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Abstract: The punching shear failure of reinforced concrete (RC) flat slabs is an undesirable type
of failure, as it is sudden and brittle. This paper presents an experimental and numerical study to
explore the behavior of flat slabs made of different types of concrete under the influence of punching
shear. Experimental tests were carried out on four groups of flat slabs, each group representing
a different type of concrete: ordinary normal concrete (NC), high-strength concrete (HSC), strain-
hardening cementitious composite concrete (SHCC), and ultra-high-performance fiber concrete
(UHPFC). Each group consisted of six slabs, one representing an unreinforced control slab other
than the reinforcement of the bottom mesh, and the others representing slabs internally reinforced
with SHCC-filled steel tubes and high-strength bolts. An analytical equation was used to predict the
punching shear capacity of slabs internally reinforced using steel assemblies. A numerical model
was proposed using the ABAQUS program, and was validated by comparing its results with our
experimental results. Finally, a case study was performed on large-scale slabs. The results showed
that using steel assemblies inside NC slabs increased the slab’s punching shear capacity but does
not completely prevent punching shear failure. Internally unreinforced slabs made of UHPFC and
SHCC were able to avoid punching shear failure and collapse in a ductile bending pattern due to the
high compressive and tensile strength of these types of concrete. The proposed analytical method
succeeded in predicting the collapse load of slabs reinforced with steel assemblies with a difference
not exceeding 9%.

Keywords: normal-strength concrete; high-strength concrete; strain-hardening cementitious composite
concrete; ultra-high-performance fiber concrete; punching; steel tubes; high-strength bolts

1. Introduction

Flat slabs, when compared to solid slabs, represent the simplicity of the wood form-
work, short implementation time, and good architectural form. Therefore, flat slabs are
widely used in garages, halls, and shopping centers. One of the main disadvantages of flat
slabs is that they are subject to high punching shear stresses over columns, but these can
be avoided using traditional methods such as increasing the thickness of the slab, using
column heads, or using drop panels. Several researchers have studied the punching shear
behavior of unreinforced and reinforced flat slabs [1–24]. Harajli et al. [25] studied the
punching shear behavior of slabs by inserting steel bolts into reserved holes inside the
slab around the columns and then pre-stressing them; this study showed that the use of
this technique was able to increase the slab’s ability to resist punching shear, increase the
ductility, and change the failure pattern into a ductile bending collapse. In similar studies
by Adetifa and Polak [26] and Baig et al. [27], the test results indicated that the use of
shear bolts in the connection area increased the strength of the connection and significantly
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improved the ductility. Saleh et al. [28] presented an experimental and numerical study to
explore the punching shear strengthening of RC flat slabs using post-installed steel bolts;
from this study it was found that the proposed strengthening techniques were able to
change the collapse pattern of slabs from shear to flexural and increased the load capacity
and ductility.

Gomes and Regan [29] carried out an experimental study to explore the punching
shear behavior of RC slabs with embedded I-shaped steel beams that acted as shear-heads;
from this study, they found that all slabs failed by punching shear and slabs which used
shear-heads gave a greater load. Bompa and Elghazouli [30,31], Ngekpe et al. [32], and
Zhou et al. [33] studied the behavior of flat slabs internally reinforced using different
shapes of shear-heads and they found that the failure modes of slab-column connections
embedded with steel skeletons were changed from punching shear to bending-punching,
and that the slab column connections embedded with steel skeletons have higher punching
shear capacity and structural ductility.

Afefy et al. [34] studied the punching shear behavior of RC slabs strengthened with
UHPFC and found that by adding a thin layer of UHPFC on the tensile side, the bending
performance of the slab was improved as it showed better crack distribution in the tensile
side. However, the punching load slightly increased by about 5%. On the other hand,
adding a UHPFC layer on the compression side enhanced the flexural and punching
behavior of the slab. A new method has been presented to study the punching shear
strength of UHPFC slabs by Hassan et al. [35].

There are several techniques for reinforcing concrete slabs to resist punching shear
failures such as studs, headed bars, and closed stirrups. These techniques provide con-
finement of the punching shear failure surface and control crack propagation. Among
the disadvantages of using these techniques are the difficulty of implementing them, the
trouble to ensure that they are installed in the required places, as well as the limitation
of their use in the case of slabs of small thickness due to the possibility of slipping, the
possibility of the formation of the punching shear crack between its rows, and sometimes
obstructing the path of the reinforcing steel of columns.

From the authors’ point of view and by searching in previous studies, it was found
that there is a deficiency in studying the behavior of internally strengthened slabs to resist
punching shear using high-strength steel bolts or using SHCC-filled steel-tubed sections,
so this research aimed to experimentally and numerically [36] study the punching shear
behavior of slabs constructed from NC, HSC, SHCC, and UHPFC as well as performing a
case study on full-scale flat slabs. In addition, an analytical equation was used to predict
the punching shear capacity of slabs internally reinforced using steel assemblies.

2. Experimental Program
2.1. General Description

To study the punching shear behavior of RC slabs, twenty-four concrete one-fifth
scale slabs with dimensions 500 mm × 500 mm × 80 mm were designed and prepared,
reinforced with a bottom steel mesh in both directions with four bars, 10 mm in diameter,
and constructed from different types of concrete [33]. Experimental tests were carried out
on four groups of flat slabs, each group representing a different type of concrete: normal
strength concrete (NC), high-strength concrete (HSC), strain-hardening cementitious com-
posite concrete (SHCC), and ultra-high-performance fiber concrete (UHPFC). Each group
consisted of six slabs as follows: The first slab was a control slab that was not internally
strengthened by any steel assemblies. The second slab was named RA attributed to being
Radial Anchored and it was strengthened with a steel collar with a diameter of 160 mm
made of a 12 mm circular bar and eight steel high-strength bolts, 16 mm in diameter and
50 mm in length, that were welded to this collar. The third slab was named PA attributed to
being Plus Anchored and was strengthened with two steel skewers welded to form a plus;
each skewer was 250 mm in length, 25 mm wide, and 3.5 mm thick, and two high strength
bolts, 16 mm in diameter and 50 mm in height, were welded to the end of each skewer. The
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fourth slab was internally strengthened with the same technique as slab PA, but the skewer
used was an octagonal shape and was named OA. The fifth slab was named PT attributed
to its being Plus Tubed, as it consists of two perpendicular steel tubes, 250 mm in length in
both directions. The sixth slab was named OT attributed to being Octagonally Tubed, and
was internally strengthened with eight octagonal tubes confined to a circle with a diameter
of 250 mm. All the tubes used in this study have dimensions of 40 mm × 40 mm × 2 mm
and were filled with SHCC 35 days before the casting of slabs. One of the objectives of
this paper was to use steel tubes as internal reinforcements to increase the ability of the
reinforced concrete slabs to resist the punching shear. Since it is difficult to overcome the
occurrence of honeycombing during the pouring of the concrete for these slabs, there was
a need to fill these steel tubes before pouring the concrete that has excellent tensile and
compressive performance and does not contain large aggregates (i.e., SHCC). The concrete
cover was 5 mm for all specimens. Figures 1 and 2 illustrate the strengthening techniques
used. Table 1 illustrates the basic information of the tested specimens. A strain gauge was
fixed to the middle bottom steel mesh of the slabs nearest to the slab center to track the
strain on the steel bar during loading.
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Table 1. Basic information of tested specimens.

Group Slab ID Concrete Grade Type of Steel Skelton

1

NC NC -
NC-RA NC RA
NC-PA NC PA
NC-OA NC OA
NC-PT NC PT
NC-OT NC OT

2

HSC HSC -
HSC-RA HSC RA
HSC-PA HSC PA
HSC-OA HSC OA
HSC-PT HSC PT
HSC-OT HSC OT

3

SHCC SHCC -
SHCC-RA SHCC RA
SHCC-PA SHCC PA
SHCC-OA SHCC OA
SHCC-PT SHCC PT
SHCC-OT SHCC OT

4

UHPFC UHPFC -
UHPFC-RA UHPFC RA
UHPFC-PA UHPFC PA
UHPFC-OA UHPFC OA
UHPFC-PT UHPFC PT
UHPFC-OT UHPFC OT

It is worth noting that we used SHCC-filled steel tubes to resist the punching load
through tension in steel tubes (Vs) and shearing in SHCC (Vc) (see Figure 3 as shown
below). This is because this type of concrete has good tensile, compressive, and shear
behavior. In addition, these steel tubes were filled before pouring so that no honeycombing
would occur inside them.
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2.2. Material Properties

For the preparation of the required types of concrete, we used Ordinary Portland
cement (Type I), sand, and crushed basalt as aggregate. The maximum aggregate size was
10 mm, and was added to free mixing water, fly ash, silica fume, steel fibers, polypropylene
fibers, and superplasticizer. The quantities of the components in kilograms used per cubic
meter to prepare each type of concrete are shown in Table 2. Wood formwork and casting
work are shown in Figure 4. Curing was carried out for slabs by spraying them with water
for 28 days. When casting any slab, three cylinders, 150 mm in diameter × 300 mm in
height, were cast from each type of concrete to be tested under compression on the day
of slab testing to obtain the concrete compressive strength (fc’). Compression tests were
carried out for the concrete cylinders on the day of slab testing and the average compressive
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strength was 41, 65, 87, and 133 N/mm2 for NC, HSC, SHCC, and UHPFC, respectively.
Direct tensile tests were also carried out for samples of steel reinforcement and steel tubes
used to reinforce slabs, and from these tests, it was found that the yield stress of the bottom
reinforcement meshes and tubes were 413 N/mm2 and 290 N/mm2, respectively. From the
data sheet attached to the bolts, it was found that their yield stress is 900 N/mm2.

For the preparation of the SHCC, we used polypropylene fibers with a length of 12 mm
and a diameter of 0.012 mm with a tensile strength of 400 MPa and an elongation of 80%.
For the preparation of the UHPFC, a mixture of straight- and hooked-end steel fibers was
used in a ratio of 1:1 by weight. The straight- and hooked-end steel fibers had a diameter
of 0.2 mm and 0.35 mm, a length of 13 mm and 25 mm, and an aspect ratio of 65 and 71
with a tensile strength of 2500 MPa and 2550 MPa, respectively. Direct tensile tests were
performed on SHCC and UHPFC specimens in the same manner as that of Zeng et al. [37].
The geometry of the samples and tensile stress–strain curves are shown in Figure 5, and it is
clear that the tensile strength was 5.7 MPa and 6.9 MPa for SHCC and UHPFC, respectively.
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Table 2. Weight in kilograms of components for preparing a cubic meter of each type of concrete.

Type Cement Fly Ash Silica Fume Sand Crushed Basalt Fibers Water Superplasticizer

NC 332 - 662 830 - 206 -
HSC 460 80 54 600 980 - 130.7 9.2

SHCC 1300 - 230 146 15 PPF* 297 30.0
UHPFC 900 - 220 1005 157 SF* 162.4 40.3

PPF*: Polypropylene fiber, SF*: Steel fiber.

3. Test Setup and Instrumentation

The slabs were placed horizontally on a steel support consisting of 4 sides from I-shaped
beams and welded together to form a square, and solid steel bars were welded parallel
to the webs to the upper flanges; the distance between the center of the opposite bars is
450 mm. The aforementioned support was installed above the bearings inside the loading
frame, and the slab was placed on top so that the center of these bearings, the support, and
the slab were below the loading cylinder that was connected to a load cell. To convey the
load from the loading piston to the slab, hollow steel cylinders with an outer diameter of
90 mm and an inner diameter of 70 mm were used. The cylinders were welded to a steel cap
of 10 mm thickness at each end. The cylinders were stacked on top of each other to form
a column with a total length of 840 mm. We did not observe any lateral deviation for this
column resulting from buckling or deformations during loading, and a nonlinear buckling
analysis was performed for this column alone, and it was found that the buckling critical
load was 5700 kN, which is much greater than the target load for the collapse of all samples.
An LVDT was installed under the slab in its center to measure the vertical displacement
with loading. All data from the load cell, LVDT, and strain gauge were fed to a data logger
that was connected to a computer. All tests were carried out at the RC lab, in the Faculty of
Engineering, Kafrelsheikh University. Figure 6 shows the test setup.
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4. Results and Discussion
4.1. For NC and HSC Groups

By tracking cracks, it was found that cracks began to appear on the bottom side of
the slab at approximately 16% and 19% of the maximum load for each of the NC and HSC
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slabs, respectively. With the increase in loading, the cracks increased, and the width of the
existing cracks increased. With the increase in loading, more diagonal cracks appeared
and began to spread toward the corners of the slab. When approaching the end of loading,
radial cracks occurred on the top surface of the slab around the loading plate, then the
concrete began to collapse in compression, followed by a cracking sound. Figures 7–10
show the failure patterns for all tested slabs.
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The behavior of the load–displacement curves of the NC and HSC slabs was similar
and occurred in two stages. The first stage was the linear stage and started from the
beginning of loading until the occurrence of the first crack in the slabs. The second stage
was the non-linear stage and started after the first stage until the maximum load was
reached. Figure 10 shows the load–displacement curves for all slabs and Table 3 gives a
summary of all experimental results. From Figures 7–10 and Table 3, it should be noted
that the slabs in the NC group collapsed with the punching shear in a brittle pattern, and
no reinforcing technique succeeded in preventing this. The normalized punching load for
the control slab complies with ACI 318-14 [8] where it was stipulated that the normalized
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punching load at the critical section should not be more than 0.33. The normalized punching
load is defined as (Pu/(

√
fc’ × b0 × d)) where (Pu) is the slab’s maximum load, fc’ is the

concrete’s compressive strength, (b0) is the circumference of the collapsing section at a
distance (d/2) from the face of the loading surface, and (d) is the effective depth of the
slab. All reinforcing techniques succeeded in increasing the slab’s punching shear load
as it increased by 13%, 18%, 29%, 28%, and 37% for RA, PA, OA, PT, and OT techniques,
respectively. The OT technique gave the largest increase in the punching shear load,
reaching 37%.

Table 3. Summary of experimental results.

Sample ∆y (mm) ∆u (mm) Pcr*(kN) Py* (kN) Pu (kN) Ductility (m) Pu/PControl Pu/(
√

fc’ × b0 × d) Failure
Mode

NC - 0.25 13.40 - 75.10 - 1 0.332 Punching
NC-RA - 0.30 14.10 - 84.60 - 1.13 0.374 Punching
NC-PA - 0.30 14.60 - 88.65 - 1.18 0.392 Punching
NC-OA - 0.31 15.60 - 96.90 - 1.29 0.428 Punching
NC-PT - 0.35 14.40 - 96.25 - 1.28 0.426 Punching
NC-OT - 0.35 14.80 - 102.90 - 1.37 0.455 Punching

HSC - 0.20 20.40 - 93.50 - 1 0.328 Punching
HSC-RA - 0.26 21.10 - 104.65 - 1.12 0.367 Punching
HSC-PA - 0.32 21.60 - 111.50 - 1.19 0.391 Punching
HSC-OA - 0.30 22.60 - 121.40 - 1.30 0.425 Punching
HSC-PT - 0.45 21.00 - 124.40 - 1.33 0.436 Punching
HSC-OT - 0.35 21.30 - 131.30 - 1.40 0.460 Punching

SHCC 2.20 3.65 13.60 51.10 211.90 ∆u/∆y = 1.66 1 0.640 Flexural
SHCC-RA 1.30 3.30 14.16 50.90 252.40 2.54 1.19 0.770 Flexural
SHCC-PA 2.14 2.76 14.60 60.70 248.00 1.29 1.17 0.757 Flexural
SHCC-OA 0.64 2.85 15.40 46.10 270.60 4.45 1.28 0.820 Flexural
SHCC-PT 0.36 2.94 14.30 32.40 246.50 8.17 1.16 0.750 Flexural
SHCC-OT 0.41 2.90 14.70 36.90 271.10 7.07 1.28 0.820 Flexural

UHPFC 1.75 4.02 19.00 60.50 254.40 2.3 1 0.630 Flexural
UHPFC-RA 1.02 3.75 19.60 67.60 317.06 3.68 1.25 0.780 Flexural
UHPFC-PA 0.44 4.00 20.00 50.50 299.45 9.1 1.18 0.740 Flexural
UHPFC-OA 0.51 3.90 20.80 58.20 342.70 7.65 1.35 0.840 Flexural
UHPFC-PT 0.36 3.00 19.50 45.10 284.30 8.33 1.12 0.700 Flexural
UHPFC-OT 0.35 3.94 19.70 45.90 328.10 11.26 1.29 0.810 Flexural

Pcr*: load at first crack. Py*: load at the first yield of steel reinforcement meshes.

The slabs in the HSC group exhibit very similar behaviors to those in the NC group
except that they have a greater punching shear load value due to the high compressive
strength of HSC compared to NC. From observation of the normalized punching load for the
HSC group compared with the NC group, it was assumed that the punching shear load is
proportional to the square root of the concrete compressive strength fc’. It must be emphasized
that no yielding was observed in any of the slabs in the NC group or HSC group.

4.2. SHCC and UHPFC Groups

For SHCC and UHPFC slabs, bending cracks appeared on the bottom surface of the
slab at a load of about 6% of the maximum load. With increasing load, the number of cracks
increased, and the width of the existing cracks increased. When nearing the maximum load,
radial cracks on the top surface of the slab were observed around the loading plate, and
compression collapses of the concrete occurred. Afterwards, increasing the load resulted in
a rapid increase in the displacement along with the stability of the load value.

It is clear from Figure 11 that the behavior of the load–displacement curves of SHCC
and UHPFC slabs are similar and pass through three stages. The linear stage started from the
beginning of loading until yielding occurred in the lower reinforcement. The second stage
was non-linear and started after the first stage until the maximum load was reached. The
third stage was the load stabilization stage with significant increases in displacement values.
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Control slabs made of SHCC or UHPFC successfully avoided brittle punching shear
failure and collapsed by bending in a ductile collapse pattern. It was observed that the
reinforcement yield occurred by calculating the ductility as the ratio between the displace-
ment at the maximum load (∆u) to the displacement when the yield occurs (∆y). For slabs
made of SHCC, the PT technique gave the largest ductility of 2.25, while the OT technique
gave the largest increase in the ultimate load of the slab of 40%. For slabs made of UHPFC,
the OT technique gave the largest ductility of 11.26, while the OA technique gave the
largest increase in slab ultimate load of 35%; this difference is due to the better tensile and
compressive strength of UHPFC when compared to SHCC. From Figure 10 the dominant
failure pattern on the control unreinforced slab is clearly punching shear failure, and the use
of steel assemblies succeeds in moving the collapsed section from the vicinity of the column
(loading) to the edge of the end of the steel assemblies. Figure 12 shows the ultimate loads
for the different tested slabs.

As shown in Figures 9 and 10, the cracks in slabs made from SHCC or UHPFC are
large in number and their width is small compared to slabs made from NC or SHCC, and
these cracks extend over almost the entire surface of the slab. In addition, Figure 10 clearly
shows that there is a gradual increase in the stiffness (the slope of the linear portion of the
load–displacement curve) for NC, HSC, SHCC, and UHPFC.
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5. Numerical Modeling

To obtain a numerical model capable of modeling ordinary RC slabs or slabs reinforced
with steel assemblies to resist punching shear, the ABAQUS program [36] was used, which
is one of the most famous structural analysis programs that is based on the finite element
(FE) method. Nonlinear analysis is available in the ABAQUS software, which can take into
account the nonlinearity of the material or the nonlinearity of the geometry. To ensure the
success of the proposed numerical model, verification was performed by experimentally
testing the RC slabs. The C3D10 element (a 10-node quadratic tetrahedron element) was
used to model the circumferential steel support under the slab and for the in-slab steel
assemblies used to resist punching shear, while the element C3D8R (an 8-node linear brick,
reduced integration, hourglass control element) was used to model the concrete slabs and
the loading plate on top of the slab. The element T3D2 (a 2-node linear 3-D truss) was used
to model the steel bars used to reinforce the slabs. To save analysis time, only a quarter of
the slab was modeled, depending on the characteristics of their geometric symmetry. The
interaction between the slab and the circumferential steel support below it was considered
a hard contact interaction that allow separation without any friction properties. The
circumferential steel support was fixed. Figures 13–17 show the numerical models for
different RC slabs and steel skeletons. For material modeling, a CDP (concrete damaged
plasticity) model was used for modeling concrete, while the elastic-perfect plastic behavior
was used to model the steel elements. Table 4 shows the elastic and plastic parameters used
for materials, and the behaviors of different materials used in the numerical modeling are
shown in Figure 18. The Carreira and Chu [38] constitutive model was used to constructing
stress–strain curves for NC and HSC, while the model of Zhou et al. [39] was used to
construct stress–strain curves for SHCC and UHPFC. The elastic-perfect plastic behavior
was used to model the steel elements.
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Table 4. CDP parameters used for concretes, mechanical properties of steel bar meshes, and steel skeleton.

Concrete

Type Elastic Modulus
E (N/mm2)

Poisson
Ratio (ν)

Dilation
Angle (ψ) Eccentricity (e) Shape

Parameter (Kc)

(fbo/fco) Maximum
Compression
Axial/Biaxial

Viscosity (µ)

NSC 31,600 0.2 30◦

0.1 0.667 1.16 0
HSC 55,000 0.2 30◦

SHCC 29,100 0.17 35◦

UHPFC 46,000 0.15 36◦

Steel

Type Elastic Modulus E (N/mm2) Poisson Ratio ν Yield Stress
(N/mm2)

Longitudinal reinforcement 200,000 0.3 413
Steel sections 190,707 0.3 240

Bolts 200,000 0.3 900
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To choose the appropriate mesh size, a mesh sensitivity analysis was performed on
the NC specimens using three different sizes: 30 mm × 30 mm, 20 mm × 20 mm, and
10 mm ×10 mm. Figure 19 shows the resulting load–displacement curves, which shows
that the best simulation was produced using the size 10 × 10 mm, and accordingly, this
mesh size was used to model all slabs. Figure 20 shows a comparison of the numerical
and experimental load–displacement curves and Figures 21–24 show the numerical failure
patterns. The results showed that there is a strong agreement between the results of
the numerical analysis with the experimental results in the linear and non-linear stages.
Table 5 gives a comparison of experimental and numerical results for maximum load and
maximum displacement. It should be noted that the tolerances in the maximum load and
maximum displacement did not exceed 5% and 25%, respectively.

The numerical modeling used to simulate the behavior of slabs made of NC, HSC,
SHCC, and UHPFC, reinforced by steel assemblies in the high-stress region of the punching
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shear, was successful, which confirms the compatibility of the materials models, elements
used, and the interaction method. The effect of the beneficial properties of SHCC in tension
or compression was observed in its stress–strain curves, while the high value of its dilation
angle indicated its benefits in resisting shearing. The finite element method using the
ABAQUS program was an effective method for analyzing the behavior of flat slabs.
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Table 5. Difference between numerical model and experimental results.

Specimen
Max. FE

Displacement
∆u FE. (mm)

Max. EXP.
Displacement
∆u EXP. (mm)

∆u FE./∆u EXP.
Max. FE

Failure Load
Pu FE. (kN)

Max. EXP.
Failure Load
Pu EXP. (kN)

Pu FE./Pu EXP. Vu an.* Vu an./Pu EXP.

NC 0.27 0.25 1.08 75.90 75.10 1.01 71.20 0.95
NC-RA 0.32 0.30 1.07 85.70 84.60 1.01 82.30 0.97
NC-PA 0.33 0.30 1.10 89.25 88.65 1.01 85.30 0.96
NC-OA 0.33 0.31 1.06 98.25 96.90 1.01 92.15 0.95
NC-PT 0.36 0.35 1.03 96.80 96.25 1.01 94.16 0.98
NC-OT 0.37 0.35 1.06 105.40 102.90 1.02 101.3 0.98

HSC 0.21 0.20 1.05 96.50 93.50 1.03 89.50 0.96
HSC-RA 0.24 0.26 0.92 107.8 104.65 1.03 99.40 0.95
HSC-PA 0.40 0.32 1.25 113.70 111.50 1.02 103.20 0.93
HSC-OA 0.42 0.30 1.25 125.10 121.40 1.03 115.30 0.95
HSC-PT 0.51 0.45 1.13 131.00 124.40 1.05 117.20 0.94
HSC-OT 0.40 0.35 1.14 127.20 131.30 0.97 121.30 0.94

SHCC 3.20 3.65 0.88 215.20 211.90 1.02 195.90 0.92
SHCC-RA 3.45 3.30 1.05 259.10 252.40 1.03 230.20 0.91
SHCC-PA 3.17 2.76 1.15 256.40 248.00 1.03 230.40 0.93
SHCC-OA 3.20 2.85 1.12 279.70 270.60 1.03 260.15 0.96
SHCC-PT 2.95 2.94 1.01 256.50 246.50 1.04 235.15 0.95
SHCC-OT 2.83 2.90 0.98 276.20 271.10 1.02 262.40 0.97

UHPFC 3.70 4.02 0.92 260.80 254.40 1.03 245.20 0.96
UHPFC-RA 4.10 3.75 1.09 325.30 317.06 1.03 313.15 0.99
UHPFC-PA 3.70 4.00 0.93 303.90 299.45 1.02 285.20 0.95
UHPFC-OA 3.58 3.90 0.92 348.30 342.70 1.02 345.15 1.00
UHPFC-PT 3.50 3.00 1.17 290.80 284.30 1.02 275.20 0.97
UHPFC-OT 4.00 3.94 1.02 333.70 328.10 1.02 320.60 0.98

Vu an.*: analytical failure load.

6. Case Study

After confirming the success of the numerical modeling, the numerical study was
expanded to explore the behavior of slabs at full scale using two slabs. The first control
slab was named Slab B0. The second slab was similar to Slab B0, but was reinforced using
the PT technique and named Slab B-PT. The horizontal plane shown in Figure 25a shows
the details of these slabs. They are slabs from two spans in both directions. The span length
between the column’s center lines was 6000 mm. The thickness of the slabs was 200 mm,
reinforced with an upper and lower mesh of 7Φ18/m in both directions, and rested on
columns with 300 mm × 300 mm cross sections that were reinforced with four bars with a
18 mm diameter. The concrete used for the slabs was NC. The details of the reinforcing for
Slab B-PT are shown in Figure 25b. The NC, SHCC, reinforcements, and steel used have
the same characteristics as previously mentioned in the numerical verification study. This
study aimed to explore the behavior of these slabs under the influence of vertical loads. As
in the previous experiment, a quarter of the slab was modeled and subjected to a uniform
distributed load Wu (kN/m2) on its surface as shown in Figure 26. Figure 27 shows the
load–displacement curves for the analyzed slabs. The displacement was monitored at the
mid-point of the edge bay. Slab B0 collapsed by punching shear in a brittle pattern, while
Slab B-PT collapsed by flexural in a ductile pattern. The PT technique was able to increase
the ultimate load capacity of the slab by 61.3%, as the ultimate load of the slab increased
from 23.25 kN/m2 to 37.5 kN/m2 for the two slabs, B0 and B-PT, respectively. Figure 28
shows the failure patterns of the analyzed slabs.
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7. Prediction of Punching Shear Load 

This section aimed to reach an analytical method to predict the punching shear ca-
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punching critical section which can be considered in the case of control slabs at a distance 

of d/2 from the column face; and d is the effective depth of the slab. 
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According to Muttoni and Fernández [40], τcf can be calculated from Equation (3) 

where 𝑓𝑐
, is the compressive strength of the concrete in N/mm2; dg is  the maximum size of 

the aggregate; dg0 is 16 mm; and β is the  rotation of slab. 

τcf = 
 0.75 (𝑓𝑐

, )0.5

1+15 (
𝛽𝑑

𝑑𝑔0+𝑑𝑔
)
 (3) 

β can be calculated from Equation (4) where 𝑟𝑠 is the distance between the lines of 
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Figure 28. Numerical failure patterns for tested slabs.

7. Prediction of Punching Shear Load

This section aimed to reach an analytical method to predict the punching shear capacity
of control slabs or internally reinforced slabs using steel assemblies. The total punching
shear load of concrete slabs or internally reinforced using steel assemblies (Vu) can be
considered as the sum of the two punching shearing loads: the punching shear load of the
concrete (Vuc) and the punching shear load of the internal reinforcement used (Vus).

Vu = Vuc + Vus (1)

The punching shear load resisted by the concrete can be calculated from Equation (2)
where tcf is the strength of the concrete to resist punching shear; b0 is the perimeter of the
punching critical section which can be considered in the case of control slabs at a distance
of d/2 from the column face; and d is the effective depth of the slab.

Vuc = tcf bo d (2)

According to Muttoni and Fernández [40], τcf can be calculated from Equation (3)
where f ′c is the compressive strength of the concrete in N/mm2; dg is the maximum size of
the aggregate; dg0 is 16 mm; and β is the rotation of slab.

τcf =
0.75 ( f ′c)

0.5

1 + 15
(

βd
dg0+dg

) (3)

β can be calculated from Equation (4) where rs is the distance between the lines of
contraflexure and the column, t is the total thickness of the slab; fy is the yield stress of the
bending reinforcement; Es is the modulus of elasticity of the bending reinforcement; Ms is
the bending moment acting at the top of the column; and Mr is the moment of resistance
of the slab which can be calculated from Equation (5) according to ACI [8], where ρ is the
bending reinforcement ratio.

β = 1.5
rs

t
fy

Es

(
Ms

Mr

)1.5
(4)



Materials 2023, 16, 72 26 of 28

Mr = ρ fyd2
(

1–0.59 ρ
fy

f ′c

)
(5)

According to Timoshenko and Woinkowsky-Krieger [41], the bending moment acting
on the slab can be calculated from Equation (6), where L is the slab length.

Ms = Vu L/14 (6)

The capacity of the internal reinforcement to resist punching shear can be calculated
from Equation (7) where σs is the steel stress in the vertical direction; As is the area of the
bolt used or the sum of the areas of webs that existed in a distance d in the direction of the
horizontal axis of the slab; α is the angle between the axis of the bolt or the web with the
horizontal axis of the slab which will be considered to be 90 degrees in the current study.

Vus = σs As sinα (7)

σs=
Essβ

6
(sinα+ cosα)

(
sinα+

fbd
fys

d

1.13 (Ass)
0.5

)
fys (8)

where fys and Ess are the yield stress and modulus of elasticity of the steel used, respectively;
fbd is the bond stress between the steel and the concrete which can be considered as
25 N/mm2 for the embedded reinforcement; and Ass is the area of the steel used to resist
punching through a distance d on the horizontal axis of the slab. In the case of the ability of
the internal shear reinforcement to avoid collapse by punching shear, the ability of the slab
to collapse by bending (Vflex) can be calculated by Equation (9) according to Elstner and
Hognestad [42], where c is the diameter of the column.

Vflex = 8 Mr

(
1

1−
( c

L
) − 3 + 2

√
2

)

Table 5 gives the results of the analytical study for the experimentally tested slabs,
which shows that the difference between the analytical and experimental punching load
does not exceed 9%. The presented analytical method succeeded in predicting the collapse
load, whether by shear or by bending.

8. Conclusions

This paper presented an experimental and numerical study to explore the behavior of
flat slabs made of different types of concrete under the influence of punching shear and
reinforced internally by high-strength steel bolts or SHCC-filled steel-tubed sections. From
this study it was shown that:

1. By using steel assemblies embedded in the NC slabs, the punching shear capacity of
the slab was increased but punching shear failure was not avoided.

2. Internally unreinforced slabs made of SHCC and UHPFC were able to avoid punching
shear failure and collapse in a ductile bending pattern due to the high compressive
and tensile strength of these types of concrete.

3. In the case that the dominant failure pattern on the control unreinforced slab is punch-
ing shear failure, the use of steel assemblies succeeded in moving the collapsed section
from the vicinity of the column (loading) to the edge of the end of the steel assemblies.

4. For slabs made of SHCC, the PT technique gave the largest ductility of 2.25, while the
OT technique gave the largest increase in the ultimate load of the slab of 40%. For
slabs made of UHPFC, the OT technique gave the largest ductility of 11.26, while the
OA technique gave the largest increase in the slab ultimate load of 35%; this difference
is due to the better tensile and compressive strength of UHPFC compared to SHCC.

5. The numerical modeling used to simulate the behavior of slabs made of NC, HSC,
SHCC, and UHPFC, reinforced internally by steel assemblies in the high-stress region
of the punching shear, was successful, which confirms the compatibility of the models
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of the materials used and the interaction method. The finite element method using
the ABAQUS program is an effective method for analyzing the behavior of flat slabs.

6. The proposed analytical method succeeded in predicting the collapse load of slabs
reinforced with steel assemblies with a difference not exceeding 9%.

Future work: Studying the behavior of RC slabs made of different types of concrete
and reinforced to resist punching shear using UHPFC-filled aluminum tubed sections.
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