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Abstract: Shear cracking in concrete box-girder bridges, which could cause excessive deflection
during the serviceability limit state, cannot be effectively avoided by code-guided design. While
elastic shear deformation only accounts for a small proportion of total deformation for un-cracked
reinforced concrete (RC) beams, the magnitude of after-cracking shear deformation becomes com-
parable to flexural deformation for RC beams. However, there is still a lack of practical models
to predict the after-cracking shear deformation of RC beams. First, six thin-webbed I beams were
tested to investigate the shear stiffness degradation mechanism and the decrease ratio. Then, a very
simple truss strut angle formula, which is the crucial parameter for shear stiffness, was established.
Furthermore, a stiffness degradation rule for partially cracked beams was proposed considering the
influence of concrete tension stiffening, which is essential for predicting the development process of
after-cracking shear deformation. Finally, directly measured shear strains were used to validate the
proposed shear stiffness model. The results showed that the shear stiffness drops to about 30~40% of
the original stiffness after the first diagonal crack, and the remaining shear stiffness is only about 10%
of the original one when the stirrup yields. Increasing the stirrup ratio is a more effective method
to control shear stiffness degradation for diagonally cracked RC beams. Also, the proposed shear
stiffness model well captures the main features of the shear stiffness degradation, and it provides a
relatively accurate prediction of the equivalent shear stiffness at the post-cracking stage.

Keywords: reinforced concrete beam; diagonal cracking; shear deformation; shear stiffness; strut
angle; tension stiffening; stiffness degradation

1. Introduction

As is well known, the deformation of concrete beams mainly consists of two parts:
bending deformation and shear deformation [1]. Generally, the deformation of beams is
mainly bending deformation, and the magnitude of shear deformation is small, which
can be ignored [2,3]. However, for long-span concrete box-girder bridges commonly used
in bridge engineering, this assumption may cause deviations [4]. Especially for the thin-
webbed box girder with diagonal cracking, its shear deformation may be equivalent to the
bending deformation [5].

According to a finite element analysis of a thin-webbed box-girder bridge with large
web height [4], the magnitude of elastic shear deformation under load is considerably
large and may reach a level that cannot be ignored. Scholars’ experiments on thin-webbed
concrete beams [1,6] have shown that: after the appearance of diagonal cracks, the shear
deformation of the beam will significantly increase, with a shear deformation ratio of over
30% of the total deformation. Further, according a survey on an existing concrete box-girder
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bridge conducted by the Research Institute of Highway Ministry of Transport of China [7],
diagonal web cracking occurs in more than 90% of this type of bridge. This indicates that
with the development of diagonal cracks in the web, the impact of shear deformation on
the deflection of thin-webbed beam bridges will be greater and should be taken seriously.
Considering that the influence mechanism of diagonal cracks on deformation is extremely
complex, conducting a shear test on thin-webbed concrete beams is the most effective way
to discover and summarize its laws of influence [8,9].

So far, although thousands of shear tests have been conducted on concrete beams,
the vast majority of specimens have beam heights not exceeding 500 mm, and only a
few beams without web reinforcement have reached heights exceeding 1000 mm [10–20].
Due to the influence of size effects, these specimens cannot truly reflect the actual stress
behavior of large-sized beams widely used in practical engineering. And, most of the
existing experiments have focused on shear strength and failure mode, with less attention
paid to the contribution of shear deformation after shear cracking.

As RC beams are subjected to the combined action of the shear and bending moment, the
corresponding shear and flexural deformation are coupled with each other. It is difficult to
measure the shear deformation separately. Experimental research on post-crack deformation
of RC beams is also limited to the comparison of total deformation [21–23]. Although there
are a few quantitative experimental studies focusing on direct shear deformation of concrete
beams after shear cracking, in which a decoupling technique of shear deformation and bend-
ing deformation has been proposed [24,25], the data are limited and are not compatible with
variable depth beams. Based on the iso-parametric concept from the finite element method,
a theoretical deformation decoupling method for variable depth beams was proposed [26],
which provides a new approach for the direct measurement of shear deformation.

In another aspect, researchers proposed calculating methods for after-cracking shear
deformation. Based on the assumption of homogeneous characteristics for cracked concrete,
the modified compression field theory (MCFT) could provide the whole load-deformation
curve for RC beams [27–30]. However, iterative calculations are required, which are not
suitable for the rapid evaluation of existing bridges. The variable angle truss model
(VATM)-based calculating theory for shear deformation prediction is proposed by Pan
et al. [7], whereby constant tangent stiffness degradation rules are suggested for diagonally
cracked RC beams, which is very simple and conservative for engineering practice. How-
ever, efforts are still needed to achieve maximum optimization in computational accuracy
and simplicity [31,32].

This study aims to obtain the shear stiffness degradation law of large-scale thin-
webbed concrete beams and to propose a simplified and practical prediction method,
which can be further applied to concrete box-girder bridges with diagonal web cracks. The
degradation of after-cracking shear stiffness is studied by experimental tests. Further, a
simplified and practical model is proposed to depict the degradation of shear stiffness. And
finally, shear deformation test data in this paper and in the literature are used to verify the
accuracy and applicability of the proposed simplified shear stiffness degradation model.

2. Experimental Test of Shear Stiffness Degradation
2.1. Test Object and Design Concept

To study the impact of diagonal cracks on the degradation of shear stiffness and
development of shear deformation of concrete thin web beams, a direct shear measurement
test was conducted on six concrete thin-webbed constrained beams. The main experimental
objectives include:

(1) Achieve continuous direct measurement of shear deformation before and after diago-
nal cracks in the concrete web;

(2) Analyze the amplitude of changes in shear deformation values before and after shear
cracking and study the degree of influence of diagonal cracks on shear deformation;

(3) Study the degradation law of shear stiffness after the development of diagonal cracks.
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In order to achieve the above experimental objectives, the main experimental ideas
used include:

(1) Using large-scale thin-webbed I-shaped cross-section specimens to better simulate the
stress behavior of thin web bridges, while facilitating the testing of web strain and the
observation of diagonal cracks.

(2) Adopting a reinforcement design with “strong bending and weak shear“ concept,
ensuring the priority occurrence and full development of diagonal cracks, with a focus
on observing the impact of diagonal cracks on shear deformation and shear stiffness.

(3) Constrained beams are used to investigate the shear performance of concrete beams
under different combinations of bending and shear internal forces.

(4) The effects of inclined bottom chord on diagonal crack and shear strength were
investigated by using two types of specimens, namely, equal-height beam and variable-
height beam.

(5) Propose a strain-based shear deformation calculation method for arbitrary quadri-
lateral lattices, achieving direct peeling measurement of bending deformation and
shear deformation.

2.2. Specimen Parameters and Setup

A total of 6 I-shaped cross-section specimens were made and divided into two groups:
Group BC consisted of 2 beams of equal height; Group BV consisted of 4 variable-height
beams, with the upper flange of the cross-section horizontal and the lower flange height
varying in a parabolic manner. All the specimens were constructed in two batches on site
(Figure 1). The width of the beam web is 100 mm, and the beam length is 5400 mm.
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Figure 1. Fabrication process of specimens.

All the specimens are simply supported with a cantilever, which were loaded with two
concentrated loads at the cantilever end and within the simply supported span, respectively.
The ratio of cantilever load to span load is 1:2 for BC specimens, and 1:1 for BV specimens.
The detailed dimensions and elevation layout of the component are shown in Figures 2 and 3,
The detailed arrangement of the measuring lattice and corresponding calculation method
could refer to a pre-publication focusing on the measuring technology [26].
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For the specimens, D25 bars and D12 bars with a total cross section area of
3624 mm2 and average yield strength of 497 MPa were used as longitudinal bars, which
were arranged symmetrically in top and bottom flanges. D8 round bars (two legs) with
average yield strength of 326 MPa were arranged as stirrups at a spacing of 200 mm
(ρv = 0.5%) or 250 mm (ρv = 0.4%) for deferent beams along the whole span. The average
concrete cylinder strengths were 39.0 MPa and 36.0 MPa for batch I (BC1, BV1, BV2) and
batch II (BC1, BV1, BV2), respectively. It must be mentioned that excessive longitudinal
reinforcement is arranged to prevent early flexural failure. The specimen number and main
design parameters are shown in Table 1, with the changing parameters being concrete
strength and reinforcement ratio.

Table 1. Details of specimens.

Resources Specimen
NO.

f’c
(MPa)

Ec
(GPa)

dv
(mm)

bw
(mm)

fyv
(MPa)

ρv
(%)

ρs
(%) M/(Vd) θu

(Degree) λu

Author

BC1-G3 39.0 29.4 684 100 327 0.5 4.8 0.4 26.3 0.182
BC1-G4 39.0 29.4 684 100 327 0.5 4.8 0.4 26.3 0.182
BC2-G3 36.0 28.2 684 100 327 0.4 4.8 0.4 25.2 0.169
BC2-G4 36.0 28.2 684 100 327 0.4 4.8 0.4 25.2 0.169
BV1-G3 39.0 29.4 543.6 100 327 0.5 6.0 1.2 25.8 0.184
BV1-G4 39.0 29.4 450.9 100 327 0.5 7.23 0.4 25.4 0.185
BV2-G3 39.0 29.4 543.6 100 327 0.4 6.0 1.2 24.6 0.168
BV2-G4 39.0 29.4 450.9 100 327 0.4 7.2 0.4 24.3 0.169
BV3-G3 36.0 28.2 543.6 100 327 0.5 6.0 1.2 25.9 0.187
BV3-G4 36.0 28.2 450.9 100 327 0.5 7.2 0.4 25.6 0.188
BV4-G3 36.0 28.2 543.6 100 327 0.4 6.0 1.2 24.7 0.171
BV4-G4 36.0 28.2 450.9 100 327 0.4 7.2 0.4 24.4 0.172

Hansapinyo
et al. [24]

S1 33.0 27.0 320 150 370 0.47 4.26 2.6 26.4 0.179
S2 33.0 27.0 320 150 370 0.47 4.26 3.5 26.4 0.179
S3 33.0 27.0 320 150 370 0.47 2.13 2.6 28.5 0.170
S4 33.0 27.0 320 150 370 0.31 2.13 2.6 26.1 0.142

2.3. Specimen Failure Modes

The final failure mode of all 6 specimens is shear failure, manifested as the yielding of
web stirrups and concrete crushing at the bending reverse point, as shown in Figure 4.

The test reveals that the development of bending cracks was slow or almost non-
existent during the loading process, and the strain increment of longitudinal reinforcement
was small and did not reached yield [10]. With the appearance of diagonal cracks, their
development is relatively rapid, quickly developing from the middle of the web to the
upper and lower flanges, and gradually penetrating the entire web. With the formation of
the main diagonal crack, the stirrups at the diagonal crack also yielded quickly. Afterwards,
the number, width and range of diagonal cracks further expanded, and the stirrups of
different shear span also yielded one after another. Finally, the concrete of the beam web at
the bending reverse point collapsed, and the deformation increased sharply, declaring the
failure of the specimen.

Though the first diagonal crack occurs at the cantilever span with maximum shear
forces, all specimens failed in shear uniformly at the bending reverse point The positive
and negative bending moment on both sides of the bending reverse point intensifies the
shear deformation of the concrete web, ultimately leading to the tearing of the concrete
web and the diagonal compression of the concrete web. The phenomenon reflects that the
bending reverse point section is the weakest position for shear failure of continuous beams
(constrained beams).
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2.4. Observed Shear Stiffness Degradation

Besides failure modes, the sequence of shear crack, strain development and yielding
of stirrup, and failure load of each shear span can refer to an earlier publication [26]. Here,
we only focus on the degradation of shear stiffness. Shear stiffness is the most important
measure of structural shear deformation. In the elastic stress stage, the shear stiffness Ke
of the section can be expressed as GAv, and considering the Poisson’s ratio, it becomes
EAv/[2(1 + µ)]. After cracking, due to the destruction of structural continuity, the shear



Materials 2023, 16, 4752 7 of 16

stiffness is no longer equal to elastic shear stiffness. Generally, the nominal shear stress
of the test beam after cracking can be taken as τ, which is the ratio of shear force P to the
shear cross-sectional area Av. Based on the stress–strain relationship, the equivalent shear
stiffness Keq of the shear cracked specimen is defined by the following equation,

Keq =
τ

γ
Av =

P
γ

(1)

To study the variation of shear stiffness after the development of diagonal cracks, a
shear stiffness degradation factor is defined as λ, namely, the ratio of equivalent shear
stiffness Keq to elastic shear stiffness Ke,

λ = Keq/Ke (2)

Considering that the tested shear strain in the elastic stage is very small, if the calcu-
lated λ > 1, take λ = 1. The shear stiffness reduction factor λ of each observation lattice can
be plotted as a function of nominal shear stress τ, as shown in Figure 5. It can be seen that
except for specimen BV1, the shear stress levels of all specimen frame G3 and G4 lattices
with significantly reduced shear stiffness are around 2MPa, which is in good agreement
with the initial shear crack load. This indicates that the shear stiffness reduction factor λ
can properly reflect the impact of diagonal web cracks on shear stiffness.

Materials 2023, 16, x FOR PEER REVIEW 7 of 18 
 

 

their development is relatively rapid, quickly developing from the middle of the web to 

the upper and lower flanges, and gradually penetrating the entire web. With the formation 

of the main diagonal crack, the stirrups at the diagonal crack also yielded quickly. After-

wards, the number, width and range of diagonal cracks further expanded, and the stirrups 

of different shear span also yielded one after another. Finally, the concrete of the beam 

web at the bending reverse point collapsed, and the deformation increased sharply, de-

claring the failure of the specimen. 

Though the first diagonal crack occurs at the cantilever span with maximum shear 

forces, all specimens failed in shear uniformly at the bending reverse point The positive 

and negative bending moment on both sides of the bending reverse point intensifies the 

shear deformation of the concrete web, ultimately leading to the tearing of the concrete 

web and the diagonal compression of the concrete web. The phenomenon reflects that the 

bending reverse point section is the weakest position for shear failure of continuous beams 

(constrained beams). 

2.4. Observed Shear Stiffness Degradation 

Besides failure modes, the sequence of shear crack, strain development and yielding 

of stirrup, and failure load of each shear span can refer to an earlier publication [26]. Here, 

we only focus on the degradation of shear stiffness. Shear stiffness is the most important 

measure of structural shear deformation. In the elastic stress stage, the shear stiffness Ke 

of the section can be expressed as GAv, and considering the Poisson’s ratio, it becomes 

EAv/[2(1 + μ)]. After cracking, due to the destruction of structural continuity, the shear 

stiffness is no longer equal to elastic shear stiffness. Generally, the nominal shear stress of 

the test beam after cracking can be taken as τ, which is the ratio of shear force P to the 

shear cross-sectional area Av. Based on the stress–strain relationship, the equivalent shear 

stiffness Keq of the shear cracked specimen is defined by the following equation, 

eq v

P
K A



 
= =

 
(1) 

To study the variation of shear stiffness after the development of diagonal cracks, a 

shear stiffness degradation factor is defined as λ, namely, the ratio of equivalent shear 

stiffness Keq to elastic shear stiffness Ke, 

eq e/K K =
 

(2) 

Considering that the tested shear strain in the elastic stage is very small, if the calcu-

lated λ > 1, take λ = 1. The shear stiffness reduction factor λ of each observation lattice can 

be plotted as a function of nominal shear stress τ, as shown in Figure 5. It can be seen that 

except for specimen BV1, the shear stress levels of all specimen frame G3 and G4 lattices 

with significantly reduced shear stiffness are around 2MPa, which is in good agreement 

with the initial shear crack load. This indicates that the shear stiffness reduction factor λ 

can properly reflect the impact of diagonal web cracks on shear stiffness. 

   
(a) BC1 (b) BC2 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

λ

v(MPa)

BC1-G3

BC1-G4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

λ

v(MPa)

BC2-G3

BC2-G4

Materials 2023, 16, x FOR PEER REVIEW 8 of 18 
 

 

 

 

 

 
(c) BV1 (d) BV2 

 

 

 

 
(e) BV3 (f) BV4 

Figure 5. Degradation law of shear stiffness of specimens  

Comparing the degradation curves of shear stiffness of specimens with different con-

crete strength grades (BV1 and BV3, BV2 and BV4) and different reinforcement ratios (BV1 

and BV2, BV3 and BV4), it was found that increasing the concrete strength grade (mainly 

the elastic modulus) and increasing the reinforcement ratio can both improve the shear 

stiffness after cracking. The contribution of increasing the reinforcement ratio to the re-

maining shear stiffness is more significant after shear cracking, and the suppression of 

shear deformation is more effective. Generally, after the diagonal cracking of the speci-

men, the shear stiffness is about 30~40% of the original, but when the stirrup yields, the 

remaining shear stiffness is only about 10%. 

3. Proposed Shear Stiffness Degradation Model 

3.1. Fully Diagonally Cracked Shear Stiffness 

To evaluate the cracked shear stiffness, the truss model is recommended by scholars 

[33–36]. For slender beams, the inclined cracks are roughly parallel to each other. There-

fore, a standard VATM can be used for analysis. As the truss model ignores the tensile 

stresses between cracked concrete, it is only suitable for calculating the shear stiffness of 

fully diagonally cracked RC beams. If the strut angle θu is determined, the corresponding 

shear stiffness Ku can be expressed as, 

2

4

cot

1 csc

v u

u c v

v u

n
K E A

n

 

 
=

+
 (3) 

where Ku is the fully diagonally cracked shear stiffness, n is the ratio of Es to Ec, Es is the 

modulus of elasticity of reinforcing steel, ρv is the stirrup ratio, and θu is the strut angle. 

3.2. Ultimate Shear Stiffness Degradation Factor 

Similarly to Equation (2), we can define ultimate shear stiffness degradation factor 

λu, which is equal to the ratio of Ku and Ke, 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

λ

v(MPa)

BV1-G3

BV1-G4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

λ

v(MPa)

BV2-G3

BV2-G4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

λ

v(MPa)

BV3-G3

BV3-G4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

λ

v(MPa)

BV4-G3

BV4-G4

Figure 5. Degradation law of shear stiffness of specimens.
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Comparing the degradation curves of shear stiffness of specimens with different
concrete strength grades (BV1 and BV3, BV2 and BV4) and different reinforcement ratios
(BV1 and BV2, BV3 and BV4), it was found that increasing the concrete strength grade
(mainly the elastic modulus) and increasing the reinforcement ratio can both improve the
shear stiffness after cracking. The contribution of increasing the reinforcement ratio to the
remaining shear stiffness is more significant after shear cracking, and the suppression of
shear deformation is more effective. Generally, after the diagonal cracking of the specimen,
the shear stiffness is about 30~40% of the original, but when the stirrup yields, the remaining
shear stiffness is only about 10%.

3. Proposed Shear Stiffness Degradation Model
3.1. Fully Diagonally Cracked Shear Stiffness

To evaluate the cracked shear stiffness, the truss model is recommended by schol-
ars [33–36]. For slender beams, the inclined cracks are roughly parallel to each other.
Therefore, a standard VATM can be used for analysis. As the truss model ignores the tensile
stresses between cracked concrete, it is only suitable for calculating the shear stiffness of
fully diagonally cracked RC beams. If the strut angle θu is determined, the corresponding
shear stiffness Ku can be expressed as,

Ku =
nρv cot2 θu

1 + nρv csc4 θu
Ec Av (3)

where Ku is the fully diagonally cracked shear stiffness, n is the ratio of Es to Ec, Es is the
modulus of elasticity of reinforcing steel, ρv is the stirrup ratio, and θu is the strut angle.

3.2. Ultimate Shear Stiffness Degradation Factor

Similarly to Equation (2), we can define ultimate shear stiffness degradation factor λu,
which is equal to the ratio of Ku and Ke,

λu =
Ku

Ke
=

2n(1 + µ)ρv cot2 θu

1 + nρv csc4 θu
(4)

The factor λu is defined as the shear stiffness degradation factor, which reflects the
decreasing magnitude of shear stiffness at the fully cracked stage. As shown in Equation (4),
the main parameters that influence λu are the stirrup ratio ρv and the strut angle θu. If the
only unknown parameter θu is determined, λu can be easily calculated by Equation (4).

3.3. Determination of Strut Angle θu

Scholars have already proposed various solving methods for the strut angle [33–35],
most of which employed the minimum energy principle or plasticity theory. Their findings
imply that the strut angle closely relates to the stirrup ratio, longitudinal reinforcement
ratio, or concrete strength.

For calculating the shear stiffness calculation of fully diagonally cracked slender RC
beams, Pan et al. [8] suggested that the strut angle can be calculated by Equation (5). It
accounts for the influence of the web and longitudinal reinforcement.

θu = arctan

( 1 + 1
nρs

1 + 1
nρv

)0.25 (5)

In addition, He et al. [9] derived the strut angle of slender beams based on the lower-
bound theorem of plasticity (Equation (6)). It accounts for the influence of the stirrup ratio
and the concrete strength while assuming that the longitudinal reinforcement will not
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yield before shear failure. The key parameter for the equation ω is the mechanical web
reinforcement ratio, and ω = ρvfyv/f’c, f’c is the compressive strength of concrete.

θu = arcsin

(√
0.23

(
ω +

√
ω2 + 13ω

))
(6)

For simplification, compression field theory [27] is adopted for beam shear analysis to
determine the strut angle (see Figure 6). The formulation process assumes that concrete
beams are subject to service load, under which the steel bars and the inclined concrete
struts behave linearly elastically.
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The equilibrium of average stress and compatibility of average strain in a beam section
are summarized in Equations (7)–(13), in which the longitudinal strain εx at the middle height
is assumed to be 0.5 times the longitudinal strain εs at the center of longitudinal steel bars [3].

ρv fv = v tan θu (7)

ρs fls = 0.5v cot θu (8)

f2 = v(tan θu + cot θu) (9)

tan2 θu =
εx + ε2

εz + ε2
(10)

ε2 =
f2

Ec
(11)

εx =
εs

2
=

fls
2Es

=
fls

2nEc
(12)

εz =
fv

Es
=

fv

nEc
(13)

where v, fv and fls are the shear stress, stirrup stress and longitudinal reinforcement stress,
respectively, and εx, εs, εz and ε2 are the longitudinal strain, longitudinal strain at the center
of longitudinal steel bars, vertical strain and main compression strain, respectively.

From Simultaneous Equations (7)–(13), we can obtain,

θu = arctan

(1 + 1
4nρs

1 + 1
nρv

)0.25 (14)
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Equation (14) is mainly influenced by the web and longitudinal reinforcement ratio.

3.4. Comparison of θu with Other Methods

To investigate the validity of angle prediction for slender beams, parameter analy-
sis and comparison are performed according to Pan et al. [8], He et al. [9] and the pro-
posed Equation (14). Parameter values of the reference specimen are ρv = 0.5%, ρs = 2%,
f’c = 50MPa and fyv = 400MPa. Figure 6 shows how the strut angle changes as a function of
stirrup ratio ρv, longitudinal reinforcement ratio ρs and concrete strength f’c, respectively.

As is shown in Figure 7, the proposed equation gives an intermediate prediction
of strut angle θu, while θPan predicts the highest value, and θHe predicts the lowest. All
three angles are affected by stirrup ratio ρv, along with which the predicted angle grows
(Figure 7a). Meanwhile, both θu and θPan reflect the inverse relationship between longitu-
dinal reinforcement ratio ρs and the strut angle (Figure 7b). θHe ignores the influence of
longitudinal reinforcement ratio ρs but emphasizes the importance of concrete strength
f’c (Figure 7c), and it may cause larger deviations for specimens with low longitudinal
reinforcement ratio or high concrete strength.
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Figure 7. Comparison of different calculation methods of strut angle θ [8,9].

3.5. Proposed Degradation Rules

In spite of the fact that we have obtained the elastic shear stiffness and the fully
cracked shear stiffness, it is still difficult to evaluate the effective shear stiffness Keff of a
partially diagonal cracked RC beam. As the transition from elastic stiffness to post-cracking
stiffness is very complicated and is controlled by many parameters, establishing an exact
and quantified expression for Keff is almost impossible.

As is shown in Figure 8, the simplest and most ideal shear stiffness degradation model
is the secant stiffness linear degradation model, which assumes that the post-cracking
secant shear stiffness will degrade linearly with the shear force (Figure 8a), and it tends
to give an unsafe prediction of shear deformation under service state. However, another
shear stiffness model, namely, the constant tangent stiffness degradation model, which
assumes that the post-cracking tangent shear stiffness will keep constant before stirrup
yielding (Figure 8b), is only suitable for thin-webbed beams and tends to give a larger shear
deformation prediction.

For RC beams, tension stiffening arises from tension carried by the concrete between
the cracks (whether flexural or shear cracks). This contribution decreases with an increasing
load after the member has cracked. To simulate the tension stiffening effect, the effective
moment of inertia Ie approach introduced by Branson [37] facilitates a gradual transition
from un-cracked to a fully cracked section as the ratio of service load moment Ma to
cracking moment Mcr increases.
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Figure 8. The shear stiffness degradation of diagonally cracked RC beam.

The ACI 318 standard [2] adopts Branson’s degradation method when calculating the
bending stiffness after flexural cracking. To make the deformation calculation equation
uniform and simple, we recommend using a degradation criterion similar to Branson
to reflect the effect of tensile hardening. The recommended shear stiffness degradation
formula is as follows,

Ke f f = Ku +

(
Vu −V

Vu −Vcr

)3

(Ke − Ku) ≤ Ke (15)

where the diagonal cracking load Vcr and stirrup yielding load Vu can be calculated by
Equations (16) and (17), respectively.

Vcr = 0.17
√

f ′cbwd (16)

Vu = Vcr + ρv fyvbwdv cot θu (17)

4. Test Verification and Discussion
4.1. Experiment Introduction

The shear deformation of 12 beam lattices in 6 thin web-restrained beams was directly
measured and analyzed with self-designed strain-measuring lattices. Further, the shear
deformation test of six beams conducted by Hansapinyo [24] was used to verify the
proposed degradation model. Data for a total of 16 shear deformation measurement
lattices are used for experimental verification. The main parameters of the specimens
are listed in Table 1. Hansapinyo’s test gives detailed shear strain test results, in which
electronic transducers were also used to measure the normal and shear strains of each
lattice based on the rosette concept.

As the stress distribution is disturbed by local point load in D regions (discontinuity
regions, such as the lattice regions of G1, G2 and G5 shown in Figure 2), the direct strut
component joins in the force transfer mechanisms in addition to the flexural and shear
components. Consequently, the total deformation consists of not only flexural deforma-
tion and shear deformation but also the deformation of direct strut compression. Mean
shear strain in these D regions becomes insignificant. Therefore, shear strain analyses
are only performed on the lattice where the local point load disturbances are negligible
(Lattice G3 and G4).
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4.2. Comparing Results and Discussion

The measured and calculated shear strain of 16 zones of 10 beams are shown in
Figures 9–11, respectively. Compared with the measured shear force–strain, the theoretical
prediction results are in good agreement with the measured values. It can be concluded
that the proposed shear stiffness degradation model simulates the degradation process of
shear stiffness very well, and it tends to give a conservative prediction for the shear strain
after diagonal cracking.

Figure 9. The shear strain of each measuring lattice in specimens BC1 and BC2.
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Figure 10. The shear strain of each measuring lattice in specimens BV1, BV2, BV3 and BV4.
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Figure 11. The shear strain of each measuring lattice in specimens S1, S2, S3 and S4.

For the specimen CV series (Figure 9) and S series (Figure 11) with constant depth, the
proposed degradation model is a little conservative and gives very acceptable accuracy.
Meanwhile, the degradation rule well captures the main characteristics of the shear strain
curves, such as the turning point for the first diagonal crack and the gradual evolution
from elastic stiffness to fully diagonally cracked stiffness.

For the specimen BV series with variable depth (Figure 10), it should be noted that
the inclined lower chord bears part of the shear force, which is not completely consistent
with the assumption for constant depth beam, for which the concrete web bears most of
the shear force based on elastic beam theory. Therefore, it can be foreseen that the shear
deformation prediction of the BV series specimens will be slightly larger than experimental
results in the early loading stage, but the degradation law of shear stiffness is still in good
agreement among each specimen.

In addition, although the shear span ratios of different observed beam lattices have large
changes (such as lattices G3 and G4 of BV series in Figure 9, and lattices S1 and S2 in Figure 10),
there is no obvious relationship between measured shear strain and shear depth-to-span ratio.
This shows that the shear depth-to-span ratio has little effect on the degradation of the shear
stiffness, and its effect on the after-cracking shear deformation is less.

As the beams crack randomly during the loading stage, they cannot get into a fully
diagonally cracked status that matches the theoretical assumptions. The real shear stiffness
of the beams might be larger than theoretical values, while the real shear deformations are
just the opposite. In total, the proposed model will give a relatively conservative shear
stiffness prediction for partially diagonal cracked beams.
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Here, specimen S3 (ρs = 2.13%) is taken as an example to show the validation process.
The calculated Vcr = 45kN, and the calculated Vy for the proposed method, Pan method
and He method are 179.4 kN, 148.7 kN and 144.3 kN, respectively, while the values of λu
are 0.169, 0.127 and 0.178, respectively. The predicted ultimate shear stiffness degradation
reduction factor λu and shear strain calculated by three methods are compared to the
measured data (Figure 12), which shows that the proposed method is a little better than
others for the after-cracking shear stiffness evaluation.
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Figure 12. Comparison of three methods in prediction of shear stiffness and shear strain [8,9].

In summary, the shear stiffness degradation model proposed in this paper can better
evaluate the shear stiffness degradation of each beam lattice, and it can give a reasonable
prediction of shear deformation, which can be used for the evaluation of the shear stiffness
of diagonally cracked RC beams.

5. Conclusions

This study aims to obtain the shear stiffness degradation law and to propose a simpli-
fied and practical prediction method of thin-webbed beams, which can be further applied to
existing concrete box-girder bridges with diagonal web cracks. Six large-scale thin-webbed
concrete beams were tested in this paper to investigate the shear stiffness degradation
of RC beams before and after shear cracking. Considering the effect of concrete tension
stiffening, a practical shear stiffness degradation model was proposed and validated. The
main conclusions can be drawn as follows:

1. The shear deformation test showed that the shear stiffness drops to about 30~40% of
the original stiffness following the occurrence of the first main diagonal crack, and it
further drops to only about 10% of the original stiffness when the stirrup yields.

2. The strut angle θu was deduced by combining CFT and elastic beam theory. Compared
with two other methods from the literature, the proposed angle tends to give a
moderate prediction of strut angles and shear deformation with higher accuracy.

3. Considering the tensioning stiffness effect, a simplified shear stiffness degradation
rule was suggested for a diagonally cracked RC beam. A cubic form degradation
equation consistent with the degradation form of flexural stiffness was established
and validated.

4. Data for a total of 16 zones of lattice shear deformation from 10 beams were measured
or collected for verification. The results showed that a turning point occurs in the
shear deformation curve corresponding to the first diagonal crack. And, rather than
the pre-cracking stage, the shear span-to-depth ratio has little effect on the shear
deformation of RC beams in the post-cracking stage.

5. The results showed that the proposed method gives a good and consistent prediction
of the effective shear stiffness and shear strain development. The proposed model
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could capture the development characteristics of shear deformation curves. However,
for the BV series, the bottom flanges bear part of the shear force, which will cause a
larger predicted shear strain.

6. In general, the proposed simplified shear degradation model tends to give a conser-
vative prediction of shear stiffness, and it is very practical for the early evaluation of
diagonally cracked box-girder bridges in service.

Moreover, the contribution of the inclined flanges of variable depth specimens on
shear capacity and shear deformation could be an interesting topic for further study. Also,
the digital image correlation (DIC) technique maybe a good choice for shear deformation
tests in future studies [38–41].
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