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Abstract: The nucleation and the growth of misoriented micro-structure components in single crystals
depend on various process parameters and alloy compositions. Therefore, in this study, the influence
of different cooling rates on carbon-free, as well as carbon-containing, nickel-based superalloys was
investigated. Castings were carried out using the Bridgman and Bridgman–Stockbarger techniques
under industrial and laboratory conditions, respectively, to analyze the impact of temperature
gradients and withdrawing rates on six alloy compositions. Here, it was confirmed that eutectics
could assume a random crystallographic orientation due to homogeneous nucleation in the residual
melt. In carbon-containing alloys, eutectics also nucleated at low surface-to-volume ratio carbides
due to the accumulation of eutectic-forming elements around the carbide. This mechanism occurred
in alloys with high carbon contents and at low cooling rates. Furthermore, micro-stray grains were
formed by the closure of residual melt in Chinese-script-shaped carbides. If the carbide structure was
open in the growth direction, they could expand into the interdendritic region. Eutectics additionally
nucleated on these micro-stray grains and consequently had a different crystallographic orientation
compared with the single crystal. In conclusion, this study revealed the process parameters that
induced the formation of misoriented micro-structures, which prevented the formation of these
solidification defects by optimizing the cooling rate and the alloy composition.

Keywords: nickel-based superalloy; micro-structure; directional solidification; nucleation; crystal
orientation; carbide

1. Introduction

Dendritic solidification occurs during the solidification process of nickel-based super-
alloys under industrial process parameters. During dendrite formation, carbides nucleate
into the interdendritic regions either homogeneously from the residual melt or heteroge-
neously on particles such as ceramic particles from the mold [1,2]. Consequently, they form
a random crystallographic orientation [2]. Carbide morphology depends on the carbon
content, as well as the cooling conditions. They can acquire morphologies ranging from
blocky and acicular to Chinese-script-shaped [1,3–7].

γ/γ′-eutectic is the last phase to solidify from the residual melt; its solidification
mechanisms have been controversially discussed. Some studies describe the formation
of the coarse γ′-phase of the γ/γ′-structure as a result of a peritectic transformation
( L4 + γ→ γ′ ) [8–10]. At the interface between the residual melt and the γ-dendrites,
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γ′ nucleates from the primary γ-phase, since its lattice mismatch is small. Subsequently, the
γ′-phase grows into the melt and into the γ-dendrites. The growth into the melt is faster
than into the matrix due to a higher diffusion rate in the liquid than in the solid phase.
After the completion of the peritectic reaction, growth of the γ′-phase into the residual melt
follows. In the end, fine lamellar γ/γ′ is formed by epitaxial growth ( L5 → γ+ γ′ ) [8–10].

In contrast, other studies suggest that a eutectic reaction leads to the formation of the
interdendritic γ/γ′-structure [11–13]. At the beginning of this reaction, the melt ahead
of the solidification front of the γ-dendrites is enriched in γ′-forming elements, such as
Al, Ta, and Ti, and has significant undercooling. Next, a certain region in the solid–liquid
interface grows faster during incubation time and advances into the liquid region. A fine
lamellar γ/γ′-structure is subsequently formed by the eutectic reaction. The latent heat is
released in this process, resulting in the reduction of undercooling and delaying the eutectic
reaction [14,15]. Consequently, the γ′-phase has sufficient time to absorb more γ′-forming
elements and to release the γ-forming elements, leading to coarser γ′-phases in thicker
γ-channels around the fine structure of the core [13].

Wang et al. demonstrated in various studies that eutectics can also nucleate on the
carbides [16,17]. As a result, the eutectics adopt the crystallographic orientation of the carbides
and thus deviate from the single crystal [17]. Thereby, a semi-coherent interface, which is always
shifted on the eutectic side, is formed [16]. Eutectic nucleation on carbides is possible, despite
the different lattice parameters due to undercooling that occurs around the carbides where
non-carbide-forming elements, such as Al, Co, Cr, and Ni, accumulate [16]. After nucleation,
Wang et al. described a co-growth mechanism between carbide and eutectic, as the carbide
releases the eutectic-forming elements and the eutectic releases the carbide-forming ones [16].

Differently oriented γ/γ′-eutectics have also been reported, which are assumed to
nucleate homogeneously from the melt [17]. However, they have only been studied in
carbon-containing alloys, thus not completely eliminating the possibility of nucleation on
carbides that are just not visible in the observed 2D cross-section. In consequence, these
misoriented eutectics appear as micro-stray grains in the interdendritic region, which can
lead to recrystallization or growth of defects during heat treatment, causing deterioration
of the high-temperature properties of the single-crystal parts [17]. In addition, these micro-
stray grains are reported to result in crack initiation [16], illustrating the need to eliminate
misoriented micro-defects in single crystals.

In this study, the hypothesis of the homogeneous formation of γ/γ′-eutectic was investi-
gated using carbon-free alloys. In order to understand the nucleation mechanism of eutectics on
carbides, the alloy composition and the process parameters, i.e., withdrawal rate and tempera-
ture gradient, were varied. It was concluded how this effect could be influenced or prevented.

2. Materials and Methods

In order to verify the defect formation under industrial conditions, the first set of
experiments was performed using the VIM IC 5S Bridgman furnace from ALD Vacuum
Technologies GmbH (Hanau, Germany). For this purpose, investment casting shells with a
chill plate diameter of 250 mm were produced. They consisted of four cylindrical specimens
with a diameter of 16 mm and four blade geometries each (Figure 1a). (The blade geometry
is not part of this paper). The grain selector method was used to produce a single crystal
derived from six different nickel-based superalloy compositions (Table 1). Thermocouples
were placed in the specimens to measure the cooling rate. Directional solidification was
carried out at withdrawal rates of 1, 2.5, 4, and 5.5 mm/min.

Up to three single-crystal cylindrical samples produced from the industrial Bridgman
furnace (withdrawal rate 4 mm/min) were partially remelted and directionally solidified in
the Bridgman–Stockbarger furnace from Linn High Therm GmbH (Hirschbach, Germany).
The single-crystal structure was reproduced using the seeding technique, whose exact method
has already been described in [18]. This process enabled investigations at higher temperature
gradients and lower withdrawal rates compared with the industrial system. To determine
the solidification conditions, thermocouples were installed in these specimens through
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eroded holes in the center of the specimen. The withdrawal rates of 0.25, 1, and 4 mm/min
were applied in this set of experiments. An overview of the process parameters, namely
withdrawal rate and temperature gradient, together with the resulting cooling conditions
of both experimental sets, are summarized in Figure 1b and Table 2. The temperature
gradient was measured between 1673 and 1473 K. The cooling rate was calculated with the
following formula: cooling rate = temperature gradient ∗ withdrawal rate. In this study,
the Bridgman experiments were named “W + withdrawal rate” (for example “W1”); the
Bridgman–Stockbarger experiments were labeled “Q-W + withdrawal rate” (for example
“Q-W1”). All combinations of alloys and withdrawal rates are listed in Table 3.

Metallographic specimens were prepared from both longitudinal and transverse sec-
tions of the single crystals in an as-caste state to investigate the micro-structural components
and the misoriented structures. The Optical microscope (OM) Axio from Zeiss (Oberkochen,
Germany) was used to observe the micro-structure of the specimens etched with waterless
Kalling reagent (80 mL EtOH, 40 mL HCl und 2 g CuCl2). Using these micrographs, the
primary dendrite arm spacing (PDAS) was investigated. Deep etching for up to 20 min with
aqua regia (20 mL HNO und 60 mL HCl) enabled the three-dimensional (3D) morphology
of the carbides to be captured by the scanning electron microscope (SEM) Zeiss Supra 55 VP
(Oberkochen, Germany). The deep etching was carried out on the longitudinal cut samples.

Materials 2023, 16, x FOR PEER REVIEW 3 of 16 
 

 

Table 1. Chemical composition of the applied nickel-based superalloys in wt.%. 

Alloy Cr Co Mo W Al Ti Ta Re Hf C B Ni 

CMSX-4 6.5 9.0 0.6 6.0 5.6 1.0 6.5 3.0 0.1 -  Bal. 

CMSX-6 10.0 5.0 3.0 - 4.8 4.7 2.0 - 0.1 -  Bal. 

CMSX-6-LC1 10.0 5.0 6.0 - 4.8 4.7 2.0 - 0.1 0.02  Bal. 

CMSX-6-LC2 10.0 5.0 6.0 - 4.8 4.7 2.0 - 0.1 0.05  Bal. 

CM-247-LC 8.1 9.2 0.5 9.5 5.6 0.7 3.2 - 1.4 0.07 0.015 Bal. 

MAR-M-247 8.4 10.0 0.7 10.0 5.5 1.0 3.0 - 1.5 0.15 0.015 Bal. 

Up to three single-crystal cylindrical samples produced from the industrial Bridgman 

furnace (withdrawal rate 4 mm/min) were partially remelted and directionally solidified 

in the Bridgman–Stockbarger furnace from Linn High Therm GmbH (Hirschbach, Ger-

many). The single-crystal structure was reproduced using the seeding technique, whose 

exact method has already been described in [18]. This process enabled investigations at 

higher temperature gradients and lower withdrawal rates compared with the industrial 

system. To determine the solidification conditions, thermocouples were installed in these 

specimens through eroded holes in the center of the specimen. The withdrawal rates of 

0.25, 1, and 4 mm/min were applied in this set of experiments. An overview of the process 

parameters, namely withdrawal rate and temperature gradient, together with the result-

ing cooling conditions of both experimental sets, are summarized in Figure 1b and Table 

2. The temperature gradient was measured between 1673 and 1473 K. The cooling rate was 

calculated with the following formula: cooling rate = temperature gradient ∗ withdrawal 

rate. In this study, the Bridgman experiments were named “W + withdrawal rate” (for 

example “W1”); the Bridgman–Stockbarger experiments were labeled “Q-W + withdrawal 

rate” (for example “Q-W1”). All combinations of alloys and withdrawal rates are listed in 

Table 3.  

 

Figure 1. (a) Front view and top view of the wax cluster with the installed ceramic tubes for the 

thermocouples and (b) temperature gradient and cooling rate as a function of the withdrawal rate 

of the applied process parameters. 

Table 2. Temperature gradient and cooling rates of all withdrawal rates. 

 W1 W2.5 W4 W5.5 Q-W0.25 Q-W1 Q-W4 

Temperature 

gradient 
0.664 0.153 0.223 0.279 0.037 0.144 0.521 

Cooling rate 3.98 3.68 3.42 3.04 8.82 8.65 7.81 

b) 

Figure 1. (a) Front view and top view of the wax cluster with the installed ceramic tubes for the
thermocouples and (b) temperature gradient and cooling rate as a function of the withdrawal rate of
the applied process parameters.

Table 1. Chemical composition of the applied nickel-based superalloys in wt.%.

Alloy Cr Co Mo W Al Ti Ta Re Hf C B Ni

CMSX-4 6.5 9.0 0.6 6.0 5.6 1.0 6.5 3.0 0.1 - Bal.
CMSX-6 10.0 5.0 3.0 - 4.8 4.7 2.0 - 0.1 - Bal.

CMSX-6-LC1 10.0 5.0 6.0 - 4.8 4.7 2.0 - 0.1 0.02 Bal.
CMSX-6-LC2 10.0 5.0 6.0 - 4.8 4.7 2.0 - 0.1 0.05 Bal.
CM-247-LC 8.1 9.2 0.5 9.5 5.6 0.7 3.2 - 1.4 0.07 0.015 Bal.
MAR-M-247 8.4 10.0 0.7 10.0 5.5 1.0 3.0 - 1.5 0.15 0.015 Bal.

Table 2. Temperature gradient and cooling rates of all withdrawal rates.

W1 W2.5 W4 W5.5 Q-W0.25 Q-W1 Q-W4

Temperature gradient 0.664 0.153 0.223 0.279 0.037 0.144 0.521
Cooling rate 3.98 3.68 3.42 3.04 8.82 8.65 7.81
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Table 3. Summary of experiments with all combinations of parameters and alloys that were carried out.

W1 W2.5 W4 W5.5 Q-W0.25 Q-W1 Q-W4

CMSX-4 3 3 3 3 3

CMSX-6 3 3 3 3 3

CMSX-6-LC1 3 3 3 3 3

CMSX-6-LC2 3 3 3 3 3

CM-247-LC 3 3 3

MAR-M-247 3 3 3 3 3 3 3

For the carbon-free alloys, the electron backscatter diffraction (EBSD) method was
used at a magnification of 250× to examine the single-crystal crystallographic orientations
with respect to the misoriented regions. If any were present, they were examined in more
detail at higher resolutions. To study the nucleation behavior of eutectics on carbides, the
transverse samples were first etched for 5 s with a waterless Kalling reagent. Thus, micro-
structure components with different crystal orientation than the single crystal were visible
under the OM. The areas of interest were then marked with a circle by an installed diamond
in the OM and polished for 2–3 h on the VibroMet. If etched surfaces were still present,
marking and polishing were repeated until the marked samples were in the polished
unetched state. The crystallographic orientation of these marked areas was investigated
using EBSD measurements. The investigations of the crystal orientation were carried out
on the transvers cut samples.

If the carbides were not visible in the cross-section, it was ground off step-by-step in
order to confirm the nucleation mechanism of the eutectics on the carbides. This stepwise
examination of the eutectics revealed their 3D morphology. By grinding the sample against
the direction of growth or withdrawal, it was possible to determine where the eutectics
nucleated and the nucleation mechanism on which it was based. In addition, EBSD
measurements were also used for this investigation.

3. Results
3.1. Carbon-Free Alloys

In carbon-free alloys, micro-stray grains with a slightly different crystallographic
orientation than the single crystal were formed in the interdendritic region during single-
crystal solidification (Figure 2a,c). As illustrated in Table 4, they were only formed in
the alloy CMSX-4. Since the lattice structure of the micro-stray grains was observed to
be identical to that of the eutectics, they represented a preferred nucleating surface for
the eutectics. The difference of the micro stray-grain compared with the eutectic was the
morphology, as seen in Figure 2a,c,e,g.

In the carbon-free alloys, misoriented eutectics were also found in the interdendritic
region due to homogeneous nucleation from the residual melt in the interdendritic regions
(Figure 2b,d), which was observed in both CMSX-4 and CMSX-6. The phenomenon in
the alloy CMSX-4, however, only occurred at high-temperature gradients of 3.3 K/mm
and high withdrawal rates starting from 4 mm/min, as listed in Table 5. In CMSX-6,
homogeneous eutectics were detected at all process parameters applied in this study.

In the Bridgman–Stockbarger process, it was noticeable that no homogeneous eutectics
were formed in the alloy CMSX-4. In the Bridgman process, on the other hand, this effect
was only seen up to two times per sample cross-section for the alloy CMSX-4, whereas
plenty was contained in the CMSX-6 alloy. All in all, the eutectics were preferentially
formed through homogeneous nucleation from the residual melt at higher cooling rates
and in the CMSX-6 rather than in the CMSX-4 alloy.
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Figure 2. Optical micrographs and EBSD analyses on the z-orientation of homogeneously formed
components with a deviating crystallographic orientation from the single crystal in carbon-free
alloys: (a,c,e,g) micro-stray grain with nucleated eutectic (CMSX-4 W4); (b,d,f,h) homogeneously
formed γ/γ′-eutectic (CMSX-4 W4) (OM—optical microscope; red rectangles represent the EBSD
measurement area; IPF-Z—inverse pole figure in Z-/withdrawing direction).

Table 4. Incidence of micro-stray grains as a function of alloy, withdrawal rate and process (“3”
means detected; “x” means not detected).

W1 W4

CMSX-4 3 3

CMSX-6 x x
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Table 5. Incidence of homogeneous γ/γ′-eutectics as a function of alloy, withdrawal rate and process
(“3” means detected; “x” means not detected).

W1 W4 Q-W0.25 Q-W1 Q-W4

CMSX-4 x 3 x x x
CMSX-6 3 3 3 3 3

3.2. Carbon-Containing Alloys

In carbon-containing nickel-based superalloys, carbides with different morpholo-
gies were formed in the interdendritic regions. As demonstrated in Figure 3 for alloys
CMSX-6-LC1 and CMSX-6-LC2, the carbide core exhibited an octahedral shape, whereby
the arms extended from the corners of the octahedra. The influence of withdrawal rates
on the formation affinity of the arms can also be seen in Figure 3. For example, in the
Bridgman–Stockbarger process, the arms appeared in the alloys only from a withdrawal
rate of ≥1 mm/min. The ends of the arms were arrowhead-shaped (Figure 3e). As shown
in Figure 3c,f, plates could also form between the arms at higher withdrawal rates. Further-
more, it was visible that the size of the octahedra decreased with increasing withdrawal
rates and the branching of arms formed more complex structures at the withdrawal rate of
4 mm/min. At the withdrawal rate of 0.25 mm/min, no arms were formed; instead, several
layers were formed around the octahedra (Figure 3a,d). Analogously, these formation
mechanisms were also observed in the Bridgman experiments (Figure 4).
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Materials 2023, 16, 4477 7 of 15Materials 2023, 16, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 4. Carbide morphologies of the alloys CMSX-6-LC1, CMSX-6-LC2, and MAR-M-247 depend-

ing on the withdrawal rate. 

The formation of complex intensely branched carbide arms with plates (e.g., Figure 

3g) resulted in a closed-chamber structure which could entrap the residual melt. The re-

sidual melt then solidified differently from the single crystal. However, the chambers may 

not have been completely closed, but open in one or more directions. In which direction a 

carbide structure was closed and open was random, since the carbide could move and 

rotate freely at the early stage of growth if there was enough interdendritic space. From 

these results, it could be concluded that, if the carbide structure was open in the direction 

opposite to the growth direction, the single crystal could produce a small orientation de-

viation while growing into the residual melt entrapped in the carbide (Figure 5a,e,j,o). 

Furthermore, the entrapped melt could nucleate at the carbide surface when the carbide 

was completely closed against the growth direction. As a result, an identical crystallo-

graphic orientation of the carbide and the solidified entrapped melt was formed (Figure 

5f,k,p). The different enclosed chambers in a carbide could also have slightly different ori-

entations, as illustrated in the upper part of Figure 5k. The carbide chamber with the mi-

cro-stray grain could also be open in the solidification direction, causing the misorienta-

tion to grow into the interdendritic region, which is shown in the EBSD measurement in 

Figure 5b,g,l,q. Moreover, eutectics could also nucleate at micro-stray grains that had been 

formed in a carbide and grown into the residual melt, as shown in Figure 5b,g,l,q. This 

was based on the very similar lattice defect between the γ-phase and the eutectics, identi-

cal to the homogeneously solidified micro-stray grain in the CMSX-4 alloy (Section 3.1). 

Figure 4. Carbide morphologies of the alloys CMSX-6-LC1, CMSX-6-LC2, and MAR-M-247 depend-
ing on the withdrawal rate.

Similar carbide morphologies were also observed in the CM-247-LC and MAR-M-247
alloys. However, the carbides grew into larger carbides due to the higher carbon content
compared with the CMSX-6 series. Nevertheless, the origin consisted of an octahedral
core having extended dendrite-like arms at the corners. Due to the higher carbon content,
large branched morphologies were formed, which could grow together and form closed
chambers due to the plate formation between the arms (Figure 3g). At higher temperature
gradients, as in the Bridgman–Stockbarger process, the carbides became smaller and more
compact than those in the industrial Bridgman system. Furthermore, the carbide size
decreased with increasing withdrawal rates. The carbides were limited in size by the
dendrites and adapted in shape to the dendrites at the end of solidification.

The formation of complex intensely branched carbide arms with plates (e.g., Figure 3g)
resulted in a closed-chamber structure which could entrap the residual melt. The residual
melt then solidified differently from the single crystal. However, the chambers may not
have been completely closed, but open in one or more directions. In which direction a
carbide structure was closed and open was random, since the carbide could move and
rotate freely at the early stage of growth if there was enough interdendritic space. From
these results, it could be concluded that, if the carbide structure was open in the direction
opposite to the growth direction, the single crystal could produce a small orientation
deviation while growing into the residual melt entrapped in the carbide (Figure 5a,e,j,o).
Furthermore, the entrapped melt could nucleate at the carbide surface when the carbide was
completely closed against the growth direction. As a result, an identical crystallographic
orientation of the carbide and the solidified entrapped melt was formed (Figure 5f,k,p).
The different enclosed chambers in a carbide could also have slightly different orientations,
as illustrated in the upper part of Figure 5k. The carbide chamber with the micro-stray
grain could also be open in the solidification direction, causing the misorientation to grow
into the interdendritic region, which is shown in the EBSD measurement in Figure 5b,g,l,q.
Moreover, eutectics could also nucleate at micro-stray grains that had been formed in a
carbide and grown into the residual melt, as shown in Figure 5b,g,l,q. This was based
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on the very similar lattice defect between the γ-phase and the eutectics, identical to the
homogeneously solidified micro-stray grain in the CMSX-4 alloy (Section 3.1).
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Figure 5. Optical micrographs and EBSD analyses on the z-orientation of the misoriented micro-
structural components in carbon-containing alloys: (a,e,j,o) enclosed micro-stray grains similar to
single crystal (MAR-M-247 Q-W4); (f,k,p) enclosed micro-stray grains with different chambers in
carbide (MAR-M-247 W2.5); (b,g,l,q) eutectic nucleated on micro-stray grains (MAR-M-247 Q-W1);
(c,h,m,r) eutectic nucleated on carbide in CMSX-6-LC2 (CMSX-6-LC2 W1); (d,i,n,s) eutectic nucleated
on carbide in MAR-M-247 (MAR-M-247 W1) (OM—optical microscope; red rectangles represent
EBSD measurement area; IPF-Z—inverse pole figure in Z-/withdrawing direction; SEM—scanning
electron microscope).

The mechanism of entrapping the residual melt in carbides was not detected at low
carbon content, as in the CMSX-6-LC1, and increased with the addition of carbon (Table 6). The
temperature gradient also influenced this effect, i.e., in the Bridgman–Stockbarger process with
higher temperature gradients, this effect only occurred at higher carbon contents compared
with the Bridgman process with lower temperature gradients. Furthermore, it could also be
seen that this effect occurred preferably at higher withdrawal rates, since it did not occur in
CM-247-LC W1 but occurred in the same alloy at a higher withdrawal rate of W4.

Eutectics could also nucleate directly on carbides and consequently adopt the crys-
tallographic orientation of the corresponding carbide. This effect was observed both on
blocky carbides in the alloy CMSX-6-LC2 (Figure 5c,h,m,r) and on Chinese-script-shaped
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ones in MAR-M-247 (Figure 5d,i,n,s). Stepwise grinding ensured that these eutectics were
not nucleated on micro-stray grains as described previously.

Table 6. Incidence of micro-stray grains enclosed in a carbide as a function of alloy, withdrawal rate
and process (“3” means detected; “x” means not detected).

W1 W2.5 W4 W5.5 Q-W0.25 Q-W1 Q-W4

CMSX-6-LC1 x x x x x
CMSX-6-LC2 3 3 x x x
CM-247-LC x 3 x
MAR-M-247 3 3 3 3 3 3 3

The conditions in which eutectic nucleation was detected on a carbide are listed in
Table 7. In the Bridgman process, it was shown that no nucleation of eutectics on carbides
was detected at low carbon contents, such as CMSX-6-LC1, or at very high withdrawal
rates, such as 5.5 mm/min. This phenomenon was also seen in the Bridgman–Stockbarger
process with higher temperature gradients. However, the nucleation shifted to lower
withdrawal rates and higher carbon contents. Consequently, in the Bridgman–Stockbarger
process, the nucleation of eutectics on carbides was also no longer possible for the alloy
CMSX-6-LC2 above a withdrawal rate of 1 mm/min. This nucleation mechanism was also
observed in MAR-M-247 only up to Q-W1.

Table 7. Incidence of a eutectic nucleated on a carbide as a function of alloy, withdrawal rate and
process (“3” means detected; “x” means not detected).

W1 W2.5 W4 W5.5 Q-W0.25 Q-W1 Q-W4

CMSX-6-LC1 x x x x x
CMSX-6-LC2 3 3 3 x x
CM-247-LC 3 3 3

MAR-M-247 3 3 3 x 3 3 x

The number of eutectics nucleated on carbides per area was analyzed using mosaic
micrographs over the entire sample cross-section of CMSX-6-LC2 and MAR-M-247 at Q-
W0.25. In CMSX-6-LC2 Q-W0.25, one eutectic nucleated on a carbide per six mm2 was
detected, while five eutectics were detected in MAR-M-247 Q-W0.25 in the same area. In
addition, the sample MAR-M-247 Q-W1 was investigated and three misoriented eutectics
were found in the same area (three misoriented eutectics per six mm2). In summary,
the number of eutectics nucleated on carbides per area increased with increasing carbon
contents and decreased with increasing withdrawal rates.

4. Discussion
4.1. Carbon-Free Alloys

The interdendritic orientation defect is related to the critical undercooling ability of
the melt. The undercooling of CMSX-4 is 9 K and CMSX-6 is 50.4 K [11,19]. According
to the literature, the increase of Re causes a decrease of critical undercooling of the mate-
rial [20]. Since the CMSX-4 alloy has a lower undercooling capability than the CMSX-6
alloy, homogeneous nucleation of the γ-phase occurs due to the segregation effects in the
interdendritic regions [20,21]. Consequently, the γ′-precipitates form from it. However,
this defect occurs only in the Bridgman experiments due to the lower temperature gra-
dient (or cooling rate), leading to a larger primary dendrite arm spacing (PDAS) [22,23].
Thus, a larger interdendritic volume is formed between the dendrites and, because of the
undercooling, the micro-stray grains are formed out of the residual interdendritic liquid
before the γ/γ′-eutectics. In summary, alloys with low critical undercooling capabili-
ties and larger PDAS form misoriented micro-stray grains from the residual melt due to
homogeneous nucleation.
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The γ/γ′-eutectics usually nucleate on the γ-dendrites due to the nearly identical
lattice structure. Thus, the eutectics have the same crystallographic orientation as the single
crystal. The homogeneous nucleation of eutectics in the interdendritic regions results in
the formation of randomly oriented crystals that deviate from the single crystal [17]. The
preferred parameters for this mechanism are high withdrawal rates and/or high tempera-
ture gradients, since, under these conditions, elemental diffusivity decreases due to shorter
solidification times. Consequently, the accumulation of γ-forming elements in the residual
melt increases and constitutional undercooling is promoted. As a result, the conditions
for homogeneous formation of eutectics are better at higher withdrawal rates [11,17]. The
higher content of homogeneously nucleated eutectics in the alloy CMSX-6 is due to the
higher PDAS compared with the CMSX-4 (Figure A1). This leads to a larger interdendritic
area, which results in a larger distance to the dendrite and higher elemental enrichment, as
well as undercooling. Thus, the probability of forming homogeneously nucleated eutectics
increases due to the coarser dendrite structure and the higher segregation of the elements
in the alloy CMSX-6.

4.2. Carbon-Containing Alloys
4.2.1. Carbide Morphology

In all alloys used in this study, octahedra are formed at the beginning of carbide
formation. This is the equilibrium shape due to the minimum interface energy between
carbide and liquid [24,25]. Octahedra are mainly observed at low withdrawal rates and
cooling rates [24]. Under equilibrium conditions, the growth of carbides consists of layer
growth, which is illustrated in Figure 3d. This mechanism has already been described by
Baldan et al. [26], Chen et al. [24], and Liu et al. [27].

With increasing carbon contents from CMSX-6-LC1, CMSX-6-LC2 to CM-247-LC, and
MAR-M-247, the carbide morphology acquired a more complex structure. It changed
from blocky and acicular to Chinese-script shape with increasing carbon contents and/or
increasing cooling rates. These results supported the studies in the literature [4,28]. At low
carbon contents, the carbide volume is small, so the blocky shape provides the smallest
surface area [7,29]. Higher carbon contents lead to carbides that develop arms from the
octahedral tips. The growth direction of the arms is perpendicular to each other [26,30].
Further increases in carbon contents result in the formation of carbides with cubic dendritic
shapes [30,31] ending up in the formation of even more arms, which grow together with
plates and form arrow-shaped tips, also described by Yu et al. [4].

As confirmed by Li et al., higher carbon contents lead to greater supersaturation in the
later stages of solidification, which promotes the growth of well-developed secondary and
tertiary dendrite arms [28]. Although Chinese-script-shaped carbides have a large surface
area, a certain orientation relationship between the two phases provides a lower interfacial
and deformation energy. Therefore, a solidification system with a large carbide volume has
the lowest free energy when the shape of the carbides is Chinese-script [29].

The impact of the cooling rate, i.e., the thermal gradient and the withdrawal or growth
rate, on carbide size can be clearly seen in Figure 3a–f. High cooling rates decrease the
elemental diffusivity, resulting in more carbide-forming elements accumulating in the
interdendritic regions. Consequently, higher undercooling occurs, leading to a smaller
critical nucleation radius and thus easier nucleation and growth of carbides [32–34]. Hence,
carbides are continuously refined with a further increase in cooling rate [7,26,31].

4.2.2. Nucleation in Carbide Chambers

In this study, micro-stray grains were formed in Chinese-script-shaped carbides with
a closed chamber, which was caused by heterogeneous nucleation on the carbides. This
mechanism is possible since the carbides, as well as the γ-phase, have a face-centered cubic
crystal structure [30,35]. However, these chambers can also be open and the direction of the
opening is random, as carbides can move freely in the melt. Once the chamber is open in
the growth direction, the micro-stray grain can grow into the residual melt (Figure 5b,g,l,q).
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Due to the same lattice structure, eutectics can also nucleate on these structures and adopt
the crystallographic orientation.

The presence of this misoriented defect increased with higher carbon contents, as
listed in Table 4. This phenomenon was not observed at low carbon contents, i.e., in the
alloy CMSX-6-LC1. Furthermore, higher carbon contents were required for it to occur in
the Bridgman–Stockbarger process than at lower temperature gradients in the Bridgman
process. This is because carbide chambers were more likely to form at higher carbon
contents and lower temperature gradients. The withdrawal rate also influenced this defect.
An increase in withdrawal rates promoted the formation of closed chambers and more
carbide branches were formed at higher withdrawal rates. All in all, there was a clear
correlation between the micro-stray grain in the carbides to the carbide morphologies and
thus to the carbon content, as well as the process parameters.

4.2.3. Nucleation on Carbides

Eutectics can nucleate directly on carbides and adopt their crystallographic orientation.
Since carbides are formed freely in the melt and thereby have a random crystallographic
orientation, the eutectics also adopt this orientation and are independent of the orientation
of the single crystal [17,36]. The fact that the eutectics nucleate on the carbides and not vice
versa is explained by the semi-coherent interface, which always shows a dislocation on the
eutectic side and not on the carbide side [16].

Based on these results, it could be concluded that the alloy composition and carbide
composition did not affect the nucleation of eutectics on carbides in the alloys used in this
study, since it was observed in all carbon-containing alloys, except for CMSX-6-LC1. There-
fore, a direct correlation was solely attributed to the carbon content, or carbide morphology,
since in CMSX-6-LC2, with the same base composition and only higher carbon content,
the nucleation of eutectics on carbides was found. These results were new, compared with
the literature. Additionally, a positive link between increasing carbon content and carbide
content, size, and arms, as well as branching, was identified in this study.

During carbide formation, the carbide-forming elements, i.e., C, Ti, Ta, and Hf, were
integrated from the residual melt. At the same time, non-carbide-forming elements accu-
mulated around the carbide; these included elements such as Al, Co, Cr, and Ni, which
accumulated around the crystallized carbides, as shown in Figure 6a. It then formed an
environment that was ideal for the nucleation of γ/γ′-eutectics, since Co and Cr were
members of the γ-forming elements and Al was a γ′-forming element, while Ni was in-
corporated in both. Despite the different lattice parameters requiring a larger nucleation
energy, nucleation of the eutectics on the carbides could occur. The high energy due to the
semi-coherent interface measured by Wang et al. [16] was overcome by elemental segrega-
tion around the carbides. Reaching a saturation level around the carbides led to significant
undercooling and consequently facilitated eutectic nucleation. During growth, they ex-
changed their respective forming elements, resulting in a common growth mode (Figure 6b).
This hypothesis of Wang et al. [16,17] was supported by the results of this study. For small
carbides, as in the case of the alloy CMSX-6-LC1, insufficient eutectic-forming elements
accumulated around the carbides in order to achieve this effect due to the small size of the
carbides. This influence of the carbide size on the nucleation effect was investigated for the
first time in this study. This nucleation effect of eutectics on carbides confirmed the eutectic
reaction, since a peritectic reaction on the carbide was not possible. Furthermore, these
results confirmed that the fine structure of the eutectics was formed first and the coarser
γ′ was formed later. The larger the carbides, the more elements accumulated around the
intermetallic phase and the higher the probability that an eutectic would nucleate.

In the alloy MAR-M-247, more misoriented eutectics on carbides per area were formed
compared with those in CMSX-6-LC2 with the same process parameters, since, on the one
hand, more carbides and, on the other hand, larger carbides were present due to the higher
carbon content. This led to a higher accumulation of elements around the carbide and,
consequently, more eutectics nucleated on carbides; this was investigated for the first time
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in this study and confirmed the “segregation of elements around the carbides” hypothesis
of Wang et al. [16,17].
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When increasing the withdrawal rate in the Bridgman–Stockbarger process, this
phenomenon became less pronounced, since less and smaller carbides were present. Low
withdrawal rates resulted in a more compact carbide morphology that had a good surface-
to-volume ratio (Table 5). As reported by Wang et al., increasing the withdrawal rate
leads to thinner carbides, resulting in less eutectic-forming elements being precipitated and
accumulating around the carbides [17]. Consequently, saturation around the carbides was
not reached and no eutectics nucleated on the carbides (Table 5, Bridgman–Stockbarger
results). Another effect of an increased cooling rate is the reduction of the dendrite arm
spacing [23], whereby the carbides become smaller due to the smaller interdendritic space.
In addition, more eutectic-forming elements accumulate around the dendrites due to the
shorter time for diffusion. As a result, the undercooling around the dendrites becomes
larger, causing the eutectics to nucleate on the dendrites due to the nearly equal lattice
parameter [37]. Due to the carbide and dendrite morphology, the probability of the eutectics
nucleating on the carbides decreased when the cooling rate was increased (Table 5, W5.5).

When the temperature gradient was increased, the eutectics nucleated at lower with-
drawal rates on the carbides, which was evident from the Bridgman–Stockbarger exper-
iments, with higher temperature gradients compared with those in the Bridgman exper-
iments. Again, this mechanism occurred due to the carbide morphology, which formed
a finer structure and consequently had a low surface-to-volume ratio. As a result, less
eutectic-forming elements accumulated around the carbide and nucleation was not possible
due to the different lattice parameters. Furthermore, the dendrite arm spacing decreased
with increasing temperature gradients [38], leading to smaller carbides and lower en-
richment of elements in the interdendritic regions due to smaller diffusion distances. In
summary, the nucleation mechanism of eutectics on carbides depended mainly on the
carbide morphology and, in this context, on the carbon content and the process parameters.
The influence of these parameters on the nucleation effect of eutectics on carbides was
systematically investigated for the first time in this study.

5. Conclusions

During directional solidification, the following micro-structural components form in
both carbon-free and carbon-containing nickel-based superalloys, which have a different
orientation than the single crystal:

Carbon-free alloys:
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• Micro-stray grains form in the interdendritic regions where a eutectic can also nucleate
and thus assume a different crystallographic orientation compared with the single
crystal. This occurrence of the misoriented micro-stray grain is dependent on the
critical undercooling ability of the alloy.

• Eutectics can also nucleate homogeneously in the interdendritic residual melt. The
preferred parameters for this mechanism are high withdrawal rates and/or high
temperature gradients.

Carbon-containing alloys:

• Chinese-script-shaped carbides are formed at high carbon contents or high cooling
rates, forming closed chambers. In these chambers, micro-stray grains are also formed
by nucleation on the carbide. When the carbide chamber is open in the growth direc-
tion, these misoriented micro-stray grains also grow into the interdendritic residual
melt. Consequently, eutectics can also nucleate on the micro-stray grains and adopt
their crystal orientation.

• Eutectics can nucleate directly on carbides. This mechanism is independent of the
chemical composition of the carbides from the alloys used in this study. However,
the mechanism only occurs with sufficient accumulation of eutectic-forming elements
around the carbides, which depends on sufficient carbon content or carbide size and
surface/volume ratio (morphology) of the carbide.
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