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Abstract: In order to study the mechanical properties of graded crushed stone, the discrete element
method is used to simulate the CBR test of graded crushed stone. Aiming at the composition structure
of graded crushed stone material, the PFC3D simulation software is used to construct the test model,
and the process of constructing the virtual specimen model of the graded crushed stone discrete
element model is discussed in detail. A servo mechanism is used to control the speed of the wall
in the software, so as to control the virtual confining pressure imposed on graded crushed stone
by the wall and simulate the real CBR test environment. The micro-parameter calibration of the
virtual test is carried out by comparing the indoor and virtual CBR specimens of a single particle
size specimen and three groups of graded crushed stone specimens. The comparison result shows
that the stress–strain characteristics of the graded crushed rock obtained by the discrete element
simulation during the uniaxial penetration process have a high degree of similarity, which can verify
the accuracy of the model establishment. With the increase in the penetration depth, the penetration
force of the aggregates of various particle sizes gradually increases, and the penetration force and
the penetration depth are basically linear, and when the particle size is greater than 9.5 mm, the
increase in particle size has little effect on the CBR test results. Under the certain conditions, the
contact stiffness of graded crushed stone particles with particle sizes of 4.75 mm, 9.5 mm, 13.2 mm,
16 mm, and 19 mm should be 0.88 × 107 (N/m), 0.98 × 107 (N/m), 1.10 × 107 (N/m), 1.25 × 107

(N/m), and 2.05 × 107 (N/m), respectively. The recommended value of the contact stiffness of the
small spherical particles increases with the increase in the particle size. This model can provide a
basis for studying the micromechanical state of graded crushed stone and physical mechanics tests.

Keywords: graded crushed stone; gradation; the discrete element method; the CBR test

1. Introduction

The application of graded crushed stone to the pavement structure base has many
advantages, such as reducing reflection cracks and prolonging the service life of the pave-
ment [1]. In order to obtain high-quality graded crushed stone, it is necessary to evaluate its
performance with the help of the California bearing ratio CBR, resilience modulus, water
permeability coefficient, and other indicators [2]. Chen [3] obtained from the actual test
that the modified vibration molding method is in good agreement with the compaction
degree of the actual project. Based on the indoor test of the modified vibration molding
method, Chen proposed a series of performance design indexes for the design of graded
crushed stone. Through a large number of repeated triaxial compression tests, Caroline [4]
summarized some design rules of graded crushed stone grading for graded crushed stone
design. Jiang [5] proposed a strength prediction equation for cement-graded crushed stone
to calculate the strength development law of cement-graded crushed stone. Gustavo [6] pre-
sented a methodology for the experimental characterization of graded crushed stone, with
a focus on mechanistic design. Xiao [7] investigated the effect of quality of graded crushed
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stone on conventional flexible pavement performance in Minnesota through a mechanistic–
empirical pavement design approach. Zhang [8] proposed a random generation model to
simulate the shear behavior of graded crushed stone.

Usually, researchers carry out virtual simulation experiments of various road mate-
rials based on particle discrete element software [9]. There are not only asphalt mixture
simulations based on parametric shape and size and grading design [10], but also virtual
numerical simulation tests of graded crushed stone for road bases.

Shen [11] evaluated the influence of skeleton stacking on the mechanical properties of
the mixture by calculating the contact force chain and the average contact force. Chen [12]
used the method of overlapping multiple spheres to characterize the irregular shape of the
coarse aggregate, and quantitatively analyzed the effect of each particle size aggregate on
the aggregate gap ratio, the number of contact points between aggregates, the contact force,
and other parameters in the mixture after step-by-step filling.

Peng [13] established a two-dimensional meso model, and then studied the California
bearing ratio test of graded crushed stone. Jiang [14] constructed a biaxial numerical test
method for graded crushed stone to analyze the variation law of each index. Both Jiang and
Zhang [9,15] independently established a numerical model for dynamic triaxial testing of
graded crushed stone, which is used to simulate real tests, thereby reducing the number of
real triaxial test models. Xiao [16] established a three-dimensional discrete element model
considering the irregular shape of real particles to reveal the shear strength mechanism and
evolution characteristics of skeleton hollow graded broken stone.

Cao [17] conducted a virtual triaxial test of graded crushed stone and analyzed the
stress–strain relationship of the skeleton structure of graded crushed stone and the influence
of gradation composition and skeleton porosity on the stress–strain curve.

Zhang [18] proposed a method to generate graded broken stone discrete element test
pieces, which is used to simulate the laboratory test of the rebound modulus of graded
broken stone.

Liu [19] obtained the basic law that the peak deviatoric stress of graded gravel increases
with the increase in confining pressure through static triaxial virtual testing of graded gravel.
The influence of grading on the elastic modulus was analyzed, and the nonlinear elastic
modulus constitutive model equation was obtained by fitting.

Within the gradation range limited by the graded crushed stone base specification, the
performance of the graded crushed stone is quite different [20]. This can be seen from the
different CBR values of different grades of crushed stone. In order to obtain the grading
of graded crushed stone with high CBR value, it is necessary to combine certain practical
tests within the specified range, which will lead to a waste of more materials and time.
Therefore, in order to solve these problems, it is necessary to design a numerical model
to simulate a CBR test. At present, through the establishment of a virtual model, the
research on the micro-effects of graded crushed stone became mature, but there is a lack of
research on the macro-performance of graded crushed stone, such as CBR. This paper uses
PFC3D to simulate the laboratory test of graded crushed stone, and builds a simulation
model of the mechanical properties of graded crushed stone through the selection of logic
language, the selection of contact model, the generation of graded particles, the realization
of loading method, and the definition of material microscopic parameters. Through the
comparison of a single-particle size specimen and three groups of graded crushed stone
specimens with virtual CBR specimens, the micro-parameter calibration of the virtual test is
carried out. The simulation analysis of this model can explain the relationship between the
mechanical response state, mechanical parameters, and mechanical properties of graded
crushed stone from a microscopic point of view, and provide a basis for subsequent physical
and mechanical tests of graded crushed stone.
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2. Basic Principles of Discrete Element Method
2.1. Force–Displacement Equation and Motion Relationship

The calculation of discrete element software is based on the most basic stress–strain
relationship and the force–motion relationship with Newton’s second law as the core. In
each time step (small enough), the force state between particles changes, and physical
quantities such as velocity, displacement, and strain are updated accordingly. These are all
premised on the contact between the media and are calculated from the normal stiffness,
tangential stiffness, contact overlap, and other parameters as follows:

Fn
i = kn

i xn
i ni (1)

Fs
i = −ks

i ∆xs
i (2)

∆xs
i = Vs

i ∆t (3)

Vs
i = Vi −Vn

i (4)

Among them, Fi
n and Fs

i are the normal and tangential components of the contact force
at the contact point i, and the latter is calculated in increments; kn

i and ks
i are normal contact

stiffness coefficients and tangential contact stiffness coefficients; xn
i and ∆xs

i are the contact
overlap and contact displacement increment at the contact point; ni is the unit normal
vector of the contact surface; Vi, Vn

i , vs. i are the contact point velocity and the normal and
tangential components; ∆t is the time step.

For a single particle, its motion state is calculated from the angular velocity and
linear velocity, while for the entire structure or particle system, its velocity is calculated by
Newton’s second law, which is expressed as the following functional relationship:

w = f1(a) (5)

v = f2(a) (6)

Vi = f (w, v) (7)

Among them, w and v are the angular velocity and linear velocity of the particle
system; a is the acceleration of the particle system.

2.2. Contact Constitutive Model

Contacts in discrete elements can be divided into two types: “ball-ball” contact and
“ball-wall” contact. The contact constitutive model is used to define the contact action. The
contact constitutive model during simulation in PFC3D software (PFC3D-5.1, Itasca, IL US)
mainly includes: linear contact stiffness model and slip model.

The linear contact stiffness model is a model proposed by Cundall in 1979 to charac-
terize the interaction between aggregate particle units. The contact stiffness includes the
normal stiffness coefficient kn and the tangential stiffness coefficient ks, and its value is
determined by the stiffness coefficients of the entities A and B at both ends of the contact,
as shown in Equations (8) and (9).

kn =
kA

n kB
n

kA
n + kB

n
(8)

ks =
kA

s kB
s

kA
s + kB

s
(9)

Among them, kA
n and kB

n are the normal contact stiffnesses of the two-end contact
entities; and kA

s and kB
s are the tangential contact stiffnesses of the contact two-end entities.

The slip model is a contact action model for judging whether the entities at the two
ends of the contact slip, and it is mainly calculated based on the normal contact force,
the tangential contact force, and the friction coefficient. The formula for calculating the



Materials 2023, 16, 363 4 of 15

maximum tangential contact force that the contact point can bear is shown in Equation (10).
When |Fs

i |> Fs
max, relative sliding occurs between the two contact entities.

Fs
max = µ|Fn

i | (10)

Among them, Fs
max is the maximum tangential contact force that the contact point can

bear; µ is the friction coefficient; and Fn
i is the normal contact force.

3. Basic Principles of Discrete Element Method
3.1. Virtual Mold Setting

Use the “generate” command to generate aggregates with a specific gradation, and
determine the number of generated particles and the number of attempts to ensure that
particles do not overlap. In order to be similar to the form and size of the graded crushed
stone specimen in the actual indoor test, the virtual mold adopts a cylindrical mold, which
is composed of a cylindrical wall, an upper plane wall and a lower plane wall, as shown
in Figure 1. Among them, the cylindrical wall is formed by splicing triangular plane
walls. The more the number of triangular walls, the closer the cylindrical wall is to a
smooth cylindrical surface, and the higher the calculation accuracy is. At the same time,
the increase in the number will reduce the calculation efficiency. The number and precision
of the triangular walls in this paper are set by the resolution parameter.
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Figure 1. Schematic diagram of CBR test mold.

The diameter of the cylindrical specimen is 150 mm, which is consistent with the CBR
test of the intermediate grade crushed stone in the “Geotechnical Test Method Standard
GB/T 50123-2019” (MOHURD 2019) [21]. Compared with the indoor test, the random
generation of aggregate particles in the virtual test requires sufficient space, so the height
of the virtual mold is set to 1.6 times the height of the target specimen, and the height of
the CBR test mold is set to 194 mm.

3.2. Specimen Setting of Graded Particles

The height, radius, initial void ratio, and particle size of the test piece are known, and
on this basis, a digital test piece of graded crushed stone is generated. In order to better fit
the actual specimen forming process, after the virtual mold is formed, the graded crushed
stone specimen with the specified gradation is formed in three layers, and the thickness of
each layer is equal, which is 1/3 of the final height of the specimen.

3.2.1. Calculation of The Number of Particles Corresponding to Gradation

In the actual indoor test, the gradation control is realized by calculating and weighing
the specified mass of aggregates with different particle size ranges. In this paper, in the
PFC software, the number of particles is also calculated according to the principle of equal
mass. During the simulation, the mass relationship is converted into a volume relationship
by assigning different densities to particles of different sizes. Since the graded crushed
stone specimens are made of the same material, the aggregates have the same density.

According to the percentage passing of each sieve hole in the gradation, the total
volume of the aggregate is allocated to each grade of aggregate according to the percentage
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retained, and then according to the aggregate density and the corresponding particle size to
calculate the number of particles needed to generate each grade of aggregate. The formula
for calculating the number of particles is shown in Equations (14)–(17).

V = V0(1− poros) (11)

Vi = Vαi (12)

αi = Pi+1 − Pi (13)

Ni =
Vi
vi

(14)

vi =
4πR3

ave
3

(15)

Rave =
di+1 + di

4
(16)

In the formula, V0, V, Vi, and vi—the volume of the specimen, the total volume of
the specimen particles (excluding voids), the total volume of the i-th grade particles, and
the volume of a single particle of the i-th particle. αi, pi+1, and pi are the volume fraction
of the i-th grade particles to the specimen, respectively, and the sieve pass rate of the i +
1-th grade and the i-th grade; Ni is the number of i-th grade particles; poros is the porosity
of the specimen; Rave, di+1, and di are the average particle size of the i-th grade particles,
respectively (to simplify the calculation, it is regarded as the average value of the maximum
and minimum particle size of this grade of particles), in summary:

Ni =
π · 0.12 · 0.152(1− poros)∆P

4
·

4π
(

di+1+di
4

)
3

−1

(17)

3.2.2. Generation Process of Target Graded Crushed Stone Specimens

In order to obtain the uniform compaction effect of graded crushed stone, the model
is compacted three times in the PFC software, and the number of aggregate particles
generated each time is one third of the target particle number of each grade. The first
(bottommost) layer of aggregate particles is formed first. The newly generated particles are
in a loose state and have a large void ratio, occupying the space from the bottom of the mold
to 1/2 the height of the mold. When generating particles, according to the actual situation
when generating particles, specify the number of attempts through the tries command.

In this paper, vibration is used for particle compaction to ensure more reasonable
distribution of aggregate particles of different sizes and closer contact [22,23]. The particles
are given a gravity of 9.8 m/s2. The frequency of 5 Hz was selected for vibration, and the
vibration velocities of 5 cm/s and 1 cm/s were firstly applied in the z and x directions, and
then the vibration velocities of 5 cm/s and 1 cm/s were applied in the z and y directions to
realize the redistribution of the pellets. After the vibration is completed, a wall parallel to the
mold base is generated at the highest point of the particles as a loading plate, and the loading
plate is given a downward speed to form a load on the aggregate particles, simulating the
actual graded crushed stone compaction process, until the aggregate particles are pressed to
the specified height. After the compaction is completed, the loading plate is given a slight
upward speed to move it up slowly until it is not in contact with the aggregate particles
and is then removed to provide space for the second layer of compaction.

Repeat the above steps to generate the second layer and the third layer of aggregate
particles. The generation range of the second layer of aggregate particles is from the top of
the first layer of aggregate to 0.75 times the height of the mold, and the load plate presses
it to 2/3 of the height of the test piece. The generation range of the third layer aggregate
particles is from the top of the second layer aggregate to the height of the mold, and the
load plate presses it to the height of the target specimen. After the above steps, the virtual
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test piece of the target cylinder is finally formed, and the specific molding process of the
test piece is shown in Figure 2.
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3.3. Setting of Wall Speed and Confining Pressure

The speed of the wall is controlled by a servo mechanism to ensure that the wall exerts
a specific pressure, which is used to simulate the compaction process of graded crushed
stone [24]. The confining pressure is realized by two parameters: target confining pressure
and allowable error. Servo control the wall speed and calculate the stress on the wall in
real time and compare it with the required applied stress. If the two errors are less than the
allowable error parameter, it indicates that the confining pressure was achieved. If the two
errors exceed the allowable error parameter, the cycle will continue until the requirements
are met.

The above comparison of wall velocity and stress error is carried out continuously
during the virtual test. Assuming that there is a corresponding relationship between the
wall velocity and the load applied to the wall, the wall velocity can be expressed as:

.
u(wall)

= G
(

σmeasured − σrequired

)
= G∆σ (18)

Among them,
.
u(wall) is the wall velocity; σmeasured is the measured stress value; σrequired

is the predetermined stress value; and ∆σ is the stress difference. G is the parameter of
the servo mechanism, and the dimension is dim G = L2M−1T, which is used to control the
speed of the wall.

The wall and the sphere are in contact with each other, and the wall moves in the
direction of the sphere to receive the resistance force from the sphere, and the sphere
receives the reaction force from the wall at the same time. In the time step ∆t, the reaction
force increment, of ∆F(wall) of the wall acting on the sphere is:

∆F(wall) = k(average)
n Nc

.
u(wall)∆t (19)
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Among them, ∆F(wall) is the increment of the force on the wall; k(average)
n is the average

stiffness of the contact between the wall and the sphere; Nc is the number of contacts

between the wall and the sphere;
.
u(wall) is the wall velocity; and ∆t is the time step.

According to the stress calculation formula, the calculation formula of the stress
increment applied by the wall is:

∆σ(wall) =
∆F(wall)

A
=

kaverage
n Nc

.
u(wall)∆t

A
(20)

Among them, ∆σ(wall) is the stress increment applied by the wall; and A is the area of
the wall where the load is applied.

In order to ensure that the expected load is applied to the wall, the value of ∆σ(wall)

should be strictly controlled. In this paper, the accuracy of the stress applied to the wall is
controlled by taking the safety factor α(α < 1), that is, the increment ∆σ(wall) of the stress
applied to the wall should be less than the difference ∆σ between the actual measured
stress of the wall and the predetermined stress of the wall:∣∣∣∆σ(wall)

∣∣∣ = α|∆σ| (21)

Substitute Equations (18) and (20) into Equation (21) to get:

α|∆σ| = k(average)
n NcG|∆σ|∆t

A
(22)

Eliminate |∆σ| in Equation (22), we get:

G =
αA

k(average)
n Nc∆t

(23)

3.4. Simulation of CBR Loading Conditions

During the CBR test, four pairs of semi-circular ring load blocks with a diameter
of 150 mm and a center hole diameter of 52 mm should be placed above the specimen,
and each pair weighs 1.25 kg, as shown in Figure 3a. Use MATLAB (2020a, MathWorks,
Natick, MA, USA) software to generate circles with a diameter of 150 mm and a diameter
of 52 mm on the x-y plane, divide the circle into 36 equal parts, and derive the coordinates
of each bisected point. In the PFC software, the wall create command is used to input the
coordinates of the above-mentioned equal points, and the generated small triangles finally
form a circular wall, as shown in Figure 3b. After the annular load plate is generated, the
above-mentioned servo method is used to simulate the gravity effect of the load block
based on the wall stress.
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(a) The actual effect generated in the 
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Figure 3. Schematic diagram of CBR test circle load block. Figure 3. Schematic diagram of CBR test circle load block.

A small cylinder with a diameter of 5 cm and a height of 5 cm and a disc with a
diameter of 5 cm were combined as the indenter, and the initial position was located
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above the center of the specimen, as shown in Figure 4. Considering the actual running
speed and calculation time, the penetration speed of the virtual test is set to 2 mm/min and
adjusted according to the subsequent loading conditions. After loading, with the monitored
penetration depth as the control condition, when it reaches 8 mm, the loading stops.
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4. Calibration of microscopic parameters
4.1. Indoor CBR Test

Carrying out indoor CBR experiments can provide data support for determining the
micro-parameter correction of discrete element CBR in virtual experiments.

4.1.1. Material selection and specimen grading

Taking into account factors such as material and cost, limestone is selected as the
research object. The following test pieces were formed in the laboratory test:

(1) Prepare coarse aggregate specimens with a single particle size, including 4.75 mm,
9.5 mm, 13.2 mm, 16 mm, and 19 mm;

(2) The middle value and upper and lower limits of grading type G-A-4 in the “High-
way Pavement Base Construction Technical Specifications” (JTG/T F20-2015) [25] shall be
selected, the fine aggregate part of the grading type shall be removed, and the proportion
of the part above 4.75 mm shall be expanded. The gradation of the indoor test specimens is
shown in Table 1.

Table 1. Specimen grading for indoor test.

Gradation
Types

Mass Percentage (%) Passing Through
the Following Square Mesh Sieve (mm)

26.5 19 16 13.2 9.5 4.75

Gradation one 100 82 70 60 40 0
Gradation two 100 75 63 52 34 0

Gradation three 100 70 57 44 27 0

4.1.2. Forming Steps of The Test Piece

In this study, the static compaction method was used to form graded crushed stone
specimens with a size of 150 mm in diameter and 120 mm in height. Before static pressing,
put the crushed stone into the test tube in three steps, and strike 10 times with a small
hammer each time to make the aggregate initially compact. After putting all the crushed
stone into the test tube, it was placed under a press to form under static pressure, with a
load of 15 KN and a static pressure of 10 s, as shown in Figure 5a.
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4.1.3. Indoor CBR Test

The formed specimen was placed on the digital CBR tester, and four pairs of semi-
circular load blocks were placed on the surface of the specimen. Adjust the height of the
lifting platform on the bottom of the test piece and the position of the sensor so that the
sensor is just placed on the edge of the test tube at the beginning of the test. Set the loading
speed of the loading indenter to 1 mm/s, set the loading stop condition as the penetration
depth reaching 8 mm, and carry out the CBR test (see Figure 5b). Three indoor tests are
repeated for each single particle size, and the final results are taken as the average of the
three tests. After the test, the instrument will automatically output the relationship between
the loading indenter pressure and the penetration depth (with the penetration depth of
0.5 mm as the interval) to draw the stress–displacement curve. The indoor CBR test results
are shown in Figure 6.
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Observing the test curve, it can be seen that as the penetration depth (displacement)
increases, the penetration force of each grade of particle size aggregate increases gradually,
and the penetration force and penetration depth are basically linear. This is because as
the penetration progresses, the gaps between the graded crushed stone particles gradually
decrease, and the entrapment effect is strengthened. To obtain the same displacement, the
force required by the load head must increase [26]. Among the coarse aggregates with a
single particle size in the fifth grade, except for the 4.75 mm particle size aggregate, which
has a slightly smaller penetration force, the penetration force of other particle sizes is not
much different. The penetration force of the 19 mm particle size aggregate is slightly larger
than that of other particle sizes when the penetration depth is greater than 4 mm. Therefore,
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it is not recommended to blindly pursue large-sized aggregate skeletons in order to increase
the load bearing capacity when selecting the gradation of crushed stone.

4.2. Calibration Results of Microscopic Parameters

In order to make the virtual specimen of discrete element model simulate the actual
test situation, the contact stiffness, friction coefficient and other microscopic parameters
are calibrated by comparing the penetration force penetration depth curves of virtual CBR
test and indoor CBR test. The number of virtual tests is not certain. The error between
the virtual test results and the indoor test results is controlled within 5% through multiple
iterations, so as to calibrate the contact stiffness, friction coefficient, and other microscopic
parameters of the discrete element entities (walls and balls). Combined with studies [27,28],
it is found that among the microscopic parameters of normal phase stiffness, tangential
stiffness, and friction coefficient between the sphere and the wall, the normal contact
stiffness of the sphere has the greatest influence on the penetration force. Therefore, in this
paper, the normal stiffness and tangential stiffness of the wall are set to 1 × 1010 (N/m),
the friction coefficient is 0.7, and the spherical friction coefficient is 0.5. By changing the
normal and tangential stiffness of the sphere (general normal stiffness = tangential stiffness),
the virtual test results closest to the laboratory test results are obtained. The selection of
parameters is shown in Table 2.

Table 2. Preliminary table of micro-parameter values.

Sphere Wall

Normal stiffness (N/m) 2 × 105/2 × 106/2 × 107/2 × 108 1 × 1010

Tangential stiffness (N/m) 2 × 105/2 × 106/2 × 107/2 × 108 1 × 1010

Friction coefficient 0.5 0.7

The virtual uniaxial penetration tests with 4.75 mm, 9.5 mm, 13.2 mm, 16 mm, and
19 mm grain sizes were carried out according to the steps of virtual CBR test model
construction using different spherical method/tangential stiffness in the table, and the
comparison results with the indoor tests are shown in Figure 7.
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different microscopic parameters.

It can be seen that the magnitude of the penetration force obtained from the virtual
test is positively correlated with the ball stiffness, and when the ball stiffness is 2 × 108

(N/m), the penetration force obtained from the simulation is much larger than the actual
value, which is 15–25 times that of the actual value, and is undesirable. When the sphere
stiffness is 2 × 105 (N/m) and 2 × 106 (N/m), the simulated penetration force is much
smaller than the actual value, which is about 1/1000 and 1/100 of the actual value, which
is not desirable.

When the sphere stiffness is 2 × 107 (N/m), the simulated penetration force is slightly
smaller than that of the indoor test for 19 mm particle size graded aggregates; for 16 mm
particle size graded aggregates, the simulated penetration force is slightly larger than that
of the indoor test; for 13.2 mm, 9.5 mm, and 4.75 mm particle size graded aggregates, the
simulated penetration force is larger than that of the indoor test. The simulated penetration
force for 13.2 mm, 9.5 mm, and 4.75 mm graded aggregates is greater than the indoor
test results.

Therefore, based on the results of the above analysis, the microscopic parameters were
further optimized. For the graded crushed stone with the particle size of 19mm and 16mm,
the values larger than and smaller than 2 × 107 shall be selected for further verification,
and 0.05 × 107 shall be taken as the change step of the stiffness of the small ball each time.
For the other three groups of particle size test pieces, take 2 × 106 and 2 × 107 as the sphere
stiffness value interval, and continuously use the dichotomy method to approximate the
final value of the sphere stiffness. Compare the simulation results with the indoor test
results, when the difference between the two is less than 5% of the indoor test results, the
parameter optimization is stopped, and the small ball stiffness is considered as the final
value of small ball stiffness for the corresponding particle size at this time.

The optimization results of the microscopic parameters for different particle sizes of
graded aggregates are shown in Table 3, and the comparison between the virtual CBR test
results of graded aggregates using the microscopic parameters in the table and the indoor
CBR test results is shown in Figure 8, and the errors are within the permissible range. It can
be seen that the results of the virtual test and the indoor test are roughly consistent. There
are two reasons for the deviation. Firstly, that during the indoor test, the data are read every
0.5 mm and are connected into a curve due to the equipment limitation, while in the virtual
test, the results are recorded every step, which can be regarded as an almost continuous
curve. Secondly, the position of each particle with the same grading is different, which
leads to the lateral slip of gravel particles at different positions during the penetration
process, resulting in up and down fluctuations at different positions of the curve.
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Table 3. Micro-parameter values.

Sphere Wall

Aggregate Size (mm) 4.75 9.5 13.2 16 19 All

Normal stiffness (N/m) 0.88 × 107 0.98 × 107 1.10 × 107 1.25 × 107 2.05 × 107 1 × 1010

Tangential stiffness (N/m) 0.88 × 107 0.98 × 107 1.10 × 107 1.25 × 107 2.05 × 107 1 × 1010

Friction coefficient 0.5 0.7Materials 2023, 15, x FOR PEER REVIEW 12 of 15 
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In order to further verify the correctness of the calibrated microscopic parameters,
three groups of gradations of the upper, middle, and lower limits of G-A-4 are obtained in
“Technical Rules for Construction of Highway Pavement Base” (JTG/T F20-2015) (MOT
2015). The fine aggregate part is then removed. Next, the coarse aggregate part is enlarged
in equal proportion, and the virtual CBR test is carried out using the microscopic parameters
shown in the Table 3, and the results are compared with the indoor test results. For the
penetration force–penetration depth curve of the virtual CBR test and the indoor CBR test,
the error of the penetration forces of gradation one, gradation two, and gradation three
under different penetration depths shall not exceed 5%, 15%, and 10%, respectively. The
results are shown in Figure 9.



Materials 2023, 16, 363 13 of 15Materials 2023, 15, x FOR PEER REVIEW 13 of 15 
 

 

  
(a) Gradation one (b) Gradation two 

 
(c) Gradation three 

Figure 9. Comparison of indoor and virtual CBR test results for the G-A-4 three-group grading. 

According to the comparison between the virtual test and the indoor test, it can be 
seen that the numerical test results of CBR test can be well matched with the indoor test 
results. The correctness of the calibrated micro-parameters in Table 3 is further verified, 
so the stress–strain characteristics during the uniaxial penetration of graded crushed stone 
can be predicted relatively quickly through indoor simulation tests. 

5. Conclusions 
In this paper, the virtual model of graded crushed stone is improved from the inter-

action of micro-graded crushed stone particles to the performance of macro-graded 
crushed stone, and the performance prediction model of two-dimensional graded crushed 
stone CBR is extended to the performance prediction model of three-dimensional graded 
crushed stone CBR, which provides a basis for the physical and mechanical tests of graded 
crushed stone in the future. 

The discrete element software PFC3D is used to simulate the main calculation prin-
ciple, specimen forming method, and loading method of the test of graded crushed stone, 
and combined with the indoor CBR test, the microscopic parameters of the virtual test are 
calibrated. The main research conclusions are as follows: 

(1) According to the non-bonding characteristics of graded crushed stone, when sim-
ulating in PFC3D software, the linear stiffness model and the slip model are used. When 
the specimen is simulated and formed, enough space is reserved for the compaction pro-
cess, and the height of the specimen mold wall is 1.6 times the target height of the speci-
men. The aggregate particles are put in three times. After each time, gravity should be 
applied first, then vibration should be applied, and then a pressure plate should be formed 
for compaction. After compaction, it is recommended to slowly remove the pressure plate 
to prevent large disturbance of the particles. 

(2) The pressure cannot be directly applied in the PFC3D software, so the servo mech-
anism is used to apply a constant load through the relationship between the servo param-
eter G, speed, and stress. The loading of the CBR test is a strain-controlled mode, which is 
accomplished by imparting a constant speed to the indenter. 

Figure 9. Comparison of indoor and virtual CBR test results for the G-A-4 three-group grading.

According to the comparison between the virtual test and the indoor test, it can be
seen that the numerical test results of CBR test can be well matched with the indoor test
results. The correctness of the calibrated micro-parameters in Table 3 is further verified, so
the stress–strain characteristics during the uniaxial penetration of graded crushed stone
can be predicted relatively quickly through indoor simulation tests.

5. Conclusions

In this paper, the virtual model of graded crushed stone is improved from the interac-
tion of micro-graded crushed stone particles to the performance of macro-graded crushed
stone, and the performance prediction model of two-dimensional graded crushed stone
CBR is extended to the performance prediction model of three-dimensional graded crushed
stone CBR, which provides a basis for the physical and mechanical tests of graded crushed
stone in the future.

The discrete element software PFC3D is used to simulate the main calculation principle,
specimen forming method, and loading method of the test of graded crushed stone, and
combined with the indoor CBR test, the microscopic parameters of the virtual test are
calibrated. The main research conclusions are as follows:

(1) According to the non-bonding characteristics of graded crushed stone, when
simulating in PFC3D software, the linear stiffness model and the slip model are used.
When the specimen is simulated and formed, enough space is reserved for the compaction
process, and the height of the specimen mold wall is 1.6 times the target height of the
specimen. The aggregate particles are put in three times. After each time, gravity should be
applied first, then vibration should be applied, and then a pressure plate should be formed
for compaction. After compaction, it is recommended to slowly remove the pressure plate
to prevent large disturbance of the particles.

(2) The pressure cannot be directly applied in the PFC3D software, so the servo
mechanism is used to apply a constant load through the relationship between the servo
parameter G, speed, and stress. The loading of the CBR test is a strain-controlled mode,
which is accomplished by imparting a constant speed to the indenter.
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(3) As the penetration depth (displacement) increases, the penetration force of each
grade of particle size aggregate gradually increases, and the penetration force and pene-
tration depth are basically linear. According to the relationship between the penetration
force of coarse aggregates with a single particle size of five grades, when the particle size
is larger than 9.5 mm, the increase in particle size has little effect on the CBR test results.
Therefore, it is not necessary to blindly pursue a large particle size in order to obtain a
larger bearing capacity.

(4) Combined with the indoor CBR test, the micro-parameter calibration method of
the discrete element simulation test of graded crushed stone is proposed. Among the
microscopic parameters, the contact stiffness of the spherical particles has the greatest
influence on the simulation results. The calibration found that when the normal and
tangential contact stiffness of the wall is 1e10, the friction coefficient of the wall is 0.7, and
the friction coefficient of the sphere is 0.5, the contact stiffness of graded crushed stone
particles with particle sizes of 4.75 mm, 9.5 mm, 13.2 mm, 16 mm, and 19 mm should be
0.88 × 107, 0.98 × 107, 1.10 × 107, 1.25 × 107, and 2.05 × 107, respectively.
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