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Abstract: Single-phase tungsten-doped lanthanum molybdenum oxide (La2MoWO9) ceramic pow-
ders were synthesized using the complex polymerization technique. Porous ceramic pellets were
obtained by thermally removing graphite, which served as a pore former. The porous pellets were
then impregnated with molten eutectic lithium-sodium-potassium carbonates. The energy dispersive
X-ray analysis and scanning electron microscopy (FEG-SEM) images of the external and fracture
surfaces of the La2MoWO9-(Li,Na,K)2CO3 composite dual-phase membrane revealed the percolation
of the carbonate mixture through the pores. Electrochemical impedance spectroscopy measurements
conducted at temperatures below and above the melting point of the eutectic carbonate composition
demonstrated the contributions of oxygen and carbonate ions to the ionic conductivity of the dual
membrane. The electrical conductivity of the carbonate ions within the membrane was continuously
monitored for over 1300 h with negligible degradation, implying that the membrane could be used
for long-term monitoring of CO2 without aging effects. A comparison of FEG-SEM images taken
before and after this endurance test suggested minimal fouling, indicating that the membrane could
potentially replace similar zirconia- and ceria-based composite membranes.

Keywords: ceramic membranes; LAMOX; CO2 permeation; impedance spectroscopy; scanning
electron microscopy

1. Introduction

Lanthanum molybdate oxide (La2Mo2O9−δ) is a fast oxide ion conductor that exhibits
a first-order reversible α-β phase transition. This transition occurs at 580 ◦C, causing the
crystalline structure to change from monoclinic to cubic. The α-phase has a highly complex
crystalline structure, with 312 crystallographically independent atoms, numerous X-ray
diffraction reflections, lower symmetry, and indications of a superstructure [1]. The β-phase
crystalline structure is indexed based on β-SnWO4, with a lattice parameter of a = 7.2014(7)
Å. One key difference between these two structures is the arrangement of the oxygen atoms:
β-SnWO4 has two fully occupied oxygen sites, while La2Mo2O9−δ has three oxygen sites,
with only one fully occupied and two partially occupied. The α–β phase transition leads
to an increase in oxygen ion conductivity of approximately two orders of magnitude [2].
Specimens synthesized by the polymeric precursor method are phase-transition-dependent
on the powder’s average particle size and ionic-conductivity-dependent on the sintering
conditions [3]. However, the change in the crystalline structure adversely affects the me-
chanical properties and thermal stability [4]. Moreover, La2Mo2O9−δ is thermodynamically
unstable at low oxygen partial pressures (pO2) due to the reducibility of Mo6+, resulting
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in the formation of phases with partial n-type conductivity and amorphization [4,5]. To
address these issues, several studies have focused on cation substitutions (W [6–11], Nd [6],
Ca [12], Ba [12,13], Sr [12,14], Y [15], Cr [7,14]) for La or Mo (LAMOX family). These
substitutions aim to inhibit the phase transition, stabilize the β-phase, and improve the
thermomechanical stability [16]. Substituting tungsten for molybdenum has been identified
as an effective strategy to stabilize the cubic phase of La2Mo2O9−δ at room temperature
while preserving its ionic conductivity [8]. In addition to stabilizing the β-phase at room
temperature, the La2Mo2−yWyO9−δ series also exhibits enhanced chemical stability under
low pO2, resulting in a reduction in the formation of phases with n-type conduction as the
W content increases. Although substitutions at both the La and Mo sites lead to a decrease
in the ionic conductivity due to long-range vacancy ordering, the substitution of Mo for
W [8] results in a structurally and chemically stable W-LAMOX compound that is suitable
for various applications.

Nowadays, human activities have significant negative impacts on ecosystems due
to the extensive emission of greenhouse gases. Among these gases, carbon dioxide (CO2)
has emerged as a major global environmental concern due to its substantial release from
industrial activities and the combustion of fossil fuels. To address this issue, various
approaches are being pursued to develop new technologies for selective CO2 separation
or storage.

Several types of porous membranes utilizing polymers [17], silica [18], and zeolites [19]
have been tested for CO2 separation, but their use is limited by the low operating temper-
atures (up to 300 ◦C) required [20]. A dual-phase composite membrane that combines a
stainless-steel porous support with a eutectic mixture of molten carbonates, exhibiting high
permeation in the temperature range of 450–650 ◦C, has been proposed [21]. However, at
temperatures exceeding 650 ◦C, low-conductivity phases are formed at the metal surface,
inhibiting CO2 permeation. Additionally, achieving pure CO2 separation requires an addi-
tional step to remove oxygen (O2) from the CO2 permeate, making the process expensive.
To overcome these challenges, the use of porous supports based on ionic conducting ceram-
ics or mixed-conducting ceramics has been proposed [22]. Dual-phase composite ceramic
membranes are considered a promising option for achieving efficient and cost-effective
CO2 separation.

In a dual-phase membrane, a porous solid electrolyte ceramic support is filled with
a eutectic mixture of binary or ternary alkali carbonates. Selective CO2 separation occurs
through the transport of carbonate ions in the carbonate phase and oxygen ions in the
ceramic phase. The performance of CO2 permeation is limited by the oxygen ion conduc-
tivity of the solid electrolyte [23]. Therefore, optimizing the operation of these membranes
relies on achieving high ionic conductivity in the solid electrolyte at the melting point of
the carbonate phase.

In addition to high ionic conductivity, an ideal dual-phase membrane for CO2 sep-
aration should possess properties such as thermal and chemical stability, as well as CO2
selectivity and permeability. Various compounds, including doped lanthanum strontium
cobaltite [24] and ceria-based [25,26] compounds, have been proposed to meet these re-
quirements. However, some of these compounds encounter issues with structural phase
transformations due to the reaction between CO2 and the ceramic phase [21]. Therefore,
enhancing the oxygen conductivity of ceramics and discovering new compounds have
been the focus of numerous research studies.

In this context, W-LAMOX has emerged as a promising candidate for use as a porous
ceramic support due to its desirable characteristics. Despite the decrease in ionic conductiv-
ity resulting from the substitution of W for Mo [9], the achieved structural and chemical
stability make W-LAMOX suitable for carbonate dual-phase membranes used in CO2
separation, considering that this application necessitates chemically and thermally stable
ceramics with high oxygen ion conductivity.

This work describes the synthesis, structural characterization, and electrical prop-
erties of W-doped lanthanum molybdenum oxide (W-LAMOX), as well as dual-phase
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W-LAMOX/(Li-Na-K)2CO3 membranes. Furthermore, the long-term stability of carbon
dioxide ion conduction at the melting point of the eutectic lithium-sodium-potassium
carbonate is investigated.

2. Materials and Methods
2.1. W-LAMOX Synthesis; Membrane Preparation

W-doped lanthanum molybdenum oxide (La2MoWO9, hereafter W-LAMOX) was
synthesized using the complex polymerization method. The following chemicals were used:
molybdenum (VI) oxide (MoO3 99%, Sigma Aldrich, St. Louis, MO, USA), tungsten (VI)
oxide (WO3 99.8%, Sigma Aldrich), lanthanum (III) nitrate hexahydrate (La(NO3)3·6H2O
99.999%, Sigma Aldrich), citric acid (C6H8O7 99.5%, Synth, Colorado Springs, CO, USA),
ethylene glycol (C2H4(OH)2, Vetec, Speyer am Rhein, Germany), hydrogen peroxide (H2O2
30%, Nalgon, Golden Lake, ON, Canada), and ammonium hydroxide (NH4OH 28%, CRQ,
Carlsbad, CA, USA).

The synthesis process involved several steps: (1) dissolution of stoichiometric amounts
of MoO3 and WO3 in separate solutions of H2O2 and NH4O4 (5 vol.%) at room temperature
(for MoO3) and at 200 ◦C (for WO3); (2) dissolution of La(NO3)3·6H2O in distilled water at
room temperature; and (3) mixing the metal precursor solutions with a solution of citric
acid at room temperature. The citric acid/metals molar ratio was fixed at 2:1; (4) stirring
the mixture and increasing the temperature to 100 ◦C; (5) the addition of ethylene glycol
to promote citrate polymerization, with a 60:40 citric acid/ethylene glycol mass ratio;
(6) continuous stirring at 100 ◦C until the solution turned into a gel; and (7) heating the gel
at a rate of 5 ◦C/min for precalcination at 200 ◦C for 2 h and calcination at 550 ◦C for 4 h.

Dense W-LAMOX pellets with a cylindrical shape (14 mm diameter and 3 mm thick-
ness) were obtained by uniaxial cold pressing at 70 MPa (Skay, São Paulo, Brazil), followed
by isostatic pressing at 200 MPa (National Forge Co., Irvine, PA, USA) in vacuum-sealed
plastic bags. The pellets were then sintered at 1050 ◦C for 2 h. Porous W-LAMOX was
obtained by incorporating ~10 wt.% graphite (Micrograf, 99507 grade, Nacional de Grafite,
Itapecerica, Brazil) as a sacrificial pore former. The mixture was cold pressed, and the green
pellets were sintered at ~800 ◦C for 2 h to remove the graphite, followed by sintering at
1000 ◦C with heating and cooling rates of 5 ◦C/min. The resulting porous W-LAMOX
was impregnated with a eutectic mixture of lithium carbonate (Li2CO3), sodium carbonate
(Na2CO3), and potassium carbonate (K2CO3) in a molar ratio of 43.5:31.5:25.0 (hereafter,
LNKC). The impregnation process involved placing an LNKC pellet on top of the porous
W-LAMOX, heating it to 500 ◦C at a rate of 5 ◦C/min, and maintaining that temperature for
1 h. After cooling, any residual carbonates were removed from the W-LAMOX surfaces. The
skeletal density of the sintered porous W-LAMOX was determined using the Archimedes
method in a Mettler Toledo AG245 analytical balance (Columbus, OH, USA).

2.2. Thermal, Structural, and Electrical Analyses

DTATG experiments were performed in a W-LAMOX/graphite mixture with STA
409E equipment (Netzsch, Selb, Germany) from room temperature to 1000 ◦C at a rate of
5 ◦C/min under flowing synthetic air at 10 L min−1.

X-ray diffraction data from the W-LAMOX samples (powder and pellets) were col-
lected in a D8 Advance diffractometer (Bruker-AXS, Karlsruhe, Germany) with a θ-θ
Bragg-Brentano configuration and 40 kV-40 mA Cu-kα radiation in the 20◦–80◦ 2θ range
with a 0.05◦ step size and 3 s per step.

The images of the surfaces of the porous W-LAMOX were observed before and after
impregnation with LNKC with a scanning electron microscope (FEG-SEM Inspect F50,
FEI, Brno, Czech Republic). Energy dispersive X-ray spectroscopy (EDX) analyses were
performed at both parallel and fracture surfaces of the impregnated samples to evaluate
the permeation of the carbonate phase through the pores and its presence in the bulk of
the samples.
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The electrical conductivity of both porous and LNKC-impregnated W-LAMOX was
evaluated with an impedance analyzer (HP 4192A, Yokogawa-Hewlett Packard, Tokyo,
Japan) connected to a desktop workstation (series 360 HP Controller) from 300 ◦C to
650 ◦C, using thin gold disks as electrodes; [−Z′′(ω) × Z′(ω)] data (Z′′ and Z′ are the
imaginary and the real components of the electrical impedance, respectively; ω = 2πf, f
is the frequency of the applied bias) were collected in the 5 Hz–13 MHz frequency range
with 20 points per decade, under a 200 mV input signal, with special software [27]. For the
measurements, the sample was spring-loaded in a homemade alumina sample chamber
with 1 m platinum leads connected to the impedance analyzer using the HP16047C test
fixture; the temperature was monitored with a type K (chromel-alumel) thermocouple
with its sensing tip positioned close to the sample. For long-term electrical conductivity
tests, approximately 100 impedance spectroscopy diagrams were collected over >1300 h
in an impregnated sample in the sample chamber inside a Lindberg-Blue M (Lindberg,
Watertown, NY, USA) furnace kept at 480 ◦C.

3. Results and Discussion
3.1. Dense W-LAMOX

The room temperature X-ray diffraction pattern of the W-LAMOX powder is de-
picted in Figure 1. La2Mo2O9−δ undergoes a phase transition from the monoclinic α-
phase to the cubic β-phase at 580 ◦C, which is characterized by a split in the (321) re-
flection at 2θ = 47.632◦ [28]. The absence of this split indicates the stabilization of the
high-temperature conducting cubic phase. The Bragg reflections observed in the diffrac-
togram shown in Figure 1 are consistent with the ICSD 172611 file, which has a lattice
parameter of 7.142 Å, as determined using GSAS/EXPGUI software [29]. This agrees with
the data reported for the cubic phase [8,16].
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Figure 1. X-ray diffraction patterns for W-LAMOX; top: powder synthesized by the polymeric 
precursor method and calcined at 550 °C/4 h; bottom: LAMOX ICSD 172611 file. 
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region and a spike at lower frequencies for temperatures higher than 400 °C. The semi-
circle is due to the contributions of the resistivity of the bulk (grains) and interfaces 

Figure 1. X-ray diffraction patterns for W-LAMOX; top: powder synthesized by the polymeric
precursor method and calcined at 550 ◦C/4 h; bottom: LAMOX ICSD 172611 file.

Figure 2 shows impedance spectroscopy diagrams at various temperatures within
the range of 400–650 ◦C. The diagrams consist of one semicircle in the high-frequency
region and a spike at lower frequencies for temperatures higher than 400 ◦C. The semicircle
is due to the contributions of the resistivity of the bulk (grains) and interfaces (mainly
grain boundaries). The spike represents the resistivity due to the interaction of the charge
carriers (oxygen ions) with the gold electrodes [30]. Additionally, Figure 3 displays a plot
of the total electrical resistivity as a function of the reciprocal of the absolute temperature.
The electrical resistivity values were determined at the intersection of the semicircles with
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the real axis in the low-frequency region of the [−Z′′(ω) × Z′(ω)] impedance diagram.
At approximately 400 ◦C, the compositions of the LAMOX family show modification of
the ionic conductivity behavior, from the Arrhenius to the Vogel–Tamman–Fulcher (VTF)
type [8]. The activation energy of 0.77 eV reported for the ionic conductivity is close to
reported values for W-LAMOX [8].
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3.2. Porous W-LAMOX

The skeletal density of the sintered porous W-LAMOX, determined using the Archimedes
method in a Mettler Toledo AG245 analytical balance (Columbus, OH, USA), was approxi-
mately 60% of the theoretical density [8].

Figure 4 illustrates the results of the DTATG analysis performed from room tempera-
ture to 1100 ◦C on a mixture of W-LAMOX with 10% graphite.
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The DTATG curves exhibit the thermal decomposition behavior of the mixture, re-
vealing an exothermic peak at around 720 ◦C, accompanied by an approximately 8%
weight loss, attributed mostly to the thermal removal of graphite. Beyond 800 ◦C, the
weight loss becomes negligible, indicating the absence of residual graphite in the compos-
ite. Consequently, a temperature of 800 ◦C was applied to eliminate graphite and obtain
porous samples.

Figure 5a displays a scanning electron microscopy (SEM) micrograph depicting a
typical surface of a W-LAMOX pellet that was sintered with 10 wt.% graphite. Figure 5b
illustrates the pore size distribution, which was analyzed using ImageJ software [31]. The
sample exhibits consistent and uniformly distributed pore sizes, with an average pore size
of approximately 0.21 µm. The opposite parallel surface and fracture surfaces of these
ceramic pellets exhibit similar pore structures.
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(b) distribution of pore sizes determined using ImageJ software [31]. 
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3.3. W-LAMOX/(Li,Na,K)2CO3 Composite Membrane

Figure 6 shows the diffraction pattern of the W-LAMOX/(Li,Na,K)2CO3 composite
membrane. Upon comparison with the X-ray diffraction pattern of W-LAMOX, no sig-
nificant changes were observed in the Bragg reflections. This suggests that there were
no apparent reactions between W-LAMOX and molten LNKC. However, the presence of
certain peaks marked with asterisks in the diffractogram, attributed to LNKC, indicate its
presence in the composite membrane.
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Figure 6. X-ray diffraction patterns of porous W-LAMOX (blue curve) and porous W-LAMOX
impregnated with LNKC (red curve). The asterisks indicate LNKC reflections.

Figure 7 exhibits scanning electron microscopy (SEM) micrographs and energy-dispersive
X-ray spectroscopy (EDX) plots obtained from data collected from both surfaces of the com-
posite membrane. Specifically, these images and plots capture the porous structure of the
W-LAMOX pellet following thermal infiltration with the (Li,Na,K)2CO3 eutectic composition.
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Figure 7. Scanning electron microscopy micrographs (left) and EDX plots (right) of the two parallel
surfaces of W-LAMOX/LNKC.

The images reveal that the composite membrane features a dense, solid electrolyte
matrix, partially covered by carbonates. The matrix effectively fills the entire porous
network. EDX analyses provided evidence that sodium (Na) and potassium (K) are present
on both surfaces, indicating that molten LNKC successfully permeated the interconnected
porous structure during the impregnation procedure. This suggests thorough infiltration of
the composite membrane by the molten LNKC electrolyte.

Figure 8 shows the impedance spectroscopy diagrams of the porous W-LAMOX (left)
and W-LAMOX/LNKC (right) samples, measured at 350 ◦C (top) and 500 ◦C (bottom). At
350 ◦C, both samples exhibit apparently single-arc impedance diagrams without clear dif-
ferentiation between the electrical resistivity contributions of grain and interfaces (mainly
grain boundaries). Moreover, the total electrical resistivity of W-LAMOX/LNKC is ap-
proximately one order of magnitude lower than that of porous W-LAMOX, indicating
that filling the pores with LNKC leads to an enhancement of the total conductivity of the
W-LAMOX/LNKC composite. At 500 ◦C, the impedance diagram of the porous matrix
remains a single arc, while the diagram of W-LAMOX/LNKC changes its shape due to the
contribution of the inductance of the coaxial cables [32] and exhibits enhanced conductivity
above the melting temperature of LNKC (396 ◦C) [33]. This indicates that the conductivity
at this temperature is improved by the contribution of the carbon dioxide ion conductivity
of the molten LNKC second phase within the porous structure of the composite membrane.
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Figure 8. Top: Impedance spectroscopy diagrams of porous W-LAMOX (left) and W-LAMOX/LNKC
(right) at 350 ◦C (top) and 500 ◦C (bottom); numbers stand for log f (f: Hz). bottom: Arrhenius plots
of the W-LAMOX porous matrix (red curve) and W-LAMOX/LNKC (blue curve).

In the LNKC-impregnated porous matrix, the Arrhenius plot displays three distinct
regions: (1) for temperatures below approximately 370 ◦C, the electrical conductivity ex-
hibited linear behavior with an activation energy of 0.77 eV, which is close to previously
reported values for W-LAMOX. The conductivity in this temperature range is attributed to
thermally activated oxygen ion conductivity [1,2]. (2) In the subsequent region, the electri-
cal conductivity demonstrated a significant increase, primarily driven by the contribution
of carbon dioxide ions, resulting from the onset of LNKC melting [34]. (3) At temperatures
exceeding 400 ◦C, the linear behavior resumed due to the dominant contribution of elec-
trical conductivity from carbon dioxide ions in the molten state of the LNKC. This region
exhibited a typical activation energy of 0.19 eV, representative of the electrical conductivity
behavior observed [35–37].

Figure 9 presents the electrical resistance values of W-LAMOX/LNKC ceramic mem-
branes plotted as a function of the time that the membrane was kept inside the sample
chamber of the furnace at 480 ◦C. The measurements were taken at two frequencies: one at
the region containing the bulk contribution (300 kHz) and the other containing the electrode
contribution (10 Hz). The bulk resistance remained constant, indicating that the membrane
did not undergo any degradation. However, the interface resistance showed an increase
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over time, likely attributed to the oxidation of the electrodes. It is important to note that
these measurements were conducted in an air environment.

Materials 2023, 16, x FOR PEER REVIEW 10 of 14 
 

 

0 500 1000 1500
0.0

0.5

1.0

1.5

2.0

re
si

st
an

ce
 (k

O
hm

)

time (h)

 300 kHz
 10 Hz

W-LAMOX/(Li-Na-K)2CO3

 
Figure 9. Electrical resistance long-term operational stability data collected at 300 kHz and 100 Hz 
at 480 °C in W-LAMOX/LNKC. 

Impedance spectroscopy measurements were conducted on the W-LAMOX/LNKC 
dual-phase composite membranes, both before and after a long-term annealing period of 
approximately 1300 h at 480 °C. The measurements were performed at various temper-
atures, including those below and above the melting point of the carbonate phase. Figure 
10 displays a selection of impedance spectroscopy diagrams obtained from these meas-
urements. 

0 5 10 15 20 25 30
0

5

10

15

- Z
'' 

(k
O

hm
.c

m
)

Z' (kOhm.cm)

370 oC

 

0 200 400 600 800 1000 1200 1400
0

100
200
300
400
500
600
700

- Z
'' 

(k
O

hm
.c

m
)

Z' (kOhm.cm)

370 oC

 

0 20 40 60 80 100

0
10
20
30
40
50

- Z
'' 

(O
hm

.c
m

)

Z' (Ohm.cm)

480 oC

 

0 5 10 15 20
0

2

4

6

8

10

- Z
'' 

(k
O

hm
.c

m
)

Z' (kOhm.cm)

480 oC

 

Figure 9. Electrical resistance long-term operational stability data collected at 300 kHz and 100 Hz at
480 ◦C in W-LAMOX/LNKC.

Impedance spectroscopy measurements were conducted on the W-LAMOX/LNKC
dual-phase composite membranes, both before and after a long-term annealing period of ap-
proximately 1300 h at 480 ◦C. The measurements were performed at various temperatures,
including those below and above the melting point of the carbonate phase. Figure 10 dis-
plays a selection of impedance spectroscopy diagrams obtained from these measurements.

Materials 2023, 16, x FOR PEER REVIEW 10 of 14 
 

 

0 500 1000 1500
0.0

0.5

1.0

1.5

2.0

re
si

st
an

ce
 (k

O
hm

)

time (h)

 300 kHz
 10 Hz

W-LAMOX/(Li-Na-K)2CO3

 
Figure 9. Electrical resistance long-term operational stability data collected at 300 kHz and 100 Hz 
at 480 °C in W-LAMOX/LNKC. 

Impedance spectroscopy measurements were conducted on the W-LAMOX/LNKC 
dual-phase composite membranes, both before and after a long-term annealing period of 
approximately 1300 h at 480 °C. The measurements were performed at various temper-
atures, including those below and above the melting point of the carbonate phase. Figure 
10 displays a selection of impedance spectroscopy diagrams obtained from these meas-
urements. 

0 5 10 15 20 25 30
0

5

10

15

- Z
'' 

(k
O

hm
.c

m
)

Z' (kOhm.cm)

370 oC

 

0 200 400 600 800 1000 1200 1400
0

100
200
300
400
500
600
700

- Z
'' 

(k
O

hm
.c

m
)

Z' (kOhm.cm)

370 oC

 

0 20 40 60 80 100

0
10
20
30
40
50

- Z
'' 

(O
hm

.c
m

)

Z' (Ohm.cm)

480 oC

 

0 5 10 15 20
0

2

4

6

8

10

- Z
'' 

(k
O

hm
.c

m
)

Z' (kOhm.cm)

480 oC

 
Figure 10. Cont.



Materials 2023, 16, 5128 11 of 14

Materials 2023, 16, x FOR PEER REVIEW 11 of 14 
 

 

0 20 40 60 80
-10

0

10

20

30

40

- Z
'' 

(O
hm

.c
m

)

Z' (Ohm.cm)

570 oC

 

0 2 4 6 8

0

1

2

3

4

- Z
'' 

(k
O

hm
.c

m
)

Z' (kOhm.cm)

570 oC

 

  

Figure 10. Impedance spectroscopy diagrams of W-LAMOX/LNKC before (left) and after (right) 
~1300 h at 480 °C. 

A noteworthy observation in the impedance spectroscopy measurements is the in-
crease in the electrical resistivity of approximately one order of magnitude. This increase 
is attributed to the partial oxidation of the electrodes at the interface between the elec-
trodes and the specimen. The impact of this oxidation is evident in the Arrhenius plots of 
the electrical resistivity, as depicted in Figure 11. The temperature of 400 °C, near the 
melting point of LNKC, is signaled. 
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Figure 10. Impedance spectroscopy diagrams of W-LAMOX/LNKC before (left) and after (right)
~1300 h at 480 ◦C.

A noteworthy observation in the impedance spectroscopy measurements is the in-
crease in the electrical resistivity of approximately one order of magnitude. This increase is
attributed to the partial oxidation of the electrodes at the interface between the electrodes
and the specimen. The impact of this oxidation is evident in the Arrhenius plots of the
electrical resistivity, as depicted in Figure 11. The temperature of 400 ◦C, near the melting
point of LNKC, is signaled.
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Figure 11. Arrhenius plots of the W-LAMOX/LNKC ceramic membrane before and after being kept
at 480 ◦C for ~1300 h.
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The surface of the W-LAMOX/LNKC ceramic membrane was examined using a
scanning electron microscope before and after the long-term electrical measurements at
480 ◦C. Figure 12a displays the corresponding image, while Figure 12b presents the results
of the EDX analysis.
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before and after being kept at 480 °C for ~1300 h. 
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Figure 12. (a) SEM micrographs and (b) EDX analysis of the W-LAMOX/LNKC ceramic membrane
before and after being kept at 480 ◦C for ~1300 h.

Based on the image and the EDX elemental analysis, it is evident that the carbonates
remained present in the sample of the W-LAMOX/LNKC ceramic membrane. The EDX
analysis confirmed the detection of sodium and potassium elements, indicating their
presence in the composite. However, it is important to note that lithium was not detected
by the EDX technique in this analysis.

4. Conclusions

Lanthanum molybdenum oxide doped with tungsten (La2MoWO9, W-LAMOX) ce-
ramic powder was successfully synthesized by the complex polymerization method. Porous
W-LAMOX ceramic pellets were prepared by the thermal removal of graphite powder,
which was added as sacrificial pore former. Molten eutectic compositions of lithium,
sodium, and potassium carbonates were impregnated in the porous pellets. The electrical
resistivity and the surfaces of both porous and impregnated samples were analyzed by the
impedance spectroscopy and scanning electron microscopy (SEM) techniques, respectively.
The SEM analyses showed that the carbonate phase percolated through the bulk of the
pellets. Analysis of the carbon dioxide ion resistivity in the molten state for more than
1300 h showed negligible degradation, providing evidence of the chemical resistance of
W-LAMOX to the molten carbonates. W-LAMOX is thus proposed as a solid electrolyte
matrix for ceramic membranes for application either in carbon dioxide capture or as a
carbon dioxide sensor.
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