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Abstract: Chromium Nitride (CrN) coatings have widespread utilization across numerous industrial
applications, primarily attributed to their excellent properties. Among the different methods for CrN
coating synthesis, direct current magnetron sputtering (DCMS) has been the dominant technique
applied. Nonetheless, with the expanded applications of CrN coatings, the need for enhanced
mechanical performance is concurrently escalating. High-power impulse magnetron sputtering
(HiPIMS), an innovative coating deposition approach developed over the past three decades, is
gaining recognition for its capability of yielding coatings with superior mechanical attributes, thereby
drawing significant research interest. Considering that the mechanical performance of a coating is
fundamentally governed by its microstructural properties, a comprehensive review of CrN coatings
fabricated through both techniques is presented. This review of recent literature aims to embark on an
insightful comparison between DCMS and HiPIMS, followed by an examination of the microstructure
of CrN coatings fabricated via both techniques. Furthermore, the exploration of the underlying factors
contributing to the disparities in mechanical properties observed in CrN coatings is revealed. An
assessment of the advantages and potential shortcomings of HiPIMS is discussed, offering insight
into CrN coating fabrication.

Keywords: CrN; coatings; high power impulse magnetron sputtering; direct current magnetron
sputtering; microstructure; mechanical; irradiation behaviors

1. Introduction

Transition metal nitrides constitute a category of interstitial compounds formed
through the insertion of nitrogen atoms at interstitial positions within the crystal lattice.
These compounds simultaneously exhibit properties characteristic of covalent compounds
and ionic crystals. The introduction of nitrogen atoms results in alterations of chemical
bonding energies, lattice expansion, increased interatomic distances, and a larger lat-
tice constant. These modifications confer unique physical and chemical properties upon
such compounds, thereby qualifying transition metal nitrides for distinctive scientific
consideration [1–3]. Chromium Nitride (CrN) coating is renowned for its exceptional
properties and has found extensive utility across numerous industrial applications. One
standout characteristic of CrN coating is its exceptional hardness [4–8], rendering it highly
resistant to wear and abrasion, and hence advantageous in scenarios where the coated
surface encounters high frictional forces [9–11], such as for cutting tools, molds, and form-
ing dies. Moreover, CrN coating also exhibits high adhesion to a variety of substrate
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materials [12–15], including stainless steel, titanium (Ti), aluminum (Al), etc. The high
adhesion strength ensures that the coating remains intact even under severe mechanical
stresses, thus offering enduring protection to the underlying substrate. Furthermore, the
CrN coating demonstrates a low coefficient of friction [16–18]. This particular trait is
beneficial in applications demanding minimal friction and enhanced lubricity, such as
sliding or rotating components. In addition to these properties, the coating possesses
commendable chemical stability, corrosion resistance, and oxidation resistance [19–25].
This is achieved by forming a protective barrier that prevents the underlying material
from reacting with the corrosive substances. Hence, CrN coating is particularly suitable
for applications in corrosive environments or ones frequently exposed to moisture and
chemicals. In summation, CrN coating integrates the virtues of hardness, adhesion, low
friction, corrosion resistance, and thermal stability, making it a versatile coating for an array
of industrial applications. The choice of fabrication techniques can markedly affect the
microstructure and mechanical properties of the coating. CrN is typically deposited using
physical vapor deposition (PVD) techniques. Magnetron sputtering is the most frequently
employed technique. The outcome is a high-density coating with excellent adhesion and
uniform thickness. This technique allows precise control over coating properties, such
as composition and microstructure [17,19,26–29]. Direct current magnetron sputtering
(DCMS) is a conventional sputtering technique that has seen widespread application over
the years. In DCMS, a direct current power supply is used to generate a plasma discharge
within a vacuum chamber, created by applying a DC voltage between the target material
(the material to be sputtered) and the substrate. It typically operates at relatively low power
densities and is commonly used for the deposition of metallic and compound coatings.
DCMS presents several advantages, including simplicity, cost-effectiveness, and ease of
operation. It ensures good coating adhesion and thickness control, making it versatile for
various industrial applications. Nevertheless, DCMS suffers from shortcomings such as low
ionization efficiency and inadequate control over the energy and momentum of the ions,
leading to limited control over coating properties such as density, microstructure, and resid-
ual stress. In contrast, high-power impulse magnetron sputtering (HiPIMS) is an advanced
novel sputtering technique that has been gaining traction in recent years [30–33]. It is essen-
tially an upgrade of conventional DCMS. HiPIMS employs short and high-intensity power
pulses directed at the target material [34]. These pulses typically last for microseconds and
boast high peak power levels (Figure 1). HiPIMS enables the regulation of peak power by
manipulating pulse duration and frequency. The plasma density increases with increased
power density supplied to the target. Therefore, the coating performance can be improved
by the selection of HiPIMS parameters. HiPIMS produces smooth coatings characterized
by enhanced friction resistance. The high power density of the cathode yields high-energy
particles (Figure 2), which result in hard, high-density coatings exhibiting impressive wear
resistance [35]. In addition, HiPIMS offers advantages such as improved coating density,
reduced droplet formation, and enhanced adhesion over DCMS. HiPIMS also enables
better control over ion energy, utilizing the accelerating effect of the bias voltage field on
ions, which facilitates tailoring coating properties and the deposition of complex material
(such as nitrides and oxides using reactive sputtering or alloys grown with multi-target
sputtering) [36–39].

In this review, the microstructural characteristics of CrN coatings prepared via DCMS
and HiPIMS are discussed. The mechanical performance disparities resulting from these
microstructural attributes are analyzed. Relevant literature from recent years is reviewed,
aiming to guide researchers regarding the exploitation of CrN coatings, along with HiPIMS
and DCMS techniques. The merits and potential limitations of HiPIMS are appraised,
providing insights into the fabrication of CrN coatings.
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Figure 1. A schematic comparison of duty cycle and peak power density on magnetron sputtering 
[34]. HiPIMS demonstrates a higher peak power density compared to DCMS. Other approaches 
include modulating the pulse such that in the initial stages of the pulse (a few hundred microsec-
onds), the power level is moderate (typical for a DCMS), followed by a high power pulse (lasting a 
few hundred microseconds up to a millisecond), which is referred to as modulated pulse power 
(MPP); the duty cycle and peak power density of MMP are between DCMS and HiPIMS [34]. Re-
printed with permission from [34] the American Vacuum Society 2012. 

 
Figure 2. Time-integrated ion energy distributions of ionic species detected using the HiPIMS and 
DCMS discharges [35]. The concentration of high-energy target ions in HiPIMS surpasses that in 
DCMS, while the working gas ion concentration and energy distribution between the two methods 
are comparable. Reprinted with permission from [35] Elsevier 2014. 

In this review, the microstructural characteristics of CrN coatings prepared via 
DCMS and HiPIMS are discussed. The mechanical performance disparities resulting from 
these microstructural attributes are analyzed. Relevant literature from recent years is re-
viewed, aiming to guide researchers regarding the exploitation of CrN coatings, along 
with HiPIMS and DCMS techniques. The merits and potential limitations of HiPIMS are 
appraised, providing insights into the fabrication of CrN coatings. 

2. Plasma-Based Depositions 
2.1. Plasma Characteristics 

The ionization efficiency during the PVD sputtering deposition processes signifi-
cantly influences the formation of coatings profoundly impacts coating formation. The 
ionization efficiency refers to the proportion of sputtered atoms ionized in the plasma, 
influencing the coating’s adhesion, microstructure, and attributes. A higher ionization ef-
ficiency generally yields enhanced coating properties [40,41]. Furthermore, heightened 
ionization rates can alter the coating’s microstructure. Due to the higher kinetic energy of 
the ions, their impact on the surface of the coating effectively increases the energy of the 
adatoms. This amplified energy increases adatoms’ mobility significantly, fostering en-

Figure 1. A schematic comparison of duty cycle and peak power density on magnetron sputtering [34].
HiPIMS demonstrates a higher peak power density compared to DCMS. Other approaches include
modulating the pulse such that in the initial stages of the pulse (a few hundred microseconds),
the power level is moderate (typical for a DCMS), followed by a high power pulse (lasting a few
hundred microseconds up to a millisecond), which is referred to as modulated pulse power (MPP);
the duty cycle and peak power density of MMP are between DCMS and HiPIMS [34]. Reprinted with
permission from [34] the American Vacuum Society 2012.
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Figure 2. Time-integrated ion energy distributions of ionic species detected using the HiPIMS and
DCMS discharges [35]. The concentration of high-energy target ions in HiPIMS surpasses that in
DCMS, while the working gas ion concentration and energy distribution between the two methods
are comparable. Reprinted with permission from [35] Elsevier 2014.

2. Plasma-Based Depositions
2.1. Plasma Characteristics

The ionization efficiency during the PVD sputtering deposition processes significantly
influences the formation of coatings profoundly impacts coating formation. The ionization
efficiency refers to the proportion of sputtered atoms ionized in the plasma, influencing the
coating’s adhesion, microstructure, and attributes. A higher ionization efficiency generally
yields enhanced coating properties [40,41]. Furthermore, heightened ionization rates can
alter the coating’s microstructure. Due to the higher kinetic energy of the ions, their
impact on the surface of the coating effectively increases the energy of the adatoms. This
amplified energy increases adatoms’ mobility significantly, fostering enhanced surface
diffusion and the reorganization of adatoms during coating growth. Consequently, it
contributes to augmented coating density, a smoother surface morphology, and defect
reduction [36,37,42,43]. A higher ionization efficiency can yield coatings with superior
mechanical and tribological properties. Hence, controlling and optimizing the ionization
efficiency during PVD sputtering is vital for achieving the desired coating formation and
performance [36,44–47].
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Li et al. employed time-resolved optical emission spectroscopy (OES) to diagnose the
species in DCMS and HiPIMS plasma near the surface of targets [48]. Figure 3a reveals
the plasma variation with the current in both HiPIMS and DCMS discharge. The primary
species in HiPIMS plasma were Cr+ ions, while neutral Cr and N dominated the DCMS
plasma. The calculated ratios of (Cr+ + Cr2+)/Cr and N+/N in HiPIMS were 1.85 and 1.41,
respectively, compared to 0.49 and 0.48 in DCMS. This discrepancy in ionization rate ratios
resulted in HiPIMS plasma having an overall higher energy than that of DCMS. Greczynski
G et al. investigated the relative composition of the ion flux impinging on the growing
coating during HiPIMS and DCMS discharge as a function of the N2-to-Ar ratio fN2/Ar [49].
As shown in Figure 3c,d, Cr+ ions make up the most significant contribution up to
fN2/Ar = 2 (where the N2+ signal takes over), contrasting the DCMS case, where work-
ing gas ions dominate the ion flux to the substrate. This result aligns with Li et al.’s
findings [48]. Furthermore, the relative intensity of the Cr2+ signal is markedly higher
during HiPIMS operation compared to DCMS. Previous studies suggest that higher va-
lence state ions possess greater energy, particularly when biased, which may interrupt the
continuous growth of columnar crystals. The continuous growth of columnar crystals can
induce shadowing effects, leading to a decrease in the coating density. This often has a
negative impact on the mechanical properties of the material. Therefore, interrupting the
continuous growth of columnar crystals by bombarding them with high-energy particles is
also one of the advantageous characteristics of HiPIMS [50–54].
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Figure 3. The time-resolved OES of selected radicals in (a) HiPIMS (50 µs, 200 Hz) and (b) DCMS [48];
Relative ion content in the flux incident upon the substrate during (c) HiPIMS and (d) DCMS process,
plotted versus the N2-to-Ar flow ratio fN2/Ar [49]. Compared to DCMS, the HiPIMS plasma contains
a higher abundance of Cr ions, even surpassing the concentration of the working gas ions. Reprinted
with permission from [48] AIP Publishing 2020, [49] IEEE Xplore 2010.

In conclusion, an increased ion flux leads to more intensive energy bombardment
on the substrate. This energy drives coating growth, especially in ceramic coatings like
CrN, where atoms must surmount energy barriers for migration and diffusion during
the nucleation and growth process. HiPIMS naturally exhibits an inherent advantage in
increasing ionization efficiency.

2.2. Deposition Rate

Deposition rate, although not an independent process parameter—being a conse-
quence of various factors such as target power, pressure, target-to-substrate distance, and
bias voltage—plays a crucial role in the production efficiency and cost-effectiveness of the
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PVD process. Gaining insights into the deposition rate allows manufacturers to fine-tune
process parameters to attain higher deposition rates without jeopardizing the quality of the
coating [43,54]. This understanding also aids researchers in unraveling the underpinning
mechanisms during deposition, including nucleation, surface diffusion, and grain growth,
thereby facilitating the development of models to anticipate coating growth behavior.

As shown in Figure 4a, J.C. Sánchez-López and colleagues compared the deposition
rate of CrN coatings via HiPIMS and DCMS. The research found that the deposition rate of
CrN coatings increased linearly with the average target power. However, when a bias was
applied, a slight decrease was observed compared to the linear regression of the remaining
HiPIMS coatings [15]. Intriguingly, at equivalent average target power, the DC sample
exhibited a four-fold augmentation in the deposition rate compared to the HiPIMS sample.
It was observed that bias reduced the deposition rate of the CrN coatings prepared via
HiPIMS, possibly due to the high plasma ionization rate, which amplified the coating
density under the bias effect, consequently decreasing the deposition rate [35], or possibly
because of the re-sputtering effect [55]. Greczynski et al. [49] examined the deposition rate
of CrN using two techniques, as a function of the N2-to-Ar ratio fN2/Ar at the same average
target power. As illustrated in Figure 4b, the deposition rate decreased with the increasing
of fN2/Ar due to factors like nitride formation on the target surface during the sputtering
process (poisoning effect) [56,57] and lower sputtering yield when N2 gas partially replaces
Ar during the target sputtering process [58,59]. This phenomenon is common in reactive
sputtering. Interestingly, the relative drop in deposition rate with an increasing fN2/Ar is
analogous in both sputtering techniques, maintaining a consistent multiplier relationship
(the deposition rate of DCMS technology being 3–4 times that of HiPIMS technology).
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investigated CrN coatings [15]. (b) The CrN coatings’ deposition rates of HiPIMS and DCMS at
different N2-Ar flow ratios (fN2/Ar) [49]. At identical average applied power, the deposition rate of
CrN coatings obtained via HiPIMS is approximately 1/4 to 1/2 of that achieved by DCMS. Reprinted
with permission from [15] Elsevier 2020, [49] IEEE Xplore 2010.

It is recognized that the deposition rate decreases in HiPIMS due to the back-attraction
of a large population of positively charged target ions generated during the HiPIMS
discharge (the back-sputtering phenomenon refers to the process during target discharge
where ions sputtered from the target surface are subsequently drawn back to the target
under the influence of a high target voltage, thereby participating in the subsequent
sputtering process) [45,60–62]. This effect is pronounced for materials with a low sputtering
yield [63]. The relatively low deposition rate of HiPIMS also poses a major hindrance to its
broad commercial adoption. However, in recent years, advancements have been made in
improving the deposition rate of the HiPIMS technique, which will be further elaborated
on in Section 5.

3. The Influence of HiPIMS and DCMS Techniques on the Growth of CrN Coatings
3.1. Texture

Studying the crystallinity and grain size of CrN can be immensely significant for
multiple reasons. Primarily, CrN crystallinity directly influences its mechanical, electrical,
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and optical attributes. A well-established crystalline structure amplifies the material’s
hardness and thermal stability, rendering it appropriate for wear-resistant coatings, elec-
tronic devices, and optoelectronic applications [13,27,64]. Secondly, the CrN’s grain size
directly influences its mechanical properties and surface morphology. Fine-grained CrN
coatings display superior hardness, smoothness, and uniformity. Properties are sought for
applications demanding low friction, high durability, and premium surface finish [10,28,65].
Additionally, comprehension of the relationship between crystallinity and grain size can
provide valuable insights into the growth mechanisms and structural evolution of CrN
coatings during the deposition processes [66–71].

Li et al. [48] studied thr XRD diffraction patterns of CrN coatings deposited with equal
average target power via DCMS and HiPIMS. As shown in Figure 5a, the HiPIMS-deposited
coating displayed substantially higher intensities of various crystal-oriented diffraction
peaks compared to the DCMS-deposited CrN, signifying better crystallinity in the coating.
A parallel phenomenon was observed in the study by Zhang et al. [72]. As shown in
Figure 5b, HiPIMS-deposited CrN coatings exhibited better crystallinity, while diffraction
peaks of DCMS-deposited CrN coatings were considerably weaker, indicating that the
DCMS coating has low crystallinity and an incomplete crystal structure. The subsequent
high-resolution transmission electron microscopy (HRTEM) confirmed the presence of a
significant number of amorphous structures in CrN prepared by DCMS. The hardness tests
also showed that CrN deposited by HiPIMS had a higher hardness than that of DCMS [72].
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Figure 5. XRD patterns of the CrN by HiPIMS and DCMS at the same average power of
(a) 0.3 kW [48] and (b) 4 kW [72]. The diffraction peak intensity of the CrN coating prepared
by HiPIMS surpasses that of DCMS, indicating superior crystallinity. Reprinted with permission
from [48] AIP Publishing 2020, [72] Elsevier 2020.

The mechanism underlying the enhancement of mechanical properties of CrN coatings
with superior crystallinity resides in the formation of an orderly crystal lattice structure.
With higher crystallinity, the crystal grains in CrN coatings are more densely packed
and display improved interconnectivity. This results in fortified atomic bonding and
increased interatomic forces within the coating. Therefore, a higher degree of crystallinity
typically translates to improved mechanical properties such as hardness, wear resistance,
and adhesion.

3.2. Residual Stress

Thin coating stress, also known as internal stress, denotes the inherent mechanical
forces present within a coating material. This stress can arise due to the structural and
energetic attributes of the coating material. During coating growth, the deposition of
atoms or molecules on the substrate prompts an internal structure rearrangement [73–78].
Concurrently, the substrate undergoes bombardment from energetic particles or atoms
during deposition, resulting in momentum transfer and stress generation [79–84].

Coating stress can be broadly categorized into two types: compressive stress and
tensile stress. These stresses originate from distinct factors and bear differing effects on
the mechanical behavior of coatings. Compressive stress arises from the bombardment of
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energetic particles (neutrals and/or ions) during film growth, leading to grain boundary
densification and dislocation generation. The lattice constant experiences a decrease due
to the high density of grain deformation induced by defects and dislocations. Such stress
typically bolsters the mechanical performance of coatings, enhancing their hardness and
deformation resistance and making them more resistant to wear, fatigue, and scratching.
When subjected to external forces or loads, compressive stress can provide support and
prevent the coating from plastic deformation [77,78,81,81,84–88]. Therefore, appropriate
compressive stress is beneficial for enhancing the mechanical properties of coatings. During
the process of thin film deposition, the presence of defects such as vacancies or dislocations
can lead to an expansion of the lattice constant, consequently inducing tensile stress within
the coating. This can also happen if the coating material has a lower atomic density. The
tensile stress in the coating results in the coating being stretched, possibly causing coating
rupture, cracking, or the formation of voids [74–77,88,89].

Elo Rg et al. [90] utilized the curvature method to compare the internal stress of
CrN coatings deposited via DCMS and HiPIMS techniques under different bias voltages
without heating. They employed Stoney’s equation [91,92] for this analysis. Their study
indicated that the impact of bias voltage on the internal stress of DCMS-deposited CrN
coatings was relatively minor. In contrast, the effect of bias voltage on the internal stress
of HiPIMS-deposited CrN coatings was quite substantial (Figure 6a). A study examining
the relationship between HiPIMS frequency and the microstructure of CrN thin coatings
by Guimaraes et al. identified similar trends [93]. Their findings suggest that increasing
the bias values for HiPIMS deposition results in an elevation of compressive stress. The
combination of higher peak power from the HiPIMS source and increased bias enhances
the ion flux and promotes the compaction of the coatings, leading to elevated residual
stresses (Figure 6b).
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Figure 6. The comparison of the residual stress of CrN coatings prepared by HiPIMS and DCMS as a
function of (a) different bias voltages [90] and (b) HiPIMS frequency [93]. The CrN coating deposited
by DCMS exhibits a weak correlation with changes in bias voltage and stress values. Conversely, the
stress in the CrN coating deposited by HiPIMS is significantly influenced by substrate bias. Reprinted
with permission from [90] Elsevier 2020, [93] Elsevier 2018.

The CrN coating deposited by DCMS lacks sufficient impact energy on the coating,
due to its low ion-to-atom ratio, resulting in a weak correlation with changes in bias
voltage and relatively low stress values. The stress level of the coating is predominantly
determined by other parameters. Conversely, the stress in the CrN coating deposited by
HiPIMS is significantly influenced by substrate bias. This is because a substantial amount
of Cr is ionized, deriving energy from the applied substrate bias, leading to extremely high
compressive stress generated within the coating [81,87,94].

3.3. Micromorphology

Cross-sectional morphology can uncover potential defects in the coating, such as
cracks, voids, or inclusions. The inspection of these defects provides valuable information
regarding the coating’s quality, mechanical stability, and potential failure
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mechanisms [6,20,95–98]. This allows researchers to detect and rectify these defects to
enhance the coating’s performance and reliability. In the case of coating failure or perfor-
mance degradation, cross-sectional images can aid in identifying the root cause. They allow
researchers to investigate the failure mode, such as delamination, cracking, or deforma-
tion, and probe the factors contributing to the failure. This information is instrumental in
devising strategies to improve coating durability and reliability [99].

Guimaraes et al. investigated the microstructure of CrN coatings grown by DCMS
and HiPIMS under different bias voltages without heating, as shown in Figure 7 [93].
Figure 7a reveals that DCMS exhibits a coarse columnar crystal growth that gradually
transitions into the dense columnar crystal morphology (from 0 V to −140 V), whereas CrN
coatings grown using HiPIMS portray a denser structure. With increasing bias voltages, the
dense columnar crystals gradually transition into nanocrystals (Figure 7b) and a featureless
coating is observed (−140 V). Another concurrent phenomenon is re-sputtering, which also
contributes to a reduction in the deposition rate of the material.
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Figure 7. SEM micrographs of the cross-sectional morphologies of the CrN coating prepared by
(a) DCMS and (b) HiPIMS [93]. The morphologies of the coatings obtained through the two techniques
show significant differences, especially when influenced by the bias voltage. These disparities
primarily result from the higher ionization rate inherent to HiPIMS and the applied bias voltage.
Reprinted with permission from [93] Elsevier 2018.

The growth of coatings using HiPIMS is characterized by high ionic fluxes in the
substrate. The ionic fluxes increase with increasing bias voltages. High-energy flux species
reach the substrate, leading to rapid nucleation, suppressing the growth of
columnar crystals and achieving dense polycrystalline or even nanocrystalline
structures [50,100–108]. As discussed in Section 2.1, during the growth process, high-
valence state plasma also acquires kinetic energy from the bias voltage, disrupting the
continuous growth of columnar crystals and even re-sputtering loose grains, ensuring
coating densification. Therefore, high-flux ionization excited by HiPIMS can surmount
the typical low-density and rough microstructure, resulting in a unique morphology at-
tained by low-temperature sputter deposition [33,40,109–115]. In comparison to coatings
deposited by DCMS, HiPIMS imparted a higher hardness, lower friction coefficient, and
better adhesion, wear resistance, and corrosion resistance to the coating [93].
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4. The Influence of HiPIMS and DCMS Techniques on Mechanical and Corrosion
Behaviors of CrN Coatings
4.1. Hardness

The hardness of CrN coatings is determined by several factors. The composition and
microstructure of the coating exert a significant influence. The nitrogen in the CrN coating
enhances its hardness by forming a hard and wear-resistant nitride phase. Moreover,
the crystalline structure of the coating, including the size and orientation of the grains,
influences its hardness [116–122]. A dense and well-aligned structure typically results in
higher hardness [121,122]. Conversely, the presence of defects within the coating could
diminish its hardness. Therefore, controlling these factors during the deposition process is
essential for attaining desirable hardness in CrN coatings.

Guimaraes et al. [93] compared the performance of CrN thin coatings deposited using
HiPIMS and DCMS (as in Figure 8a). They found that the hardness of CrN deposited by
DCMS escalated with an increasing bias voltage. However, the hardness of CrN deposited
by HiPIMS peaked at a bias voltage of 60 V and then decreased. This phenomenon might
be due to the interactions of various parameters. The highly ionized plasma in HiPIMS,
under a strong bias voltage, can inflict damage on the coating, thereby undermining its
mechanical properties [114,123,124]. Nevertheless, the hardness of CrN deposited by
DCMS consistently trailed that of CrN deposited by HiPIMS. Greczynski, G et al. compared
the hardness values of CrN coatings deposited using HiPIMS and DCMS at N2-to-the Ar
flow ratio fN2/Ar [49]. The mechanical properties of the coatings deposited by the two
sputtering techniques are compared in Figure 8b. HiPIMS yielded superior properties, even
for metallic coatings (fN2/Ar = 0), where nearly 50% harder coatings were achieved. For
both sputtering techniques, the incorporation of a modest amount of nitrogen prompted
a dramatic surge in the coating hardness. This phenomenon is widely recognized; the
bonding strength of CrN ceramic phase coatings significantly exceeds that of metal bonds.
The incorporation of both covalent and ionic bonds in the CrN ceramic phase resulted in
stronger atomic interactions, thereby enhancing the material’s strength. Furthermore, the
introduction of nitrogen causes lattice distortion and restricts the movement of dislocations.
This lattice distortion and the constraint of dislocation movements contributed to the solid
solution strengthening effect, resulting in the remarkable mechanical properties and wear
resistance of CrN ceramic phase coatings [125–127]. With the increase in the N2-to-Ar flow
ratio fN2/Ar, the hardness values of the coatings deposited by HiPIMS surpassed those
deposited by DCMS [49]. The analysis in the article suggests that this can be attributed to
the denser structure of the CrN coatings deposited by HiPIMS [49].
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Figure 8. Under varying (a) bias voltage [93] and (b) fN2/Ar conditions [49], the hardness of CrN
coatings produced via HiPIMS surpasses that of DCMS. In the process of parameter adjustment, the
hardness values of CrN coatings prepared by HiPIMS are consistently higher than those obtained
through DCMS, which can be attributed to the higher ionization rate of the plasma stimulated by
HiPIMS. Reprinted with permission from [93] Elsevier 2018, [49] IEEE Xplore 2010.

The hardness of CrN coatings significantly affects their mechanical properties. CrN
coatings with higher hardness generally exhibited improved mechanical performance. A
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high hardness indicates that the coating has robust resistance against plastic deformation,
wear, and scratching. This property is especially important for applications where the
coating is subjected to mechanical stresses or abrasive environments.

4.2. Tribological Properties

The wear resistance of CrN coatings is determined by several key factors. Firstly, the
hardness of the coating is a critical determinant. A dense and well-aligned microstructure
with a fine grain size tends to enhance wear resistance, as it can effectively distribute and
absorb the applied forces [99,128–133]. The friction coefficient of the coating also exerts
a significant influence on its tribological properties. The friction coefficient determines
the resistance to relative motion between the coating and the counter surface. The friction
coefficient of coatings is influenced by various factors, including coating composition,
microstructure, surface roughness, and environmental conditions [134–138]. By carefully
selecting and optimizing these factors, it is possible to improve wear resistance and extend
the operational lifespan.

Li et al. conducted a comparative study on the friction coefficient and wear resistance
of CrN coatings prepared with HiPIMS and DCMS [48]. The wear tracks were observed
using an optical microscope, as shown in Figure 9a. CrN coatings deposited by HiPIMS ex-
hibited lower friction coefficients compared to DCMS. This can be ascribed to the smoother
surface and denser structure. By observing the wear tracks, they found that the wear scars
of the CrN coatings deposited by HiPIMS were narrower. The analysis suggests that this
is related to the improved crystallinity and higher hardness of the coatings prepared by
HiPIMS. As shown in Figure 9b, Ehiasarian et al. reported the wear rates of Cr-based
coatings deposited using different techniques [64]. CrN coatings obtained via HiPIMS
exhibited wear rates two orders of magnitude lower than those prepared using DCMS. The
decrease in the wear rate of CrN coatings can be attributed to several factors. Firstly, CrN
coatings deposited by HiPIMS tend to feature a denser and more uniform microstructure,
which enhances their resistance to wear. Secondly, the HiPIMS deposition process enables
the formation of a smoother and more adherent coating surface, thereby reducing friction
and minimizing wear. Furthermore, the higher hardness of CrN coatings obtained through
HiPIMS contributes to their improved wear resistance. The combination of these factors,
including improved microstructure, smoother surface, and higher hardness, collectively
results in a significant reduction in the wear rate of CrN coatings deposited by HiPIMS
compared to other deposition techniques, such as DCMS.
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Figure 9. (a) The friction coefficient and wear groove width obtained from the friction and wear
tests on CrN coatings prepared via HiPIMS and DCMS [48]. (b) The sliding wear coefficient of
CrN coatings was prepared using various techniques [64]. Compared to DCMS, HIPIMS achieves a
reduced friction coefficient and enhanced wear resistance. Reprinted with permission from [48] AIP
Publishing 2020, [64] Elsevier 2003.
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4.3. Electrochemical Behavior

The electrochemical corrosion performance of CrN coatings is influenced by a range
of factors. In terms of the coating’s composition, CrN demonstrates exceptional corrosion
resistance due to the formation of a protective chromium oxide (Cr2O3) layer on the surface,
which acts as a barrier against corrosive environments and prevents interaction with the
underlying material. Regarding the coating’s microstructure, factors like grain size, grain
boundary condition, and density significantly impact the corrosion resistance of CrN
coatings. Defects within the coating can reduce its inherent corrosion resistance, while
various defects can also increase the likelihood of contact between the corrosive medium
and the coating substrate, thereby impacting the overall corrosion resistance [137–139].
Hence, a fine-grained, well-structured, and compact microstructure generally enhances the
coating’s corrosion resistance [19,21,139–144].

Zhang et al. [72] and Li et al. [48], respectively, deposited CrN coatings on ABS
substrates and stainless steel substrates to compare the differences in electrochemical
corrosion performance between HiPIMS and DCMS, as illustrated in Figure 10a,b. The
capacitive arc radius of the CrN coating prepared by HiPIMS was significantly larger, and
the polarization resistance (Rp) calculated using the fitting circuit model was 1.23 × 105

KΩ·cm−2, which was higher than that of DCMS (3.95 × 104 KΩ·cm−2). Table 1 presents
the data obtained from Figure 10b, indicating that the corrosion current of the coatings
deposited by HiPIMS was approximately one order of magnitude lower than that of the
coatings deposited by DCMS. The analysis suggests that the microstructure of the CrN
coatings prepared by DCMS was comparatively loose. The NaCl electrolyte infiltrated
along the interfaces between grain columns, corroding the crystals and resulting in larger
corrosion currents. On the other hand, CrN coatings prepared by HiPIMS exhibited a
compact structure with fewer defects, making them more resistant to the corrosion of
the crystals.
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Table 1. The results of the electrochemical experiments are based on Figure 10b.

Samples Ecorr (V) Icorr (A/cm2)

The results of polarization
curve fitting by Li et al. [48]

CrN (DCMS) −0.37 2.8 × 10−7

CrN (HiPIMS) −0.34 2.75 × 10−8

5. Prospects
5.1. Innovative Use of HiPIMS Waveforms

In recent years, numerous researchers have sought to optimize and enhance HiPIMS
technology for the deposition of CrN coatings. For example, Wu et al. employed a pulse
ignition technique in which an elevated voltage was introduced at the initiation of each
pulse in HiPIMS to ignite the plasma [145], as depicted in Figure 11a. They explored the
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impact of ignition voltage pulse width on amplifying the ion flux of the plasma. The
variation in target current (Figure 11b) suggests that the ignition pulse can effectively
enhance the ion flux generated by HiPIMS, leading to an increased deposition rate of
CrN coatings (Figure 11c). Addressing the challenge of plasma utilization, Š. Batková
et al. incorporated a positive pulse following each pulse to drive the HiPIMS afterglow
towards the substrate [146], as demonstrated in Figure 12a. As indicated in Figure 12,
the introduction of the positive pulse heightened the plasma flux reaching the substrate,
resulting in a denser CrN coating with a smoother surface.
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Figure 11. The (a) target voltage and (b) target current of the pulsed magnetron sputtering (PMS)
and dual-pulse pulsed magnetron sputtering (DP-PMS) with different ignition pulse widths (inset in
(a) shows the enlarged view). (c) The normalized static deposition rate (red data) and coating
thickness (blue data) as a function of ignition pulse width for DP-PMS and PMS [145]. The ignition
pulse can effectively improve the target discharge efficiency and deposition rate. Reprinted with
permission from [145] Elsevier 2019.

Materials 2023, 16, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 12. Waveforms of the target voltage, Ut (t), target current density, Jt (t), and substrate holder 
potential, Us (t), under (a) bipolar HiPIMS (positive pulse voltage of 400 V with the substrate holder 
at a floating potential) and (b) unipolar HiPIMS (with the substrate holder at −400 V) waveforms 
that additionally include the substrate holder power density, Ps(t). Surface morphology and rough-
ness of CrN coatings prepared under the aforementioned conditions for both (c) bipolar HiPIMS 
and (d) unipolar HiPIMS [146]. CrN coatings prepared using bipolar HiPIMS exhibit smoother sur-
faces and lower roughness. Reprinted with permission from [146] IOPscience2020. 

5.2. Irradiation Resistance and Corrosion Protection for Liquid Heavy Metals 
CrN coatings also exhibit excellent performances and wide applications in nuclear 

industries, demonstrating promising results on small Inconel 600 samples within the Hal-
den reactor [147]. In addition to offering robust corrosion protection in supercritical water 
or other coolants, CrN coatings have the capacity to withstand the corrosion of liquid 
heavy metals, which makes them a candidate for use as a coolant in next-generation nu-
clear reactors [148]. Kurata et al. investigated the applicability of the CrN coating to an 
LBE (liquid Pb-Bi) environment at 450 °C and 550 °C [149]. They found that the CrN coat-
ing exhibited good compatibility in LBE during the corrosion test because of its compact 
structure and high thermal stability. This allows the CrN coating to effectively act as a 
barrier between the LBE and the substrate. The denser the CrN coating is, the better the 
protective effect against LBE [150]. As discussed in Section 4.3, it is anticipated that CrN 
coatings prepared by HiPIMS will exhibit a compact structure with fewer defects than 
DCMS, making them more resistant to the penetration of LBE. 

Nevertheless, the operational lifespan of structural materials applied in nuclear reac-
tors can be diminished due to the bombardment from energetic particles. High doses of 
irradiation from energetic particles can inflict substantial damage to materials, leading to 
a precipitous rise in defect density and a marked deterioration in mechanical properties 
[151–153]. The accumulation of helium bubbles (a byproduct of transmutation) and voids 
resulting from vacancies can trigger significant swelling in irradiated materials, resulting 
in embrittlement and porosity [154–156]. As in Figure 13, Wu et al. deposited the ZrN and 
CrN coatings with DCMS and irradiated them with 600 keV Kr3+ at room temperature 
[157]. Their observations revealed an interruption in the continuity of columnar grains on 
the ZrN coating surface, attributable to the recrystallization and the grain coarsening of 
the ZrN. In contrast, the cross-sectional analysis of the irradiated CrN coating still mani-
fested a persistent columnar structure. This evidence underscores CrN’s superior struc-
tural stability against irradiation when compared to ZrN. The CrN coating’s steadfast 
structure under irradiation conditions presents it as a viable candidate as a structural ma-
terial in reactors. Furthermore, materials endowed with smaller grain sizes, and therefore 
higher grain boundary densities, are known to exhibit superior irradiation resistance. This 
resistance is primarily due to the interaction between irradiation-induced defects and de-
fect sinks. Such interactions can immobilize or annihilate defects through various mecha-
nisms, including diffusion, trapping, recombination, or annihilation reactions [158–161]. 
This preferential pathway for defect migration and removal fortifies the overall structural 
integrity of the material, augmenting its mechanical properties and resistance to degrada-

Figure 12. Waveforms of the target voltage, Ut (t), target current density, Jt (t), and substrate holder
potential, Us (t), under (a) bipolar HiPIMS (positive pulse voltage of 400 V with the substrate holder
at a floating potential) and (b) unipolar HiPIMS (with the substrate holder at −400 V) waveforms that
additionally include the substrate holder power density, Ps(t). Surface morphology and roughness
of CrN coatings prepared under the aforementioned conditions for both (c) bipolar HiPIMS and
(d) unipolar HiPIMS [146]. CrN coatings prepared using bipolar HiPIMS exhibit smoother surfaces
and lower roughness. Reprinted with permission from [146] IOPscience2020.

Although these innovative approaches are still in their developmental stages, they
offer invaluable insights for the industrial production of CrN coatings using
HiPIMS technology.

5.2. Irradiation Resistance and Corrosion Protection for Liquid Heavy Metals

CrN coatings also exhibit excellent performances and wide applications in nuclear
industries, demonstrating promising results on small Inconel 600 samples within the
Halden reactor [147]. In addition to offering robust corrosion protection in supercritical
water or other coolants, CrN coatings have the capacity to withstand the corrosion of
liquid heavy metals, which makes them a candidate for use as a coolant in next-generation
nuclear reactors [148]. Kurata et al. investigated the applicability of the CrN coating
to an LBE (liquid Pb-Bi) environment at 450 ◦C and 550 ◦C [149]. They found that the
CrN coating exhibited good compatibility in LBE during the corrosion test because of its



Materials 2023, 16, 6303 13 of 21

compact structure and high thermal stability. This allows the CrN coating to effectively act
as a barrier between the LBE and the substrate. The denser the CrN coating is, the better
the protective effect against LBE [150]. As discussed in Section 4.3, it is anticipated that
CrN coatings prepared by HiPIMS will exhibit a compact structure with fewer defects than
DCMS, making them more resistant to the penetration of LBE.

Nevertheless, the operational lifespan of structural materials applied in nuclear re-
actors can be diminished due to the bombardment from energetic particles. High doses
of irradiation from energetic particles can inflict substantial damage to materials, lead-
ing to a precipitous rise in defect density and a marked deterioration in mechanical
properties [151–153]. The accumulation of helium bubbles (a byproduct of transmutation)
and voids resulting from vacancies can trigger significant swelling in irradiated materials,
resulting in embrittlement and porosity [154–156]. As in Figure 13, Wu et al. deposited the
ZrN and CrN coatings with DCMS and irradiated them with 600 keV Kr3+ at room tempera-
ture [157]. Their observations revealed an interruption in the continuity of columnar grains
on the ZrN coating surface, attributable to the recrystallization and the grain coarsening of
the ZrN. In contrast, the cross-sectional analysis of the irradiated CrN coating still mani-
fested a persistent columnar structure. This evidence underscores CrN’s superior structural
stability against irradiation when compared to ZrN. The CrN coating’s steadfast structure
under irradiation conditions presents it as a viable candidate as a structural material in reac-
tors. Furthermore, materials endowed with smaller grain sizes, and therefore higher grain
boundary densities, are known to exhibit superior irradiation resistance. This resistance is
primarily due to the interaction between irradiation-induced defects and defect sinks. Such
interactions can immobilize or annihilate defects through various mechanisms, including
diffusion, trapping, recombination, or annihilation reactions [158–161]. This preferential
pathway for defect migration and removal fortifies the overall structural integrity of the
material, augmenting its mechanical properties and resistance to degradation [151–164]. As
elucidated in Section 3, the creation of such microstructural characteristics aligns perfectly
with the capabilities of the HiPIMS technique. With denser structures and higher adhesion,
it is anticipated that CrN coatings fabricated by HiPIMS will exhibit enhanced mechanical
properties and irradiation resistance compared to those deposited by DCMS.
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Figure 13. The cross-sectional SEM images of the ZrN and CrN coatings. (a,c) show the cross-sections
of the ZrN and CrN, respectively. (b,d) illustrate the cross-sections of 600 keV Kr3+ ion-irradiated
ZrN and CrN, respectively. The fluence of the ions was 1 × 1017 Kr3+/cm2 [157]. The microstructure
of the CrN coating exhibited higher stability under Kr3+ ion irradiation when compared to ZrN.
Reprinted with permission from [157] Elsevier 2019.
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6. Conclusions

In this review of recent literature, CrN deposition using both the HiPIMS and DCMS
techniques was compared, and disparities in discharge, coating growth, and consequential
mechanical properties were examined. Contrary to DCMS, HiPIMS induced a higher level
of ionization in the Cr and N plasma. This enhanced ion flux characteristic fostered better
crystallinity during the growth phase of CrN coatings. Through the efficient utilization
of this high ion flux, it can become feasible to refine the grain size of the coating, yielding
a dense or even nanocrystalline microstructure. Nevertheless, CrN coatings deposited
by HiPIMS experience limitations such as reduced deposition rates and elevated internal
stress. The internal stress can be judiciously managed by modulating the bias voltage,
while recent advancements have sought to improve the low deposition rate by altering the
HiPIMS pulse waveform. In the context of ceramic coatings like CrN, which are renowned
for their superior properties, the formation of covalent bonds between Cr particles and
N ions necessitates overcoming a substantial energy barrier. The highly ionized plasma
in HiPIMS supplies the requisite energy for this process. The swift nucleation of high-
flux coating-forming particles during coating growth sets the stage for attaining a dense
microstructure. This microstructure accounts for the superior mechanical properties of
CrN coatings grown by HiPIMS relative to those grown by DCMS. Table 2 summarizes the
typical characteristics of CrN coatings prepared by two techniques.

Table 2. CrN coatings deposition techniques, morphology, and mechanical properties from previous
studies.

DCMS HiPIMS

Deposition
parameters

[15,48,49,72,90,93]

Voltage (V) 200–500 600–1200
Peak current (A) 0.5–10 80–600
Peak power (kW) 0.5–4 8–400

Microstructure and
morphology

Texture (substrates: Si
(100)) [72] Predominately (111) Predominately (200)

Crystal size (nm) [15] 28 8
Residual stresses

(MPa) [93] −400 −1200

Microstructure [72]
The nanocrystalline

and amorphous
composite structure

The compact
nanocrystalline

structure

Morphology [48]
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Friction coefficient
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Attributable to their exceptional performance attributes, CrN coatings have garnered
extensive applications across diverse sectors, including in medicine, electronics, and nuclear
industries, in addition to their traditional usage in cutting tools. The specific demands
of these fields, such as the intricate surface growth of coatings and the development of
metal–ceramic multilayer structures, impose stricter stipulations on the properties of CrN
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coatings. There is an anticipation that HiPIMS technology, paralleled with the wide-ranging
deployment of CrN coatings, holds significant promise to serve an expanded spectrum of
industries and explore innovative possibilities in emerging application scenarios.
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