

5. Comparison of Tests, Calculations, and Numerical Analysis Tests

The deflections calculated theoretically and by the finite element method were com-
pared with the experimental ones in Figures 19 and 20. During the experiment, the increase
of external load was stopped for a particular time period and measurements were taken
and recorded. At that time, the slabs were subjected to a constant load for a short time,
which resulted in the development of short-term creep, which changed the stiffness of
the slabs. When increasing the external load, the deflection increment differed from that
calculated theoretically and by the finite element method. The theoretical calculation
methodology and the finite element method do not evaluate the effect of short-term creep.
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The calculated deflections were larger than the experimental ones. The difference between
the calculated and experimental deflections was variable and depended on the loading
level. The deflections determined according to the proposed analytical method in the first
stage (up to the opening of the crack in the cross-section with the void) are from 1.09 to
1.38 times higher than the experimental ones. Correspondingly, the deflections determined
by the finite element analysis are greater from 1.29 to 1.99 times. The difference is greater
because cracking develops earlier in the numerical model. In the second stage (when the
load reaches the level at which the webs begin to crack), deflections determined according
to the proposed analytical method are from 1.16 to 1.52 times higher than the experimental
ones. Correspondingly, the deflections determined by the finite element analysis are from
1.67 to 1.81 times greater. In the numerical model, the development of cracks at the web
edges is negligible. Therefore, the deflection development in the numerical model was
almost linear after the first cracking. This may have been influenced by the size and type of
finite elements and the concrete mechanical model.
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Relationships between bending moments and strains of prestressed concrete slabs
were obtained from gauge readings during the experimental tests (Figures 21 and 22). The
purpose of the diagrams was to determine how the strain varies in the installation area of
the inserts from the walls formed between the inserts.

The diagram of the I-7 gauge (Figure 21a) shows a compression deformation instead
of tensile one. The difference between the similar gauges (I-1; I-3; I-5; I-9; I-11) occurred
because of crack which opened in the fixing spots of gauge I-7.

As can be seen from the diagrams above (Figure 22), tensile strains occurred in the
areas of the inserts and walls at the beginning of the test. Observing the change of strains,
it was found that in the elastic stage (when the value of the bending moment was 44% of
the maximum bending value) the total change of strain in the wall area of the load slab was
up to 1.36 times higher than in the installation area of the plastic inserts. When the load
was increased from 44% to 54% of the maximum moment value, the change of strain in
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the area of installation of inserts changed from elastic to plastic, and the total change of
strain in the area of inserts was 2.18 times higher than in the area of walls. The first cracks
were recorded in the tensile zone of the slab, where inserts were installed. The plastic strain
of the wall area occurred between 54% and 66% of the value of the maximum bending
moment. The diagram (Figure 22) shows that plastic strains were recorded at the location
of the I-1 and I-3 gauges. At the mounting locations of the I-5, I-9, and I-11 gauges, elastic
strains were recorded at up to 87% of the maximum bending moment value. From 87%,
the failure of the slab began.
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The diagrams of the bending moments average strain values (Figure 23) show that
the change of strains in the zone of walls and inserts were elastic. Despite the presence of
voids in the insert area, lower strains were recorded than in the wall area. However, due to
the amount of concrete in place of the inserts, plastic strains of the concrete layer occurred
more rapidly, i.e., development of cracking.
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At the bottom of the slab (Figure 24), from 54% of the maximum bending moment
value, the gauges I-19 and I-22 showed plastic tensile strain. From 87% of the maximum
bending moment value, the other gauges (I-18, I-20, I-21, I-23) showed a constant increment
of strain.
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At the top of the slab (Figure 25), elastic strains of the concrete were recorded at up to
43% of the maximum value of bending moments, and from 43%, elastoplastic strains were
recorded. Comparing the readings of the gauges in the tensile zone (Figure 24) with the
readings of the gauges in the compressive zone (Figure 25), it can be seen that the strains in
the tensile zone were on average twice as large as in the compressive zone under the same
load level.

Materials 2022, 15, x FOR PEER REVIEW 19 of 20 
 

 

 

 

(a) (b) 

Figure 25. Graphs of bending moments: strains in the compressive zone of the slabs. (a) First slab (I 
pl); (b) second slab (II pl). 

6. Conclusions 
The amount of concrete was reduced by up to 28% in the prestressed concrete slabs 

with plastic elliptical inserts, compared to solid slabs, thus reducing the self-weight of the 
slab by up to 28%. 

A method for the deflection calculation of prestressed concrete slabs with plastic in-
serts was proposed. This method takes into account variations of the cross-section geom-
etry along the span of the slab. Additionally, uncracked and cracked cross-sections are 
considered. 

The experimental results confirmed that the position of the neutral axis in the cracked 
sections (at the place of the inserts and between the inserts) was different. Therefore, the 
proposed method for deflection calculation allows estimation of the existing state of 
stress-strain in different cross-sections of the slab when different positions of the neutral 
axis in the cracked cross-sections are determined. 

The comparison of theoretical and experimental results showed that the proposed 
analytical method predicts the deflection of prestressed concrete voided slabs quite well 
up to the load level of 80% of failure load. 

Author Contributions: Conceptualization, M.Z., M.D., A.J., R.Z. and J.V. and methodology, M.Z., 
M.D., A.J., R.Z. and J.V.; software, M.Z., M.D., A.J., R.Z. and J.V.; validation, M.Z., M.D., A.J., R.Z. 
and J.V.; formal analysis, M.Z., M.D., A.J., R.Z. and J.V.; investigation, M.Z., M.D., A.J., R.Z. and J.V.; 
resources, M.Z., M.D., A.J., R.Z. and J.V.; data curation, M.Z., M.D., A.J., R.Z. and J.V.; writing—
original draft preparation, M.Z., M.D. and A.J.; writing—review and editing, M.Z., M.D. and A.J.; 
visualization, M.Z.; supervision, M.D, A.J., R.Z. and J.V.; project administration, M.Z., M.D., A.J. 
and JV.; funding acquisition, J.V. All authors have read and agreed to the published version of the 
manuscript. 

Funding: This research was funded by Creating the future of Lithuania 2014–2020 Operational Pro-
gramme for EU Structural Funds Investments for 2014-2020: 01.2.2-CPVA-K-703-02-0031 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data presented in this study are available on request from the 
corresponding author. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Churakov, A. Biaxial hollow slab with innovative types of voids. Constr. Unique Build. Struct. 2014, 6, 70–88. 
2. Jamal, J.; Jolly, J. A Study on Structural Behaviour of Bubble Deck Slab using Spherical and Elliptical Balls. Int. Res. J. Eng. 

Technol. (IRJET) 2017, 4, 2090–2095. 
3. Jabir, H.A.; Jasim, M.; Al-Gasham, T.S. Conventional and bubble slab Strips under Limited Repeated Loads: A Comparative 

Experimental Study. Case Stud. Constr. Mater. 2021, 14, e00501. https://doi.org/10.1016/j.cscm.2021.e00501. 
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6. Conclusions

The amount of concrete was reduced by up to 28% in the prestressed concrete slabs
with plastic elliptical inserts, compared to solid slabs, thus reducing the self-weight of the
slab by up to 28%.

A method for the deflection calculation of prestressed concrete slabs with plastic
inserts was proposed. This method takes into account variations of the cross-section
geometry along the span of the slab. Additionally, uncracked and cracked cross-sections
are considered.

The experimental results confirmed that the position of the neutral axis in the cracked
sections (at the place of the inserts and between the inserts) was different. Therefore,
the proposed method for deflection calculation allows estimation of the existing state of
stress-strain in different cross-sections of the slab when different positions of the neutral
axis in the cracked cross-sections are determined.
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The comparison of theoretical and experimental results showed that the proposed
analytical method predicts the deflection of prestressed concrete voided slabs quite well up
to the load level of 80% of failure load.
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