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Abstract: The aim of the research presented in this paper was to determine the effect of dihydroxy
alcohols on the rheological properties of sodium carboxymethylcellulose (Na-CMC) solutions with
different degrees of substitution and different average molecular masses. Rheological measurements
were carried out with a rotational rheometer in continuous and oscillatory flows. Two dihydroxy
alcohols were used in the study: butane-1,3-diol and propane-1,2-diol. The concentration of Na-CMC
in the solutions was 1.6% and 2.2%, while the concentration of the dihydroxy alcohols ranged from
10% to 60%. The measurements show that the viscoelastic properties of Na-CMC solutions are
strongly linked to the type of solvent used. The application of low-substituted high-molecular-mass
Na-CMC makes it possible to obtain fluids with the properties of weak physical gels. On the other
hand, the dissolution of Na-CMC with a high degree of substitution (>1) and low molecular mass in
dihydroxy alcohol/water mixtures yields a viscoelastic fluid. Based on oscillatory measurements,
increasing concentrations of polyhydroxy alcohols in Na-CMC solutions were found to induce an
increase in the strength of the network structure. At the same concentrations of polyhydroxy alcohols
in solutions containing butane-1,3-diol, a stronger network structure is formed compared to solutions
containing propane-1,2-diol. The rheological measurement results presented in this paper may
be useful in the formulation of drug carriers and cosmetics in which rheological properties are a
significant factor.

Keywords: sodium carboxymethylcellulose; polyhydric alcohol; rheology

1. Introduction

Sodium carboxymethylcellulose (Na-CMC) is the only cellulose derivative included
within the group of polyelectrolytes [1]. Based on its properties, mainly the ability to
contribute to the desired consistency of products, sodium carboxymethylcellulose has
found its way into a range of industrial sectors, with applications mainly in the production
of food, cosmetics, and pharmaceuticals [2–4]. The global market for products (foodstuffs,
beverages, cosmetics, medicines, and detergents) containing Na-CMC is huge (in 2016, the
world market was worth USD 1.2 billion) [5]. Sodium carboxymethylcellulose is also used
in large quantities in the oil and gas industry for thickening purposes in drilling muds [6,7].
In the food industry, Na-CMC is used, among other applications, to improve the moisture
content of products and to give them the desired consistency while preventing the sepa-
ration of ingredients [8]. In the cosmetics industry, Na-CMC is added to toothpastes and
creams as a thickening agent [3,9]. As regards pharmaceuticals, Na-CMC is employed in the
production of hydrogels that are used in biomedical engineering as components of drug de-
livery matrices (carriers for the controlled release of active substances in medicines) [10–13].
Commercial products contain a vast range of ingredients (silicas, oils, surfactants, proteins,
polyols, sugars, and salts) that may interact with Na-CMC, resulting in new substances
characterized by specific properties that differ from those of single-component solutions.
For the reasons mentioned above, studies investigating the effects of various substances,

Materials 2023, 16, 418. https://doi.org/10.3390/ma16010418 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16010418
https://doi.org/10.3390/ma16010418
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-3957-1700
https://orcid.org/0000-0002-3111-1868
https://orcid.org/0000-0002-5378-9135
https://orcid.org/0000-0001-7464-7315
https://doi.org/10.3390/ma16010418
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16010418?type=check_update&version=1


Materials 2023, 16, 418 2 of 13

including polyhydroxy alcohols, on the rheological properties of Na-CMC solutions carry a
great practical significance.

Aqueous solutions of Na-CMC are non-Newtonian shear thinning fluids (an explana-
tion of basic rheological concepts such as shear thinning fluids and others can be found
in the paper of Ahmad et al. [14]). Research findings published to date show that the
rheological properties of aqueous Na-CMC solutions depend not only on the concen-
tration and molecular mass of the polymer but also on its degree of substitution (DS;
average number of carboxymethyl groups substituted per anhydroglucose at the 2-, 3-,
and 6-positions) [15–27]. The effects of monovalent and divalent salts on the rheological
properties of Na-CMC solutions are also relatively well understood [28–32]. It must be
noted that while the direction of changes in the viscoelastic properties of Na-CMC solutions
occurring along with changes in DS is predictable, the reasons for these changes proposed
in the literature to date have not been fully validated. Various authors have linked them
to electrostatic interactions, hydrogen bonding, and hydrophobic interactions between
unsubstituted parts of the chain [24,33–35].

Sodium carboxymethylcellulose and polyhydroxy alcohol are compounds that may
coexist in many products. It appears that the rheological properties of solutions of
Na-CMC/polyhydroxy alcohol mixtures may diverge significantly from those of single-
component solutions of these compounds [22]. However, the properties of Na-CMC
solutions in polyhydroxy alcohol/water mixtures have been described only in a few publi-
cations to date [22,36–41].

The results of measurements for Na-CMC solutions in a propane-1,2-diol/water
mixture (PG/water) are presented in the works of Matsumoto and Mashiko [38], Ko-
morowska et al. [22], and Różańska et al. [39]. Matsumoto and Mashiko [38] found that
the superposition principle applies to Na-CMC solutions in mixtures containing different
concentrations of PG, CaCl2 (calcium chloride), and MgCl2 (magnesium chloride). The
cumulative curve was determined for PG at concentrations of 30% and 40% and Na-CMC
with DS = 1.13 and Mw = 2.22× 105 g·mol−1. Komorowska et al. [22] conducted continuous
and oscillatory flow measurements for Na-CMC solutions in a propane-1,2-diol/water
mixture with three different degrees of polymer substitution (0.62, 0.79, and 1.04) and
a similar average molecular mass (Mw = ~250,000 g·mol−1). The authors observed a
strong synergism between the molecules of Na-CMC with a low degree of substitution
and propane-1,2-diol, which they attributed to the formation of a network of a physical
nature. Różańska et al. [39] carried out extensional flow measurements for solutions of
Na-CMC in the DS range from 0.62 to 1.04 and with Mw = ~250,000 g·mol−1 in a propane-
1,2-diol/water mixture. The results of these measurements point towards the formation of
a spatial network of a physical nature.

Yang and Zhu [41] conducted studies for Na-CMC solutions with added propane-
1,2,3-triol, concluding that the addition of polyhydroxy alcohol up to a concentration of
70% led to an increase in the viscosity of the Na-CMC solutions (there are no data on DS
and Mw). At higher concentrations of glycerol, the viscosity of the Na-CMC solutions
decreased, which was attributed by the authors of the study to a decrease in the solubility
of the polyelectrolyte. The sharp increase in viscosity caused by the presence of propane-
1,2,3-triol was explained by physical cross-linking due to the formation of hydrogen bonds
between the OH groups of the alcohol and the polymer chains.

Jimenez et al. [42] carried out research on the rheological properties of Na-CMC solu-
tions in a glycerol/water mixture in extensional and shear flow. These authors showed that
the addition of glycerol to the Na-CMC solutions increases the shear viscosity, extensional
viscosity, and extensional relaxation time of formulations. However, the concentration-
dependent variation of rheological properties cannot be simply modeled by accounting for
the change in solvent viscosity and dielectric constant.

An increase in viscosity due to the addition of sucrose to Na-CMC solutions has been
reported by Hoefler [37] and Cancela et al. [36]. However, the studies by these authors lack
information on the degree of substitution and average molecular mass of the Na-CMC used.
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Cancela et al. [36] described the flow curves for Na-CMC solutions with added sucrose
using the Ostwald–de Waele power model. In their paper, Sharma et al. [40] described the
effect of ethylene glycol concentrations in the range of 10–30% on the intrinsic viscosity of
Na-CMC solutions. Their studies were carried out for sodium carboxymethylcellulose with
a relatively low average molecular mass (Mw = 90,000 g·mol−1) and DS = 0.7. Increasing
ethylene glycol concentrations were found to be accompanied by decreases in intrinsic
viscosity and increasing values of the Huggins constant.

As can be seen from the studies presented above, data on the effects of polyhydroxy
alcohols on the properties of Na-CMC solutions are scarce. A review of the literature
reveals that there are no published studies on Na-CMC solutions with the addition of
butane-1,3-diol. Furthermore, there are no literature reports on the impact of the molecular
mass of Na-CMC on the rheological properties of the solutions of this polyelectrolyte in a
propane-1,2-diol/water mixture.

The aim of the work presented in this paper was to determine the effect of the degree
of substitution and average molecular mass on the rheological properties of Na-CMC
solutions in mixtures of propane-1,2-diol (propylene glycol, PG) and butane-1,3-diol (buty-
lene glycol, BG). Na-CMC solutions in such mixtures—similarly to the solutions of other
polysaccharides—can potentially be used as drug delivery systems because of their high
viscosity, which can be adjusted as needed through an appropriate selection of ingredients
and their concentrations [43,44]. The findings of the present study can also translate into
practical applications in the formulation of products in the food and cosmetics industries.

2. Materials and Methods
2.1. Materials

The sodium salt of carboxymethylcellulose with two different degrees of substitution,
0.7 and 1.2 (marked with the following symbols: Na-CMC0.7-L and Na-CMC1.2), and similar
weight-average molecular weights was used for the study. Na-CMC0.7-L and Na-CMC1.2
had molecular masses of 264,400 g·mol−1 and 262,400 g·mol−1, respectively (supplier:
Sigma-Aldrich).

In the conducted research, sodium carboxymethylcellulose with a much higher weight-
average molecular weight of Mw = 1,206,000 g·mol−1 and a degree of substitution of 0.7
(supplier: Dow Chemical Company, Midland, United States) was also used. In the further
part of the work, solutions using this polyelectrolyte will be marked with the symbol
Na-CMC0.7-H. The molar mass distributions of Na-CMC samples were characterized by
size-exclusion chromatography (SEC) with triple detection on the chromatograph composed
of a Knauer K-501 HPLC pump (Berlin, Germany) with an LDC RI detector and a Viscotek
T60A dual detector (right-angle laser light scattering at k = 670 nm (RALLS) and differential
viscometer) (Malvern Panalytical Ltd, Malvern, United Kingdom).

The tests of mixtures of aqueous solutions of Na-CMC with polyhydric alcohols were
carried out using propane-1,2-diol (propylene glycol, PG) and butane-1,3-diol (butylene
glycol, BG), supplied by Dow Chemical Company, Donauch, and Sigma Aldrich. The
weight content of the polyhydric alcohols used was ≥99.5%.

2.2. Preparations of Solutions

In order to obtain aqueous Na-CMC solutions at specific percentage concentrations
(wt%), the polymer was gradually added to a beaker containing a measured amount of
water. The aqueous Na-CMC solutions were stirred for approximately 24 h. After this
time, the solutions were placed in a refrigerator and stored at 4◦C. To prevent biological
degradation, measurements with aqueous Na-CMC solutions were carried out within a
maximum of 7 days from sample preparation.

Low-molecular-mass Na-CMC solutions (Mw = ~2.5 × 105 g·mol−1) in a polyhydroxy
alcohol/water mixture were prepared at room temperature. An appropriate amount of
Na-CMC was slowly added to a beaker containing a measured amount of water. In the next
step, the samples were mixed using a magnetic stirrer until the polymer was completely
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dissolved. After 24 h, an appropriate dihydroxy alcohol was added in portions while
stirring the solutions continuously. Between the tests, all the samples were stored at 4 ◦C.
The solution preparation procedure is shown schematically in Figure 1.
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Figure 1. Flowchart for the preparation of Na-CMC solutions with a weight-average molecular
weight of (a) 250,000 g/mol (Na-CMC0.7-L and Na-CMC1.2) and (b) 1,206,000 g/mol (Na-CMC0.7-H).

Solutions containing Na-CMC with Mw = 1,206,000 g·mol−1 (Na-CMC0.7-H) required a
modified preparation procedure to ensure that homogeneous solutions would be obtained.
In this case, the procedure described above was used for the preliminary preparation of a
solution with a lower concentration of Na-CMC and polyhydroxy alcohol than required (Na-
CMC was dissolved in a larger volume of water). After preparing the lower-concentration
solution, it was heated to 45 ◦C to evaporate excess water. Higher temperatures were
undesirable because of the risk of thermal degradation of the polymer. The samples were
occasionally weighed to make sure that correct concentrations of Na-CMC and alcohol
were achieved. All the solutions obtained via this procedure were stored in a refrigerator
at 4 ◦C.

2.3. Rheological Measurements

Rheological measurements were carried out using a Physica MCR 501 rotational
rheometer (Anton Paar, Graz, Austria) in continuous and oscillatory flow at 20 ◦C. Contin-
uous flow measurements were performed in the shear rate range from 0.01 s−1 to 1000 s−1.
In addition, curves of instantaneous shear stresses τ+ versus strain γ (γ = ϕ/ tan(α),
where α is the cone angle and ϕ is the deflection angle) were recorded at a constant shear
rate

.
γ of 0.1 s−1 using a cone–plate measurement system (diameter = 59.974 mm; cone

angle α = 2.014
◦
).

The oscillatory measurements were carried out in a plate–plate system in the range of
oscillation frequency from 0.01 rad/s to 100 rad/s. The plate diameter was 59.972 mm and
the gap width was 1 mm.

The oscillatory measurements were made in a range of linear viscoelasticity with a
value of the strain amplitude equal to 1%. The range of linear viscoelasticity was determined
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by measuring the values of the G′ and G′′ modules at increasing strain amplitude from
0.01% to 1000% and a constant frequency of 1 Hz.

3. Results
3.1. Effect of the Degree of Substitution

The measurement results obtained for transient shear stress τ+ as a function of strain
γ in Na-CMC solutions (2.2%) with different degrees of substitution (DS = 0.7 and 1.2) and
a similar average molecular mass (Mw = ~250,000 g·mol−1) in PG and BG mixtures (50%)
are shown in Figure 2. Three shapes can be distinguished for the curve τ+ = f (γ):

- Solution Na-CMC1.2: transient shear stress values do not depend on the values of
strain;

- Solution Na-CMC0.7-L with added PG: transient shear stress values increase until
reaching a constant value at a certain level of strain;

- Solution Na-CMC0.7-L with added BG: transient shear stress values increase until
reaching a specific maximum level (τ+

max) at a certain strain value (γmax), after which
they decrease and reach a constant level.

Materials 2023, 16, x FOR PEER REVIEW 5 of 13 
 

 

The oscillatory measurements were carried out in a plate–plate system in the range 

of oscillation frequency from 0.01 rad/s to 100 rad/s. The plate diameter was 59.972 mm 

and the gap width was 1 mm. 

The oscillatory measurements were made in a range of linear viscoelasticity with a 

value of the strain amplitude equal to 1%. The range of linear viscoelasticity was deter-

mined by measuring the values of the G′ and G″ modules at increasing strain amplitude 

from 0.01% to 1000% and a constant frequency of 1 Hz. 

3. Results 

3.1. Effect of the Degree of Substitution 

The measurement results obtained for transient shear stress τ+ as a function of strain 

γ in Na-CMC solutions (2.2%) with different degrees of substitution (DS = 0.7 and 1.2) and 

a similar average molecular mass (Mw = ~250,000 g·mol−1) in PG and BG mixtures (50%) 

are shown in Figure 2. Three shapes can be distinguished for the curve τ+ = f(γ): 

- Solution Na-CMC1.2: transient shear stress values do not depend on the values of 

strain; 

- Solution Na-CMC0.7-L with added PG: transient shear stress values increase until 

reaching a constant value at a certain level of strain; 

- Solution Na-CMC0.7-L with added BG: transient shear stress values increase until 

reaching a specific maximum level (τ+max) at a certain strain value (γmax), after which 

they decrease and reach a constant level. 

 

 

Figure 2. Comparison of the relationship τ+ = f(γ) for Na-CMC solutions with (a) DS = 0.7 and (b)  

DS = 1.2 in a mixture of PG/water and BG/water (Na-CMC concentration = 2.2%;  Mw = ~250,000 

g·mol−1; PG (propane-1,2-diol) and BG (butane-1,3-diol) concentration = 50%; �̇� = 0.1 s−1; T = 20 °C). 

Figure 2. Comparison of the relationship τ+ = f (γ) for Na-CMC solutions with (a) DS = 0.7
and (b) DS = 1.2 in a mixture of PG/water and BG/water (Na-CMC concentration = 2.2%;
Mw = ~250,000 g·mol−1; PG (propane-1,2-diol) and BG (butane-1,3-diol) concentration = 50%;
.
γ = 0.1 s−1; T = 20 ◦C).

The characteristic maximum transient value of shear stress on the curve τ+ = f (γ) is
referred to as stress overshoot, and it is typical of polymer fluids in which a spatial network
made up of macromolecule chains has been formed. Thus, the data in Figure 2 show that
a network of this type was formed in the solution of Na-CMC0.7-L in mixture with BG
and partially formed in the solution of Na-CMC0.7-L in a PG mixture. However, no such
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network was found in the solution of Na-CMC1.2 [19,45]. Despite having established that
stress overshoot τmax is characteristic of fluids in which a spatial network has been formed,
the phenomenon is not fully explained at the molecular level [46].

In the next experiment, viscosity curves were determined for Na-CMC solutions in
water as well as PG/water and BG/water mixtures. The viscosity curves shown in Figure 3
were plotted based on the shear stress values measured after they had stabilized at a
constant level (Figure 2). Based on the results obtained, it can be concluded that both a
lower DS and the presence of dihydroxy alcohol affect the viscosity levels in Na-CMC
solutions. In addition, the greatest differences occurred in the range of low shear rates.
For better illustration of the differences, zero shear viscosity values η0 were determined by
applying the Cross model to describe the viscosity curves (Table 1).

η =
η0

1 +
(
λ· .

γ
)m (1)

where λ is the characteristic time, and m is the related exponent.
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Figure 3. Viscosity curves for Na-CMC solutions (DS = 0.7 and 1.2) in distilled water and in PG/water
and BG/water mixtures (Na-CMC concentration = 2.2%; Mw = ~250,000 g·mol−1; PG and BG
concentration = 50%; T = 20 ◦C).

Table 1. Characteristics of Na-CMC solutions (BG and PG concentration = 50%; Na-CMC concentra-
tion = 2.2%).

DS Solvent η0 (Pa·s) λ (s) m

0.7 Water 1.842 0.168 0.455
0.7 PG/water 451.4 - -
0.7 BG/water 99.4 - -
1.2 Water 0.328 0.00234 0.858
1.2 PG/water 2.264 0.0160 0.761
1.2 BG/water 2.427 0.0168 0.763

However, the Cross model was found to be unsuitable for describing the viscosity
curves of Na-CMC with DS = 0.7 in the PG/water and BG/water mixtures. For these
reasons, it was assumed in this case that zero viscosity was equal to the arithmetic mean
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calculated from the viscosities recorded in the shear rate range from 0.01 s−1 to 0.25 s−1

(the first three measurement points in Figure 3).
A comparison of the zero viscosity values in aqueous solutions of Na-CMC0.7-L and in

polyhydroxy alcohol/water mixtures shows that the addition of butane-1,3-diol induces
an approximately 240-fold increase in zero shear viscosity, while the addition of propane-
1,2-diol results in an approximately 50-fold increase in zero shear viscosity. PG and BG
added to Na-CMC1.2-L solutions also cause an increase in zero viscosity. However, in this
case, the differences in viscosity between Na-CMC1.2-L solutions containing PG and BG are
small, and the increase in their zero viscosity compared to the value of zero shear viscosity
obtained for the solution in distilled water is only seven-fold.

The results of oscillation tests shown in Figure 4 point towards a strong effect of the
degree of substitution on the viscoelastic properties of Na-CMC solutions in PG/water
and BG/water mixtures. These findings are qualitatively consistent with those presented
for Na-CMC solutions in a PG/water mixture in our previous paper [22]. The values
of the tangent of the phase shift angle (loss tangent, tan δ) are considerably smaller in
Na-CMC solutions with a lower degree of substitution (DS = 0.7). In addition, the values of
tan δ are lower in Na-CMC0.7-L solutions dissolved in a BG/water mixture. In this case,
the tangent of the phase shift angle assumes values less than unity in the entire range of
oscillation frequencies, which shows that the solutions have predominantly elastic rather
than viscous properties.
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PG/water and BG/water mixtures (Na-CMC concentration = 2.2%; Mw = ~250,000 g·mol−1).

A comparison of the rheological properties of Na-CMC solutions in PG/water and
BG/water mixtures shows that for DS = 1.2, the effects of the two dihydroxy alcohols
used on zero shear viscosity and viscoelastic properties are qualitatively similar, though
certain quantitative differences can be detected. Na-CMC solutions with a degree of substi-
tution of 0.7 in a BG mixture exhibit decidedly higher zero shear viscosity, and tan δ has
markedly lower values. The variation in zero shear viscosity and the tangent of the phase
shift angle may be due to a change in relative coil size and interchain interactions, likely
resulting from changes in electrostatic interactions, hydrogen bonding, and hydrophobic
interactions [24,42]. According to Lopez et al. [24], the observed rapid viscosity increase
in aqueous Na-CMC solutions with low degrees of substitution over the blob overlap
concentration results from a large number of interchain hydrophobic associations. The data
presented in [39] show that a PG/water mixture is a poorer solvent than pure water, which
may be conducive to the association of weakly substituted chains.
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3.2. Influence of Molecular Weight

Figure 5 shows a comparison of the relationship tan δ = f(ω) for the aqueous solutions
Na-CMC0.7-H (1.6%) and Na-CMC0.7-L (1.6%) and BG/water and PG/water mixtures. From
the data shown in Figure 5, it is evident that in the solutions containing Na-CMC with a
higher molecular mass, the tangent of the phase shift angle assumes values less than unity.
In addition, similarly to Na-CMC solutions with a molecular mass of 250,000 g/mol, the
values of tan δ determined for the solutions containing BG are smaller than those established
for the solutions prepared with PG. The results shown in Figure 5 were obtained from
tests carried out for mixtures containing 50% PG or 50% BG. Data reported in our previous
paper [22] indicate that at a Na-CMC concentration of 1.6%, values of tan δ less than unity
could only be observed starting at a PG concentration of 80%.
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Figure 5. Dependence of the loss tangent versus angular frequency for Na-CMC solutions with
different average molecular weights (Na-CMC concentration = 1.6%; PG and BG concentration
is 50%).

Figures 6 and 7 show the effect of PG and BG concentrations on the shape of mechanical
spectra and the relationship tan δ = f(ω). The values of tan δ decrease with increasing
concentrations of dihydroxy alcohols, which is evidence for the progressive association
of Na-CMC0.7-H chains. In addition, from a PG concentration of 40% and from a BG
concentration of 30%, the values of the G′ modulus are greater than those of the G′′

modulus (tan δ < 1) over the entire oscillation frequency range. According to the operational
definition, a gel is a substance for which tan δ values are less than 0.1 in the oscillation
frequency range of 0.001 rad/s to 100 rad/s [47]. Of the solutions for which tests were
carried out, the lowest tan δ values were recorded for the solution containing Na-CMC0.7-H
at a concentration of 1.6% and BG equal to 60%. The values of the phase shift angle for this
fluid range from 0.16 to 0.32. For this type of substance, Ross-Murphy [48] proposed the
name ‘weak gel’ or ‘structural fluid’.

The shape of the curves G′ = f (ω) indicates that within the oscillation frequency range
of approximately 0.01 rad/s to 100 rad/s, they can be described with the power equation:

G′ = k′·ωn′ (2)

where k′ represents constants, and n′ is an exponent that gives information about the
strength and nature of the gel. Generally, the gel strength increases with a decrease in the
n′ value. The value n′ = 0 is characteristic of covalent gel, n′ > 0 indicates a physical gel,
and a value of n′ close to unity is characteristic of viscous fluids [49–51]. The values of the
k′ and n′ parameters for Na-CMC0.7-H solutions in PG/water and BG/water mixtures are
listed in Table 2.
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Table 2. Values of parameters k′ and n′ of Equation (2) for Na-CMC0.7-H (1.6%) solutions in PG/water
and BG/water mixtures.

Dihydroxy Alcohol
Concentration (%) k’ n’ R2

PG/water
10 10.89 0.514 0.998
20 12.50 0.522 0.998
30 17.39 0.489 0.998
40 31.04 0.421 0.998
50 38.85 0.388 0.998
60 59.91 0.345 0.998

BG/water
10 10.91 0.503 0.997
20 15.74 0.482 0.998
30 26.81 0.389 0.994
40 40.59 0.357 0.996
50 57.66 0.308 0.996
60 141.53 0.200 0.986
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The calculated values of n′ are characteristic for weak gels [52]. As shown in Table 2,
the n values decreased with increasing polyhydroxy alcohol concentrations, indicating an
increase in the strength of the network structure. Furthermore, at the same concentrations
of polyhydroxy alcohol, smaller n values were obtained for solutions containing BG, which
shows that the addition of this compound to Na-CMC solutions leads to the formation of a
stronger network structure than the addition of PG does.

4. Conclusions

The analysis of rheological tests shows that it is possible to obtain Na-CMC solutions
with diverse properties by introducing dihydroxy alcohols into the formulations. Butane-
1,3-diol, propane-1,2-diol, and Na-CMC are used as ingredients in cosmetics and drug
carriers. Consequently, the findings reported in this paper may be helpful in designing the
rheological properties of pharmaceuticals and personal care products.

The studies show that the molecular mass of the polymer and its degree of substitution
have a major effect on the viscoelastic properties of Na-CMC solutions in dihydroxy
alcohol/water mixtures. The type of dihydroxy alcohol used also affects the rheological
properties of Na-CMC solutions.

If the formulation efforts are oriented towards obtaining a fluid with predominantly
viscous rather than elastic characteristics (a viscoelastic fluid), the recommended method is
to use Na-CMC with DS ≥ 1. In contrast, if the goal is to obtain a weak gel, Na-CMC with
a low degree of substitution is required. Obtaining viscoelastic solutions or weak gels at
lower concentrations of dihydroxy alcohols is possible by using Na-CMC with a higher
molecular mass. Regardless of the type of dihydroxy alcohol added to Na-CMC solutions,
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this additive always contributes to an increase in the viscosity of the system, but the fluids
obtained differ in their elastic properties. Assuming that the final product can contain both
propane-1,2-diol and butane-1,3-diol, the preferred method to obtain a viscoelastic fluid is
to use Na-CMC with a high DS and propane-1,2-diol. However, if the goal is to produce a
weak gel, the recommended procedure involves using Na-CMC with a higher molecular
mass and a low DS and adding butane-1,3-diol to the solution. Our preliminary research
shows that Na-CMC solutions in water/PG/BG ternary mixtures also have interesting
rheological properties. Our next work will be devoted to this topic
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