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Abstract: Electric discharge machining (EDM) is one of the non-conventional machining processes
that supports machining for high-strength and wear-resistant materials. It is a challenging task to
select the process parameters in real-time to maximize the material removal rate since real-time
process trials are expensive and the EDM process is stochastic. For the ease of finding process
parameters, a modelling of the EDM process is proposed. Due to the non-linear relationship between
the material removal rate (MRR) and discharge time, a model-free adaptive extremum-seeking
controller (ESC) is proposed in the feedback path of the EDM process for finding an optimal value
of the discharge time at which the maximum material removal rate can be achieved. The results
of the model show a performance that is closer to the actual process by choosing steel workpieces
and copper electrodes. The proposed model offers a lower error rate when compared with actual
experimental process data. When compared to manual searching for an optimal point, extreme
seeking online searching performed better as per the experimental results. It was observed that the
experimental validation also proved that the ESC can produce a large MRR by tracking the extremum
control. The present study has been limited to only the MRR, but it is also possible to implement such
algorithms for more than one response parameter optimization in future studies. In such cases the
performance measures of the process could be further enhanced, which could be used for a real-time
complex die- and mold-making process using EDM.

Keywords: EDM; ESC; optimal; MRR; discharge

1. Introduction

A small gap between an electrode and a workpiece immersed in dielectric fluid forms
a structure for electrical discharge machining (EDM), a method of removing metal by
creating controlled sparks. EDM can be used for several hole-fabrication methods due
to its non-contact nature [1,2]. Since the discharge energy determines the material re-
moval mechanism in the process, the gap voltage and discharge current are considered
as crucial factors while analyzing the process mechanism. During experimental trials,
the lack of stability in an EDM gap profile has been found to be a critical problem. For
example, numerous studies on the EDM waveform have been conducted [3–5], but none
of them were able to find the ideal profile due to a highly stochastic and complicated
EDM mechanism which could result in unwanted drawbacks including adhesion, short-
circuiting, and cavitation [6,7]. In accordance with the terms of the invention, the described
models for the EDM process for creating a mechanism for removing material were based
on energy and heat transfer equations and were employed for the input voltage, peak
current, and pulse-on-time of the machining setup as process parameters [8,9]. There

Materials 2023, 16, 434. https://doi.org/10.3390/ma16010434 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16010434
https://doi.org/10.3390/ma16010434
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-5487-545X
https://orcid.org/0000-0002-2507-0764
https://doi.org/10.3390/ma16010434
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16010434?type=check_update&version=1


Materials 2023, 16, 434 2 of 17

have been numerous reported attempts to simulate the process’s machining rate using
analytical, geometrical, statistical, or empirical methods [8–10]. There have also been
a number of different methods for predicting the MRR using a combination of optimization
and statistical techniques, including the integration of an artificial neural network (ANN)
with a particle swarm algorithm [11], and ANN-based models for MRR prediction and
the use of an artificial bee colony algorithm to optimize the parametric combinations for
a better MRR with less surface roughness [12–14]. According to the theoretical improve-
ments that have been published, improving the accuracy in estimating the actual discharge
power used to generate heat at a workpiece surface during a spark’s occurrence is essential
to accurately anticipate the rate of material removal (MRR) in EDM [15,16]. By evaluating
the real-time V-I waveforms obtained during an EDM operation to calculate the discharge
power, the model integrates the actual discharge conditions. Meanwhile, the discharge
power density is established by the model to depend on the applied heat flux and discharge
gap [17]. In [18], the surface roughness and material removal rate (MRR) were set as the
output responses for the machining. Taguchi’s robust design plans the machining process,
and the Taguchi method can be used to obtain the best MRR. A vibration applied to a work-
piece during EDM considerably improves the material removal rate (MRR) and surface
roughness (SR) [19]. Moreover, a modelling of the whole EDM process and modelling
with dynamic conditions were performed and the output parameter MRR was calculated
and compared with existing results for justifying the models [20–22]. To produce the
electrodes for die-sinking EDM, a FDM (fused deposition modelling) was used, and its sig-
nificance and applications are highlighted in this study (i.e., electrical discharge machining).
A literature-based survey was also carried out, and it was found that there has not been
much discussion of FDM’s suitability for producing EDM electrodes [23].

Some of the literature has been examined to show that MRR is a non-linear function
of the discharge time. Some mathematical models of the material removal rate process
have been developed in the past based on the boundary condition of the plasma formed
between a cathode (i.e., a workpiece) and an anode (i.e., an electrode). These two models,
one for cathode erosion and the other for anode erosion, were based on the thermophysical
properties of plasma at temperatures ranging from a solid to a liquid melt [24,25]. The
complicated link between a material and the plasma was, nevertheless, shown in these
models. In [26,27], a mathematical model used a dimensional analysis to find the crucial
electrical and physical factors that affect the rate at which material is removed. The MRR
was shown in these studies as a non-linear function of the discharge time. Due to the
recent proof of its first rigorous local stability analysis for an ES scheme, extremum-seeking
control—a model-free and adaptive optimization technique—has gained more interest [28].
This method can be used successfully for non-linear effects such as battery equalization
under different external conditions, maximum power seeking in photo-voltaics, and as
an anti-lock braking system under dynamic conditions [29]. The extremum-seeking control
and its procedural methods have been explained in [30,31].

From a detailed literature review, it was evident that little attention had been provided
on adopting different control approaches in unconventional machining processes, and there
was no work available on adopting an extremum-seeking control (ESC) for the maximum
removal rate by searching an online optimal discharge time under dynamic conditions.
Hence, the present investigation was made. In the present study, an attempt was made to
implement an ESC-based control for maximizing the MRR in the EDM process.

2. Experimental Methodology

The functional block diagram is represented in Figure 1. In the EDM process, the
tool electrode and specimen were separated by an air gap and immersed in a dielectric
medium, while controlled pulses, with the help of a converter and pulse generators, were
supplied across the machining zone. Discharge sparks were formulated in the machining
zone due to a dielectric breakdown in the EDM arrangement as shown in Figure 1. The
tool electrode could be moved up and down using a servo tool feed control. The tool was
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connected with a negative polarity whereas the specimen was connected with a positive
polarity [32].The blocks of the conventional EDM process with an additional buck converter
and ESC in the feedback path for a low-power conversion are shown in Figure 2. The deter-
mined MRR was provided to the EDM process through an ESC controller. The ESC finds
an optimal input for the EDM process for maximizing the MRR. In the existing methodol-
ogy, the controlled spark pulses from the power supply was provided to a buck converter
for signal conditioning to produce sparking in the EDM process. Since the EDM process
is a stochastic machining process, there is always a non-linearity of the MRR possible
with the discharge time and it was necessary to introduce a new control methodology to
eliminate the non-linearity as much as possible. Hence, this was needed for formulating the
extremum-seeking control in the process with a perturbation signal for optimal searching.
The extremum-seeking control could be applied to the EDM process with the appropriate
controller parameters.
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2.1. Modelling and Design of a Low-Power EDM Process

The modelling of the low-power EDM process can be represented with three important
subblocks, namely, a power supply design, buck converter design, and EDM process mod-
elling with R and L circuits. The pulses for the EDM process can be generated comprising
a unit of power supply and a buck converter. It mainly consists of an AC source, a bridge
rectifier, a capacitor as the filter, and a pulsed (P1) MOSFET transistor as a switching circuit
to generate pulses, as shown in Figure 3. The importance of switched and low-power
converters is explained in [33]. In this model, a low-power conversion was achieved by
a proper design of the buck converters pulsed with P2 with a continuous conduction mode
of conversion. In the design, the inductor (Lb) and capacitor (C2) can be selected based on
the maximum load conditions of the EDM process and the values are given by:

RL =
2Lb

(1− D)T
(1)
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Lb =

(
(Vs −Vi)

∆IL

)
D·T (2)

C2 ≥ Cmin =
1− D

8·Lb

(
∆Vi
Vi

)
f 2

(3)

where T = 1/f, f is the frequency of the pulse P2; D is the duty cycle of the pulse waveform
P2; ∆IL is assumed to be 30% of the maximum load current IL and ∆Vi is the ripple voltage
and is assumed to be 200 mV.
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2.2. Ignition Phase

As previously stated, the modelling of the low-power EDM process can be represented
with three important sub blocks, namely, a power supply design, buck converter design,
and EDM process modelling with R and L circuits. The gap voltage and current waveforms
during the EDM process for low and high spark frequencies(17.24 KHz and 100 KHz) are
shown in Figure 3a–d. As illustrated in a, Figure 3a the ignition phase is carried out in the
time td called the delay time. A larger gap voltage creates a higher electric field between
the workpiece and the electrode. A smaller delay time gives the space for a larger spark
time to reach higher energy into the workpiece [8,9,17]. The switch Q2 is on and the switch
Q3 is off and gives the current path as indicated by solid lines and no current flow indicated
by dotted lines, as shown in Figure 4a. As the Q3 is off, Ig = Vgap and using Ohm’s law,
Ig = Vgap/Rg from the circuit diagram:

(Vi −Vgap)

R2
= Igap = Ig (4)

From the above equation, it can be seen that a smaller difference of the Vi and Vgap
leads an ideal model, and when the gap voltage is equal to the input voltage Vgap ≈ Vi,
then the igap ≈ 0.
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2.3. Discharge Phase

The discharge phase of the EDM process occurs during the interval ton as shown in
Figure 3a. The nature of the isolation of the dielectric is broken down, and the current
increases rapidly while the voltage is falling. Then, a spark is formed due to a larger gap
current, Ig, with the lowest gap voltage being Von. The MOSFET transistors Q2 and Q3 are
switched to an on condition and the current flow of the components is indicated as the
solid lines in Figure 4b. A series of connections of Ls and Rs are connected in parallel with
a resistor, Rg. The gap voltage and current can be written from the circuit as follows.

Igap = IRs + IRg (5)

Vgap = IRs Rs + Ls
dIRs

dt
(6)

Taking a Laplace transform for (6) and solving it for the current IRs :

Vgap(s) = IRs(s)·Rs + Lss·IRs(s)

IRs(s) = Vgap(s)/(Rs + Lss)
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where s is the Laplace variable, while taking an inverse Laplace transform to find the
current IRs in the time domain:

IRs =
Vgap

Rs

(
1− e−

Rstd
Ls

)
(7)

From the circuit diagram IRg =
Vgap
Rg

, then the total gap current from Equation (5) is
substituted by Equation (7):

Igap = Vgap

(
1

Rs

(
1− e−

Rstd
Ls

)
+

1
Rg

)
(8)

Then, Kirchhoff’s law is applied to the loop, Vi, R2, Vgap from the circuit diagram
(Figure 4b).

Vi = R2 Igap + Vgap (9)

Substituting the Equation (8) Igap in the above equation and solving for the Vgap:

Vgap =
RgRon

RgR2

(
1− e−

Rstd
Ls

)
+ R2Rs + RgRs

Vi (10)

The above equation explains how the input voltage is decreased during a spark and
how it depends on different circuit elements.

2.4. Recovery Phase

This phase is occupied by the interval tr as shown in Figure 3a. The gap current flow
is stopped, and the desirable properties of the dielectric are improved again for the next
cycle. Figure 4c shows the model of the recovery phase where no current flow is indicated
in the dashed line components and both the MOSFET transistors, Q2 and Q3, are switched
off. The approximate formula to determine the energy of the pulse is given by [27].

E = Vgap Igapton (11)

3. Implementation of ESC on Reducing the Non-Linearity of MRR
3.1. A Non-Linear Model of the Material Removal Rate

The material removal rate can be calculated using a dimensional analysis [26,27], and
this is given by:

MRR = CαVon IgtonFs (12)

The equation is used to predict the erosion rate with the help of process parameters.
Where α is the material property constant and it is given by α = 2 × 10−12m3J−1 [27].
From Equation (12), the MRR is directly proportional to the discharge time ton and spark
frequency Fs. The dimensionless constant C, which can be calculated from the experimental
data, is given by the following equation [26,27]:

C = 3.52× 10−7
(

ton

td

)3
− 1.33× 10−4

(
ton

td

)2
+ 1.25× 10−2

(
ton

td

)
+ 1.53 (13)

The MRR value is plotted against the discharge time ton by fixing all the other
parameters that are constant, as shown in Figure 5. Here, it was observed that the MRR
was varying with the ton in a non-linear manner. The MRR was high at one optimal
value of the ton. This paper aimed to find the unknown value of that optimal point, ton,
under dynamic conditions. Additionally, manual tracking can be used for searching the
optimal point, but it is not very helpful when the conditions are changed. In this paper,
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an extremum-seeking method was used for finding the optimal point at which the removal
rate was maximum in an online mode.
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3.2. A Non-Linear Model of the Material Removal Rate

An extremum-seeking controller structure with a system is shown in Figure 6a.
A detailed diagram of the proposed ESC control for the EDM process for searching for
an optimal discharge time is shown in Figure 6b. The MRR value can be calculated
from the model parameters, and fed to the ESC controller, and since the relationship
between the discharge time and the material removal rate is non-linear, as given in
Equations (12) and (13), this non-linear control is preferred. The calculated material removal
rate from the process output is then given as the feedback input for the controller, and it is
assumed to be the cost function J(θ). Additionally, the θ input is assigned as the discharge
time ton. Furthermore, the gradient information is extracted using HPF, demodulation,
and LPF. The integrated gradient information with a controller gain was given the latest
discharge period input for the EDM process. As explained previously, the control input
for the EDM is perturbed with a sinusoidal signal before applying it to the EDM process,
as explained previously. The model parameters of the EDM, as given in Figure 6c, and
the perturbed discharge time are then provided as the inputs for a Matlab function where
detailed calculations of the MRR and the parameters of the sparking waveform are made
for controlling the EDM process with the help of pulse width modulation. The system and
its nature are assumed to be non-linear and have a maximum output at some optimal input
of θ∗. As illustrated in Figure 6, the input to the system here was given as θ = θ̂ + a· sin ωt,
where θ̂ is the estimated input by the controller with a gain K, and a and ω are the am-
plitude and frequency of the perturbation signal, respectively. If the a is greater, then the
convergence speed to reach a local optimum value will be high, but this creates larger
fluctuations at the settlement point of the maximum output and leads to a larger error
around the optimal point [32–34]. Assuming the system is static and nonlinear, its output
is expressed in terms of the cost function ‘J’, which is given as:

y = f (x, θ) = J(θ); y ∈ R, θ ∈ R (14)
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where the input error value is θ and can be found using θ = θ∗ − θ̂.
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After substituting θ and θ, using Taylor’s series expansion after neglecting the higher
order terms, the equation becomes:

y = J(θ) ≈ J(θ∗) +
J ′′ (θ)

2
(
θ̂ + a· sin(ωt)− θ∗

)2
(15)

where J ′′ (θ) is the second-order derivative or the accelerating signal of the J(θ) with the
equation expanded. Furthermore, higher frequency terms can be allowed by a properly
designed high pass filter (HPF), and the high pass filter is designed in such a way to obtain
the gradient information to be added or subtracted in the input, with its cutoff frequency
fixed below the perturbation frequency ω to exactly allow the variations of the output only.
Its output (ζ) is as follows:

ζ =
J ′′ (θ∗)θ̂2

2
+ a·J ′′ (θ∗)·θ· sin(ωt)− J ′′ (θ∗)· a

2

4
· cos(2ωt) (16)

In the above equation, all three terms are frequency terms, and the expression is
multiplied by a· sin(ωt) for the demodulation process to extract the DC term of variations.
It can be sent through a low pass filter (LPF) to remove the higher-order frequency terms.
Finally, the gradient information (τ) can be obtained as follows:

τ = −a2· θ J ′′ (θ∗)
2

(17)

The gradient information is sent to a controller which has a gain of ‘K’. From the

equation, the derivative can be expressed as
.
θ = −

.
θ̂ and can then be expressed with a

controller gain as follows:

.
θ = −

.
θ̂ = −Kτ = Ka2· θ J ′′ (θ∗)

2
(18)

Solving the above equation to obtain the input error θ around the optimal point, it can
then finally be expressed as:

θ ≈ eKa2· θ J′′ (θ∗)(t−t0)
2 +lnθ0 (19)

From the above equation, the input error around the optimal point of searching
depends on factors such as the controller gain K, the amplitude of the perturbation signal,
and the initial error θ0 at the time t0. When the K is positive and the J ′′ (θ∗) accelerating
signal is negative while searching for the maximum output and reaching the optimal input,
from the equation it can be found that the input error is zero as the time approaches infinity
in Equation (19) as follows:

lim
t→∞

θ = 0 (20)

4. Results and Discussion
4.1. Experimental Simulation

The modelling of the EDM process as shown in Figure 6 was simulated in MATLAB
2021a—a Simulink environment with the process parameters as listed in Table 1. The
inductor and capacitor values of the buck converter were fixed as per the calculations
discussed in Section 2 for the simulated parameters. The gap voltage and current for the
low- and high-spark frequency are already shown in Figure 3. The MOSFET switch Q1
was pulsed with a duty cycle of 64% to give the Vin as 160 V. The simulated parameters
were chosen based on the experimental data conducted in [26,27]. The MOSFETs Q2 and
Q3 were switched on with a delay td period shift, with both having the same pulse spark
frequency as shown in Figure 7. This time shift ensured all three phases in the EDM process.
Since the Equations (12) and (13) were valid under certain conditions, the delay time td was



Materials 2023, 16, 434 10 of 17

fixed as 2 µs for all the sampling frequencies and the discharging time was chosen as being
up to 450 µs.

Table 1. Process parameters.

Parameters Value

Supply Voltage and Frequency 240 V and 50 Hz

Filter Capacitor 1 F

Ignition Resistor and Inductor 2 Ω and 0.1 mH

Switching Frequency for Buck converter 30 KHz
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4.2. EDM Process and Model Outputs

The cycle of the EDM process was performed in terms of the three phases of ignition,
discharge, and recovery in a sequential manner. The input voltage and gap voltage were
selected with a small difference. The proposed model was evaluated with an assumption
of a noise-free environment. The gap voltage and current for the various spark frequency
values were obtained during the process exactly to represent the EDM process phases. With
the help of the experimental data given in [27], the model was verified. All the processes
were carried out with steel work pieces and copper electrodes with their material property
a constant α in Equation (12). The actual values fetched from reference [27] were modelled
using the proposed model and compared with the actual values to analyze the accuracy of
the modelling, as shown in Table 2.

The comparison between the actual and model outputs is shown in Table 2. There were
about 50 processes with varying discharge times for the different gap currents manually
carried out. The material removal rate obtained using the simulated model for the different
gap currents were varied with the actual process outputs in an acceptable error value. The
minimum error of 0.84% for the gap current value 12.5 A and the maximum error of 4.2%
for the gap current value of 50 A were observed as shown in Figure 8. This average error
was calculated through a number of processes conducted for different discharge times and
spark frequencies. Almost the maximum material removal rate was obtained in the range
of the discharge time from 50 µs to 150 µs, with a spark frequency range of 125 kHz to
2.21 kHz as given in Table 2. It was assessed that the model behaved as an actual process
with a maximum error of 4.2%.
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Table 2. EDM process and model outputs.

Process Ig (A) Fs (kHz) Ton (µsec)
MRR (mm3/Min)

Actual Model

1 8.5 125 2.0 8 8.77
2 8.5 111.1 3.0 11 11.74
3 8.5 100 4.0 16 14.14
4 8.5 83.33 6.0 21 17.81
5 8.5 55.55 12.0 23 24.27
6 8.5 32.25 25.0 31 30.57
7 8.5 17.24 52.0 36 36.12
8 8.5 8.77 108.0 38 40.35
9 8.5 4.41 220.8 33 39.03
10 8.5 2.21 446.5 29 36.10
11 12.5 125 2.0 12 12.90
12 12.5 111.1 3.0 16 17.27
13 12.5 100 4.0 20 20.80
14 12.5 83.33 6.0 31 26.20
15 12.5 55.55 12.0 43 35.69
16 12.5 32.25 25.0 48 44.95
17 12.5 17.24 52.0 52 53.12
18 12.5 8.77 108.0 54 59.34
19 12.5 4.41 220.8 54 57.40
20 12.5 2.21 446.5 54 53.09
21 25 125 2.0 26 26.26
22 25 111.1 3.0 31 35.16
23 25 100 4.0 46 42.34
24 25 83.33 6.0 60 53.34
25 25 55.55 12.0 81 72.66
26 25 32.25 25.0 99 91.51
27 25 17.24 52.0 126 108.15
28 25 8.77 108.0 126 120.81
29 25 4.41 220.8 110 116.86
30 25 2.21 446.5 90 108.08
31 36 125 2.0 39 39.98
32 36 111.1 3.0 53 53.53
33 36 100 4.0 64 64.47
34 36 83.33 6.0 72 81.20
35 36 55.55 12.0 111 110.62
36 36 32.25 25.0 137 139.32
37 36 17.24 52.0 161 164.65
38 36 8.77 108.0 181 183.94
39 36 4.41 220.8 175 177.92
40 36 2.21 446.5 151 164.55
41 50 125 2.0 57 57.84
42 50 111.1 3.0 77 77.44
43 50 100 4.0 82 93.27
44 50 83.33 6.0 143 117.48
45 50 55.55 12.0 170 160.04
46 50 32.25 25.0 218 201.57
47 50 17.24 52.0 250 238.21
48 50 8.77 108.0 221 266.11
49 50 4.41 220.8 221 257.41
50 50 2.21 446.5 200 238.07

Table 2 presents only the manual searching of the optimal value of the discharge
time for which the maximum material removal rate was obtained. If any one of the
process parameters of the EDM process changed, then the optimal point for the maximum
MRR would be changed. For a new optimal point, the manual searching should then be
conducted again. This optimal point was dynamic under the dynamic conditions of the
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EDM process, but there was no assurance that the current optimal value was a true optimal
value for that particular process under dynamic conditions. To alleviate the aforementioned
problem, an online extremum-seeking control algorithm—as already discussed—can be
used to find the optimal discharge time online under dynamic conditions.
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4.3. Extremum-Seeking for Optimal Discharge Time

The high pass filter and demodulation section together can be used to extract the
gradient information as discussed in the previous section. The input can be estimated
using a controller with a gain K after filtering out the higher order harmonics using a low
pass filter. The amplitude a = 0.5 and the controller gain K = 100 were fixed for having
a nominal convergence speed and a nominal final error deviation around the optimal point
in a trial-and-error method using Equation (19). Owing to a larger phase change at higher
frequencies by the EDM process, the perturbation frequency ω was chosen as a low value
to avoid unstable behavior of the closed-loop system [34].

Since the convergence speed depends on frequencies [34], the optimum convergence
speed can be found by plotting responses to 95% of its final maximum removal with
a varying perturbation frequency of ω. The frequency at which the output reaches the
first maximum is considered to be an optimum value. Since the terms a and K were
involved in the 5% error in their final value, 95% of the final value was chosen for a fast
settlement measurement. It was assumed that all the searching processes began from a zero
ton as the worst-case scenario. The better convergence speed was obtained at a frequency
ω = 200 rad/s with the least settling time of 20.46 s and seeking a 95% final value for the
different perturbing frequencies of 50, 100, 200 and 500 rad/s with a gap current of 8.5 A,
as shown in Figure 9. The arrow in the Figure indicates the magnified form of the response
curve. The discrete manual searching and extremum-seeking optimal searching for the
various gap currents, such as 8.5 A, 12.5 A, 25 A, 36 A and 50 A, were computed as shown
in Figure 10. The optimal on time value with a maximum MRR was computed based on
an ESC control and were computed as shown in Figure 11 and Table 3.

After fixing the ω, the optimal search was carried out using a perturb and observe
manner in the ESC loop for the different spark frequencies. Once the maximum was
reached, the searching was stopped, and the final maximum material removal rate was
settled with an optimum value of the discharge time. The comparison of the discrete
manual optimal searching and extremum-seeking optimal searching is shown in Figure 10
for the different gap current values. The optimal discharge time and its corresponding
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maximum material removal rate are tabulated in Table 3 with a discharge time of 2 µs to
446.5 µs and a spark frequency of 125 kHz to 2.21 kHz. Table 3 shows the optimal on time
with the corresponding MRR that were obtained from the ESC modelling. The experimental
trials were also performed to further analyze the effectiveness of the ESC approach. The
performance of the proposed extremum-seeking optimal searching was compared with the
manual searching and is plotted in Figure 11. When compared to the average number of
manual trial operations, the extremum-seeking optimal searching delivered a 57% higher
rate of material removal, but compared to the most effective manual searching method,
it was 1.2% more efficient. The developed ESC approach was implemented in the EDM
arrangement shown in Figure 12. The tool electrode and specimen were separated by
an air gap and immersed in a dielectric medium [35]. The discharge sparks were formulated
in the machining zone of the EDM arrangement. The tool was connected with a negative
polarity whereas the specimen was connected with a positive polarity [36]. The craters
were created over the machined surface by a developed thermal spark energy [37]. These
craters were observed along with resolidified globules over the machined surface in the
EDM process. All the trials were conducted three times and the average of those values
were fixed as a final value under the chosen gap current of 8.5 A, 12.5 A, 25 A, 36 A and
50 A. The AISI 304 stainless steel specimens were machined with a copper tool electrode in
the presence of EDM oil as the dielectric medium under a flushing pressure of 2 bar. The
MRR was calculated by finding the weight difference of the specimens before and after
the machining process. It was observed that the experimental values were similar to the
simulation results but with less errors. The craters produced by the EDM process were
obtained by a scanning electron microscope (SEM: JEOL JAPAN, Jeol-6490 JED-2300) as
shown in Figure 12.
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Table 3. Extremum-seeking of the MRR for gap currents.

Process Ig (A)

ESC

Optimal
on Time

(µs)

Maximum
MRR

(mm3/min)

Experimental
MRR

(mm3/min)

Error
(%)

1 8.5 136 40.86 37.85 7.37

2 12.5 140 60.11 55.68 7.35

3 25 141 122.4 112.65 7.97

4 36 142 186.3 174.92 6.11

5 50 142 269 249.5 7.25
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5. Conclusions

In this paper, a low-power EDM process model was designed and developed. It was
successfully simulated with assigned process parameters and verified with actual EDM
process experimental data. The possibility of an extremum-seeking control on the MRR
for optimal input searching was studied and implemented successfully. The following
conclusions were made:

â The simulated model gives less errors from 0.82% to 4.2% with the actual
process output.
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â The possibility of extremum-seeking control in the search for an online optimal point
with less error and more convergence speed was studied.

â An extremum-seeking optimal search offers a 57% greater material removal rate
against the average number of manual trial processes, but it offers 1.2% more efficiency
than the best manual searching process.

â The experimental validation also proved that the ESC can produce large MRR by
tracking the extremum control.

â The present study was limited to only MRR, but it is also possible to implement such
algorithms for more than one response parameter optimization in future studies. In
such cases, the performance measures of the process can be further enhanced which
can be used for real-time complex die- and mold-making processes using EDM.
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