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Abstract: FRP (fiber-reinforced polymer)-reinforced concrete members have larger deflection than
reinforced concrete members because of the low modulus of elasticity of the FRP bar. In this paper,
we proposed a new effective moment of inertia equation to predict the deflection of FRP-reinforced
concrete members based on the harmony search algorithm. The harmony search algorithm is used
to optimize a function that minimizes the error between the deflection value of the experimental
result and the deflection value expected from the specimen’s specifications. In the experimental part,
four GFRP (Glass Fiber-Reinforced Polymer)- and BFRP (Basalt Fiber-Reinforced Polymer)-reinforced
concrete slab specimens were manufactured and tested. FRP-reinforced concrete slabs were reinforced
with GFRP and BFRP rebars on spiral rib surfaces. The effects of the FRP reinforcement ratio and
balanced reinforcement ratio (ρ f /ρ f b), the moment of inertia of the transformed cracked section
and the gross moment of inertia (Icr/Ig), and the cracking moment and the maximum service load
moment (Mcr/Ma) on the effective moment of inertia have been considered. The experimental
results and predicted results of the flexural testing of concrete slabs reinforced with FRP rebars were
compared, and the experimental results were in good agreement with the calculated values using the
proposed effective moment of inertia equation.

Keywords: FRP rebars; effective moment of inertia; deflection; optimization algorithm; harmony
search algorithms

1. Introduction

Reinforced concrete structures are economical, can freely manufacture the shape and
size of members, and are efficient in terms of maintenance. Therefore, concrete and steel
rebar are recognized as the most essential materials in the construction industry [1]. As
reinforced concrete structures are exposed to various environments, the steel rebar corrodes
when moisture seeps into the concrete [2]. The corrosion of steel rebars in reinforced
concrete structures can seriously affect the safety and durability of structures in harsh
environments [3,4]. Therefore, the use of FRP (Fiber-Reinforced Polymer) rebar can be
an effective solution to secure the performance and increase the service life of concrete
structures [5]. Research is being actively conducted on the development and applica-
tion of various types of FRP rebars, such as GFRPs (Glass Fiber-Reinforced Polymers),
BFRPs (Basalt Fiber-Reinforced Polymers), AFRPs (Aramid Fiber-Reinforced Polymers),
and CFRPs (Carbon Fiber-Reinforced Polymers) [6].

FRPs have excellent advantages such as high tensile strength, non-corrosiveness, and light
weight compared with steel rebars. When FRPs are used as a steel rebar substitute, it is possible
to prevent the deterioration of concrete structures caused by the corrosion of steel and increase
their durability [7–9]. Therefore, FRPs are being used more and more in various civil structures
such as bridges, tunnels, highways, marine structures, and underground structures [10].

FRP rebars do not have a yield point, but rather exhibit complete elastic behavior until
failure. In addition, FRP rebars have a relatively low modulus of elasticity compared to
steel rebar [11–13]. FRP rebars bond to concrete differently than steel rebars because their
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surface geometries and mechanical properties are different from steel rebars [14]. Therefore,
FRP-reinforced concrete members have larger deflections and crack widths than reinforced
concrete members with the same reinforcement ratio because of the difference between the
physical and mechanical properties of FRP rebars [15–17].

In addition, FRP rebar-reinforced concrete members have brittle failure modes in flexure,
either due to concrete crushing or sudden ruptures in the FRP rebar [18]. Concrete crushing
failure is preferred since it allows for control over deflection and cracking and prevents the
sudden rupture of the FRP rebar [19,20]. Therefore, the design of FRP-reinforced concrete
members generally uses the serviceability limit state considering deflection and crack width
rather than the ultimate limit state [21–23]. As a result, a method of predicting the expected
load deflection of FRP-reinforced members with significant accuracy is required.

In this study, a modified effective moment of inertia equation was proposed, and a
comparison was performed with the flexural test results of FRP-reinforced concrete slabs.
The proposed effective moment of inertia was developed based on Branson’s equation.
The harmony search algorithm was used, where 135 data points were used to minimize
the test deflection value when the proposed equation reached the final strength. In order
to examine the validity of the effective moment of inertia equation proposed through
the harmony search algorithm, a comparative analysis was performed with the flexural
stiffness results using concrete slabs reinforced by GFRP and BFRP. In the remainder of
this paper, first, the previous model of the effective moment of inertia proposed by other
researchers was analyzed. Next, the effective moment of inertia was proposed using data
collected from other from other literature. FRP-reinforced concrete specimens with GFRP
and BFRP rebar were manufactured and compared with the experimental results in order
to verify the proposed effective area moment of inertia.

2. Effective Moment of Inertia and Predictive Proposal Model
2.1. Effectivemonet Moment of Inertia

The relationship between the flexural moment and a curvature is defined as shown
in Equation (1), wherein the flexural stiffness of a member changes depending on the
magnitude of the force acting on the member, the modulus of elasticity actually changes
depending on the stress level, and the moment of inertia also changes depending on the
presence or absence of cracks. Figure 1 shows the effect on the size and load of the section,
etc., and expresses it as an idealized moment–curvature relationship. If the load is small,
the maximum moment generated will be small, and the tensile stress in the ultimate tensile
section will be less than the modulus of the failure of concrete. In this case, the entire
cross-section determines the stiffness of the concrete member [24]:

Φ =
M
EI

(1)
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When the service load or a greater load is put into action, a flexural tensile crack is
formed in the center of the member, and the position of the neutral axis in the cracked
section is shifted to the compression side. At that time, only the cracked transformed
section, excluding the concrete crack surface, becomes valid for determining the stiffness of
the member, and the moment of inertia of the central section of the member is changed to
the moment of inertia of the cracked transformed section. However, since the moment of
inertia outside the central section where the flexural crack does not occur and the moment
of inertia of the section with a low stress impact is assumed to be the same as the area
moment of inertia, the effective moment of inertia is located between the moment of inertia
of the cracked section and the area moment of inertia. According to ACI 318 [25], the
effective moment of inertia after a crack occurs, proposed by Branson [26], is presented as
show in:

Ie =

(
Mcr

Ma

)3
Ig +

(
1−

(
Mcr

Ma

)3
)

Icr ≤ Ig (2)

where Mcr is the cracking moment, Ma is the maximum service load moment, Icr is the
moment of inertia of the transformed cracked section, and Ig is the gross moment of inertia:

Mcr =
0.62λ

√
f ′c Ig

yt
(3)

Icr =
bd3

3
k3 + n f A f d2(1− k)2 (4)

Ig =
bh3

12
(5)

where λ is a modification factor reflecting the reduced mechanical properties of concrete,
f ′c is the specified compressive strength of concrete, yt is the distance from the centroidal
axis of the gross section, k is the ratio of the depth of the neutral axis to the reinforcement
depth, n f is the ratio of the modulus of elasticity of FRP rebars to the modulus of elasticity
of concrete, and A f is the area of FRP reinforcement.

n f =
E f

Ec
(6)

k =

√
2ρ f n f +

(
ρ f n f

)2
− ρ f n f (7)

ρ f =
A f

bd
(8)

Here, E f is the modulus of elasticity of FRP rebar, Ec is the modulus of elasticity of the
concrete, and ρ f is the FRP reinforcement ratio.

Branson’s equation overestimates the stiffness of the members when the Ig/Icr of
the concrete members is 3 or 4. In general, an FRP-reinforced concrete member has an
Ig/Icr between 5 and 25, which can overestimate the tensile strength and underestimate the
deflection and was thus found to be unsuitable for FRP-reinforced concrete members [27,28].
Therefore, as the deflection of FRP-reinforced concrete members has been shown to differ
from the deflection of existing reinforced concrete members, various researchers have
proposed new predictive models.

In the study of Benmokrane et al. [28], the composite action between concrete and
FRP rebar may not be as perfect as is commonly assumed. Therefore, a flexural test of
the FRP-reinforced concrete member reinforced with GFRP rebar was conducted using
the reinforcement ratio as a variable. According to the test results, the following effective
moment of inertia equation applied with the parameters Ig and Icr was proposed:
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Ie =

(
Mcr

Ma

)3 Ig

7
+ 0.84

(
1−

(
Mcr

Ma

)3
)

Icr ≤ Ig (9)

Toutanji and Saafi [29] found that the order of the effective moment of inertia depends
on the low modulus of elasticity of the FRP as well as the FRP reinforcement ratio. Therefore,
the following equation was proposed:

Ie =

(
Mcr

Ma

)m
Ig +

(
1−

(
Mcr

Ma

)3
)

Icr ≤ Ig (10)

where m = 6− 10ρ f E f /Es for members reinforced with GFRP when ρ f E f /Es < 0.3.
Hall and Ghali [30] and the ISIS Canada Design Manual [31] proposed similar effective

moments of inertia based on the concept of the moment–curvature relationships in the
CEP-FIP model code and the assumption that the tension stiffening factor relates to the
ratio Mcr/Ma. The proposed equation of Hall and Ghali [30] is shown in Equation (11), and
the proposed equation of the ISIS Canada Design Manual [31] is shown in Equation (12):

Im =
Ig Icr(

Ig + β1β2

(
Mcr
Ma

)2(
Icr − Ig

)) ≤ Ig (11)

Ie =
Ig Icr(

Icr +

(
1− 0.5

(
Mcr
Ma

)2
)(

Ig − Icr
)) ≤ Ig (12)

where β1 is a coefficient characterizing the bonding properties of rebar and is equal to 1.0
for a ribbed bar and 0.5 for a smooth bar, and β2 is a coefficient characterizing the type of
loading and is equal to 0.8 for the initial loading and 0.5 for sustained or cyclic loading.

ACI 440.1R-03 [32], Yost et al. [33], and ACI 440.1R-06 [34] suggest models of effective
moment of inertia that are generally the same. The parameter βd accounts for the bond
properties and modulus of elasticity of the FRP rebar:

Ie =

(
Mcr

Ma

)3
βd Ig +

(
1−

(
Mcr

Ma

)3
)

Icr ≤ Ig (13)

ACI 440.1R-03 [32] set βd = αb

(
E f /Es + 1

)
, where αb is a bond-dependent coefficient;

αb has been found to be 0.5 for GFRP rebars. Based on test results from 48 GFRP-reinforced
concrete beam specimens tested by Yost et al. [33], the prediction of the model was ob-
served to overestimate the test results. They then suggested a modification parameter
αb = 0.064

(
ρ f /ρ f b

)
+ 0.13. Based on an evaluation of the test results from several studies,

ACI 440.1R-06 [34] proposed a new expression for βd = 0.2
(

ρ f /ρ f b

)
, where βd is mainly

dependent on the relative FRP reinforcement ratio.
Rafi and Nadjai [35] compared the theoretical deflection of concrete beams reinforced

with FRP rebar with the test results. Based on one set of test results, they suggested an
effective moment of inertia in which the parameter βd is similar to the expression used by
the ACI 440.1R-06 [34]:

Ie =

(
Mcr

Ma

)3
βd Ig +

Icr

γ

(
1−

(
Mcr

Ma

)3
)
≤ Ig (14)

The parameter γ is a relationship obtained via a linear regression analysis of the test
results, where γ =

(
0.0017ρ f /ρ f b + 0.8541

)(
1 + E f /2Es

)
.
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Bischoff [36,37] proposed the concept of tension-stiffening in the existing Branson’s
approach to present a new expression of the effective moment of inertia that can be equally
applied to steel rebar and FRP-reinforced concrete beams. This model captures the bending
behavior of FRP-reinforced concrete beams and develops the effective moment of inertia,
which is a weighted average of the flexibility of uncracked and cracked concrete:

Ie =
Icr

1−
(

1− Icr
Ig

)(
Mcr
Ma

)2 ≤ Ig (15)

Bischoff and Gross [38] modified the previously suggested effective moment of inertia.
They concluded that a reduced cracking moment equal to 80% of the cracking moment value
in the ACI 318-08 [25] code provides a reasonable estimate of deflection for FRP-reinforced
concrete beams using their expression [22]:

Ie =
Icr

1− γ
(

1− Icr
Ig

)(
Mcr
Ma

)2 ≤ Ig (16)

γ =
3
(

La
L

)
− 4
(

4
(

Mcr
Ma

)
− 3
)(

La
L

)3

3
(

La
L

)
− 4
(

La
L

)3 ≤ Ig (17)

In Equation (17), γ is a parameter in four-point flexural beams.
Mousavi and Esfahani [22] used the genetic algorithm to propose an effective moment

of inertia of GFRP-reinforced concrete beams. Their proposed effective moment of inertia
presented accurate estimates, especially at high reinforcement ratios:

Ie = 0.17
(

Mcr

Ma

)m
Ig + 0.94

(
1−

(
Mcr

Ma

)m)
Icr ≤ Ig (18)

Neuyen et al. [39] proposed an equation of the effective moment of inertia using an AI
technique called gene expression programming (GEP). They concluded that the proposed
models provide good predictions of deflections of FRP-reinforced beams in comparison
with experimental data and results from several existing design codes:

Ie = 0.80

(
0.80

Icr

Ig
+ 0.14

(
Icr

Ig
+

Mcr

Ma

)(
0.29

Icr

Ig

ρ f

ρ f b
+

Icr

Ig
+

Mcr

Ma

))
≤ Ig (19)

2.2. Proposal of Effective Moment of Inertia

In this study, FRP-reinforced flexural test data obtained by various researchers using
four-point loading methods was collected to evaluate the accuracy of the effective moment
of inertia equations presented in the literature and to present a new equation of the effective
moment of inertia. The collected data comprised a wide range of test data, including
135 data points, and these data points were obtained from the load–deflection relationships
of approximately 112 FRP-reinforced concrete members. Details of the various experimental
studies are summarized in the Table 1 and Appendix A. In these data points, a wide range
of changes in the modulus of elasticity of concrete FRP rebar, the compressive strength
of concrete, the tensile strength of FRP rebar, the relative reinforcement ratio, the level of
loading, and the ratio of the moment of inertia of the transformed cracked section to the
gross moment of inertia are present. The changes in these parameters are presented in
Table 2. FRP-reinforced concrete members that are out of range of the data points may not
have adequately predicted deflection.
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Table 1. Experimental studies of reinforced concrete members.

Reference Number of Specimens Number of Data Points

Barris et al. [21] 12 12
Aiello and Ombres [40] 3 3

Erfan et al. [41] 6 12
Minkwan Ju et al. [42] 3 3

Mousavi and Esfahani [22] 9 9
Rafi et al. [43] 2 4

Toutanji and Deng [44] 6 6
El Rafai et al. [45] 3 9
Alsayed et al. [46] 4 8

Khorasani et al. [47] 16 16
Yoon et al. [48] 2 2

Nawy and neuwerth [23] 12 12
Saleh et al. [49] 9 12

Theriault and Benmokrane [50] 5 5
Thamrin et al. [51] 2 2
Goldston et al. [52] 6 6

Abdelkarim et al. [53] 8 8
Current study 4 8

Total 112 135

Table 2. Range of parameter changes in experimental data points.

Parameter Minimum Maximum

Compressive strength of concrete (MPa) 47.3 97.4
Modulus of elasticity of concrete (GPa) 23.1 39.1

Tensile strength of FRP rebar (MPa) 482.2 2130.0
Modulus of elasticity of FRP rebar (GPa) 26.2 178.0

FRP reinforcement ratio/
Balanced reinforcement ratio (ρ f /ρ f b) 0.263 12.700

Cracking moment/
Maximum service load moment (Mcr/Ma) 0.084 0.754

Moment of inertia of transformed cracked section/
Gross moment of inertia (Icr/Ig) 0.032 0.314

The midspan deflection of the concrete member of the four-point loading method can
be calculated as shown in Equation (20), and the effective moment of inertia is the main
factor in determining the deflection along with modulus of elasticity:

δmax =
PLa

48Ec Ie

(
3L2 − 4L2

a

)
(20)

where P is the applied load, L is the span of the beam, and La is the distance between the
support and the load point. Using the deflection of the member and the corresponding
load, the experimental value of the effective moment of inertia may be expressed as shown
in Equation (21):

(Ie)exp =
PexpLa

48Ecδexp

(
3L2 − 4L2

a

)
(21)

where Pexp is the experimental load and δexp is the experimental midspan deflection cor-
responding to Pexp. When the experimental value of the effective moment of inertia is
expressed using Branson’s Equation (2), the expression can be reversed to derive the
expression for the parameter m:

(I)exp =

(
Mcr

Ma

)m
Ig +

(
1−

(
Mcr

Ma

)m)
Icr ≤ Ig (22)
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m =

Log
(

(Ie)exp−Icr

Ig−Icr

)
Log

(
Mcr
Ma

) (23)

To derive the value of parameter m, the correlation between the Mcr/Ma, ρ f /ρ f b, and
Icr/Ig relationships are presented in Figure 2a–c. As shown in Figure 2a, the lower the ratio
of Mcr/Ma, the lower the value of m. In addition, as shown in Figure 2b,c, the parameter
m is relatively dependent on ρ f /ρ f b and Icr/Ig. According to Branson’s Equation (2), when
the load increases, the moment of inertia is interpolated between the area moment of
inertia and the moment of inertia of the cracked transformed section. Thus, in Branson’s
Equation (2), the reduction factor must be multiplied to estimate an effective moment of
inertia value that is smaller than the moment of inertia of the cracked transformed section.
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The harmony search algorithm applied in this study is the most optimized algorithm
that mimics musical harmony. This is the process by which each tone harmonizes to
create an optimal chord. The harmony search algorithm is characterized by the fact that
it does not require mathematical differentiation processes as in other algorithms and that
it is optimized by approaching it from a probabilistic perspective. The harmony value
generated in the initial full set range is stored in harmony memory, and the ranking is
continuously improved to derive the optimal harmony value. In this process, the HMCR
(Harmony Memory Considering Rate), which is the probability of randomly generating
new chords, provides the possibility of finding a better optimal value without falling into
the local solution (i.e., the local optimum). In addition, the PAR (Pitch Adjusting Rate)
improves the performance of the HMS (Harmony Memory Size) by considering it as a
value adjacent to the existing solution in order to find a good solution [54].

In this paper, Mousavi and Esfahani’s [22] approach, which is based on Branson’s
Equation (2), was followed. The proposed effective moment of inertia equation was derived
using the harmony search algorithm equipped with the parameters of the experimental data
of other researchers and the experimental results achieved in the present study. MATLAB
R2021b has been used to generate the code for the harmony search algorithm. The objective
function was to minimize the error between the deflection value of the flexural test result
and the expected deflection value applying the proposed effective moment of inertia.
Parameter m considers the FRP reinforcement ratio and balanced reinforcement ratio
(ρ f /ρ f b), the moment of inertia of the transformed cracked section and the gross moment
of inertia (Icr/Ig), and the cracking moment and the maximum service load moment
(Mcr/Ma):

f unction equation : e =

∣∣∣∣∣ δexp − δproposal

δproposal

∣∣∣∣∣× 100 (24)

δproposal =
PLa

48Ec(Ie)proposal

(
3L2 − 4L2

a

)
(25)

(Ie)proposal = X1

(
Mcr

Ma

)m
Ig + X2

(
1−

(
Mcr

Ma

)m)
Icr ≤ Ig (26)

mproposal = X3 + X4
ρ f

ρ f b
+ X5

Icr

Ig
+ X6

Mcr

Ma
(27)

The harmony search algorithm continues until the error converges to the lowest point.
For optimization, the size of HMS was set to 50, the number of interactions was set to
100,000, and the HMCR and PAR values were set to 0.70 and 0.25, respectively. The values
of obtained by the harmony search algorithm through this optimization are as follows:

(Ie)proposal = 0.12
(

Mcr

Ma

)m
Ig + 0.77

(
1−

(
Mcr

Ma

)m)
Icr ≤ Ig (28)

mproposal = 0.87− 0.19
ρ f

ρ f b
+ 8.67

Icr

Ig
+ 1.56

Mcr

Ma
(29)

3. Experimental Program

In this study, the FRP rebar used consists of individual fibers and epoxy resins and
has a spiral ribbed surface type. The FRP rebar’s diameter was 13 mm. Figure 3 shows the
surface of the GFRP and BFRP rebars and the tensile test view, and Table 3 provides the
properties of the GFRP and BFRP rebars. The tensile properties of the FRP reinforcement
were determined by testing five GFRP and BFRP specimens according to the ASTM D 7205
standard. The tensile tests were carried out using an actuator with a capacity of 3000 kN at
a rate of 3 mm per minute until the rebar failed in tension. The guaranteed tensile strengths
of the GFRP rebar and BFRP rebar with standard deviation were calculated to be 839.1 MPa
and 755.5 MPa, respectively. The designed tensile strength was calculated by multiplying
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the environmental reduction factor (0.7, for external exposure) in compliance with ACI
440.1R-15 [5], resulting in a tensile strength of 587.4 MPa and 528.9 MPa for GFRP rebar
and BFRP rebar, respectively. Their moduli of elasticity were found to be 49.0 GPa and
50.5 GPa, within the general range of the modulus of elasticity for GFRP and BFRP rebar.
The standard designed compressive strength of concrete applied in the experiment was
45.0 MPa, and the compressive strengths of five concrete specimens were measured, and
the average compressive strength was 45.4 MPa.
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Figure 3. FRP rebar and tensile test: (a) Surface of GFRP and BFRP; (b) Test set up for tensile test;
(c) Failure mode of FRP rebar.

Table 3. Typical material properties of GFRP and BFRP reinforcing rebars.

Type Nominal
Diameter (mm)

Average
Tensile Strength

(MPa)

Guaranteed
Tensile Strength *

(MPa)

Design Tensile
Strength **

(MPa)

Design Tensile
Strain (%)

Modulus of
Elasticity

(GPa)

GFRP 13.0 927.9 839.1 587.4 1.19 49.0
BFRP 13.0 1067.2 755.5 528.9 1.05 50.5

* Average tensile strength—3 × standard deviation [1] ** Environmental reduction factor (CE) is applied with 0.7,
exposed to earth and weather.

The FRP-reinforced concrete member was designed as a one-way slab in which the
FRP rebar was laid transversely. The deflection was analyzed according to the effective
moment of inertia in terms of the FRP rebar type and the FRP reinforcement ratio. As
shown in Figure 4, the specimen has the width and height of 650 × 180 mm, a cover of
46.5 mm, a total length of 2300 mm, and a pure span of 1800 mm (the blue circle in the
Figure 4). The flexural test was performed by placing a reaction force hinge at a distance
of 250 mm from both ends in a four-point loading method. The actuator device was used
to apply the load at a rate of 2 mm per minute at a distance of 300 mm from the center of
the upper part of the specimen to both sides (the red line in the Figure 4). Data of the load
and deflection were measured to determine the behavior of the one-way slab in response
to the applied load. The applied load was measured through a load cell attached to the
actuator, and the experimental midspan deflection value was measured using an LVDT
(Linear Variable Displacement Transducer). The load data and deflection data of each
FRP-reinforced member were automatically collected by a TDS-303 data logger device.
Data of the load and deflection were measured once per second.
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Figure 4. FRP-reinforced concrete slab section.

Table 4 shows the balanced reinforcement ratio design moment of each FRP reinforce-
ment in the design section suggested by ACI 440.1R [5]. In the case of short-term behaviors,
such as static experiments, it is judged that it is appropriate to analyze the strength to
evaluate the behavior without considering the environmental reduction factor.

Table 4. Balanced reinforcement ratio of reinforced concrete slab.

Specimen Balanced Reinforcement Ratio
(%)

FRP Reinforcement Ratio/
Balanced Reinforcement Ratio

GFRP 0.626(0.421 *) 0.898(1.335 *)
BFRP 0.504(0.332 *) 1.115(1.693 *)

* Environmental reduction factor not applied in ACI 440.1R-15 [1].

4. Comparison of Test Results

Figure 5 visually represents the failure mode of GFRP and BFRP specimens after the
flexural test. Table 5 shows the experimentally and analytically obtained flexural moment,
crack spacing, and mode of failure of the GFRP and BFRP specimens. The FRP-reinforced
specimens exhibited linear behavior before the cracking load, and after the initial cracking,
it behaved linearly with the load fluctuations. After that time, brittle behavior occurred
at the time of failure. The load fluctuation that occurs in the flexural test is determined to
be caused by the partial rupture of the fibers in the rebar and the bonding of the concrete
after the initial cracking load. The crack spacings of the GFRP and BFRP specimens were
observed to be 150 to 250 mm and 150 to 200 mm, respectively.
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Table 5. Result of experimental GFRP and BFRP rebar-reinforced concrete specimens.

Specimen Initial Cracking
Load (kN)

Ultimate Load
(kN)

Spacing of
Crack (mm) Mode of Failure

GFRP-1 40.06 143.14 180–250 Shear–compressive
GFRP-2 37.28 132.86 150–240 Shear
BFRP-1 38.92 167.62 150–200 Compressive
BFRP-2 42.66 154.56 150–190 Shear–compressive

Figure 6a,b compare the experimental midspan deflections for GFRP and BFRP speci-
mens to the deflections predicted using different proposed models of the effective moment
of inertia. In this study, the service load is assumed to be 40% of the ultimate load. Figure 6a
shows that for the GFRP specimen corresponding to the balanced reinforcement ratio,
the models of effective moment of inertia proposed by ACI 440.1R-03 [32], ACI 440.1R-
06 [34], and Nguyent et al. [39] were found to underestimate the values of all states of
the load after cracking. The model of Toutanji and Saafi [29] was shown to underestimate
deflection at the service load stage by predicting too much stiffness after the initial load
but overestimating the ultimate load. Figure 6b shows that for BFRP specimens corre-
sponding to the compression-controlled section, only the model of ACI 440.1R-03 [32] was
found to underestimate the values in all states of the load after cracking. Regardless of
the FRP reinforcement ratio of the specimens, the models of Hall and Ghali [30] and the
ISIS Canada Design Manual [31] showed the most conservative deflections. The model of
Benmokrane et al. [28] predicts similar deflection for all specimens at the initial load but
tends to overestimate the deflection the most at the ultimate load.
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Figure 6. Comparison of analytical load–midspan deflection of FRP-reinforced concrete specimens:
(a) GFRP-reinforced concrete specimens; (b) BFRP-reinforced concrete specimens.

Figures 7 and 8 show the ratio of experimental and predicted deflection under service
load and the ultimate load of GFRP and BFRP specimens. In the service load state, it can be
confirmed that ratio of experimental and predicted deflection by the proposed effective
moment of inertia is more accurate than that of the existing model. In the ultimate load
state, it was found that the ratio of experimental and predicted deflection was minimized
for each specimen, and it has been shown to predict the correct deflection.
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Figure 8. Experimental versus predicted midspan deflection of BFRP Specimens: (a) Ratio of experi-
mental and predicted deflection at service load; (b) Ratio of experimental and predicted deflection at
ultimate load.

Tables 6 and 7 show the service loads of the GFRP and BFRP specimens compared with
the calculation of the experimental deflection and predicted deflection for the maximum
load. For GFRP specimens, the equations of Hall and Ghali [30] and ISIS Canada [31]
overestimate the same value at the service load state, whereas our proposed model predicts
the most accurate evaluation. In the ultimate load state, most proposed models, including
the ones by Benmokrane et al. [28], overestimate the deflection. The models of ACI 440.1-
06 [34] and Mousavi and Esfahani [22], as well as ours, predicted a rather accurate error with
an average deflection within 1 mm. For BFRP specimens, the equations of Bishoff [36,37],
Bischoff and Gross [38], Mousavi and Esfahani [22], and our proposed model predicted a
rather accurate error, with the average deflection within 1 mm. In the ultimate load state,
models from ACI 440.1R-06 [34], Rafi and Nadjai [35], and Nguyen et al. [39] accurately
evaluated the average deflection error within 1 mm. It is judged that the fluctuation is
large because the deflection generated under the same load is different for each GFRP and
BFRP specimen.
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Table 6. Comparison of analytical deflections with experimental values at service load and ultimate
load of GFRP specimens.

Reference
Service Load Ultimate Load

GFRP1 GFPR2 Average GFRP1 GFRP2 Average

Benmokrane et al. [28] 1.31 2.67 1.99 −10.46 −9.06 −9.76
Toutanji and Saafi [29] 5.94 6.65 6.29 −8.49 −7.92 −8.21

Hall and Ghali [30] −3.30 −1.60 −2.45 −6.30 −6.05 −6.17
ISIS Canada Design manual [31] −3.30 −1.60 −2.45 −6.30 −6.05 −6.17

ACI440.1R-03 [32] 5.96 6.43 6.19 7.18 8.19 7.69
Yost et al. [33] 3.34 4.34 3.84 −1.98 −1.14 −1.56

Bischoff [36,37] 2.47 4.61 3.54 −3.99 −3.56 −3.78
ACI 440.1R-06 [34] 4.11 4.97 4.54 −0.38 0.56 0.09

Rafi and Nadjai [35] 4.13 4.97 4.55 0.66 1.42 1.04
Bischoff and Gross [38] 2.47 4.61 3.54 −3.99 −3.56 −3.78

Mousavi and Esfahani [22] 1.59 2.86 2.23 −0.77 −0.36 −0.57
Neuyen et al. [39] 3.15 3.99 3.57 2.24 3.08 2.66
Proposed Model 0.78 2.02 1.40 0.26 0.51 0.38

Table 7. Comparison of analytical deflections with experimental values at service load and ultimate
load of BFRP specimens.

Reference
Service Load Ultimate Load

BFRP1 BFPR2 Average BFRP1 BFRP2 Average

Benmokrane et al. [28] −0.67 −1.52 −1.09 −9.22 16.36 3.57
Toutanji and Saafi [29] 4.81 3.75 4.28 −4.98 −13.30 −9.14

Hall and Ghali [30] −5.05 −5.98 −5.52 −2.65 −10.99 −6.82
ISIS Canada Design manual [31] −5.07 −6.00 −5.53 −2.72 −11.05 −6.88

ACI440.1R-03 [32] 6.25 4.44 5.34 8.30 1.01 4.65
Yost et al. [33] 1.83 0.65 1.24 −0.13 −7.98 −4.06

Bischoff [36,37] −0.24 −0.88 −0.56 −0.74 −8.31 −4.82
ACI 440.1R-06 [34] 4.37 2.86 3.61 3.15 −4.38 −0.61

Rafi and Nadjai [35] 4.39 2.88 3.64 4.36 −3.36 0.50
Bischoff and Gross [38] −0.24 −0.88 −0.56 −0.74 −8.91 −4.82

Mousavi and Esfahani [22] 0.26 −0.89 −0.32 2.83 −5.33 −1.25
Neuyen et al. [39] 2.69 1.20 1.94 3.85 −3.55 0.15
Proposed Model −0.38 −1.61 −1.00 4.08 −4.22 −0.07

5. Conclusions

In this paper, various proposed models for the effective moment of inertia of FRP-
reinforced concrete members were reviewed. Data were secured by listing 12 existing
proposal equations of the effective moment of inertia and collecting literature reporting
results of the four-point flexural test. The collected data used a wide range of test data,
totalling 135 data points, and these data points were obtained from the load–deflection
relationship of approximately 112 FRP-reinforced concrete members. Based on the collected
data and experimental results, a new equation of effective moment of inertia was proposed
using the harmony search algorithm. The proposed equations of the effective moment of
inertia were derived to minimize the difference between the deflection of the experimental
results and the calculated value. The effects of the FRP reinforcement ratio and the balanced
reinforcement ratio (ρ f /ρ f b), the moment of inertia of the transformed cracked section
and the gross moment of inertia (Icr/Ig), and the cracking moment and the maximum
service load moment (Mcr/Ma) were considered as the parameters applied to the proposed
effective moment of inertia equation.

• The proposed model considering the ratio of the reinforcement ratio and the balanced
reinforcement ratio, the ratio of the moment of inertia of the transformed cracked
section and the gross moment of inertia, and the ratio of cracking moment and the
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maximum service load moment were confirmed to have a higher accuracy than previ-
ous models.

• In the case of GFRP specimens, Mousavi and Esfahani [22] and the proposed model
were the most accurate deflection at the ultimate load stage, and in the case of BFRP
specimens, Neuyen et al. [39] and the proposed model were the most accurate deflec-
tion at the ultimate load state.

• The proposed model using the harmony search algorithm showed a low error in the
deflection of FRP-reinforced concrete slabs. The accuracy of the proposed model was
verified by experimental results and showed good agreement.

• It is necessary to verify the suitability of the proposed model for calculating the effec-
tive moment of inertia of FRP-reinforced concrete members, such as in the presence of
various surface geometries, mechanical properties, and types of FRP rebar.
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Appendix A

Table A1. Database of the experimental four-point flexural test for deflection of FRP-reinforced
concrete members.

No Reference Specimen b d h f’
c ff Ef Af L La

1

[21]

C212D1a 140.0 163.4 190.0 59.8 1353 63,232 226.5 1800 600
2 C212D1b 140.0 163.4 190.0 59.8 1353 63,232 226.5 1800 600
3 C216D1a 140.0 161.5 190.0 56.3 995 64,152 402.5 1800 600
4 C216D1b 140.0 161.5 190.0 56.3 995 64,152 402.5 1800 600
5 C316D1a 140.0 161.5 190.0 55.2 995 64,152 603.7 1800 600
6 C316D1b 140.0 161.5 190.0 55.2 995 64,152 603.7 1800 600
7 C212D2a 140.0 142.5 190.0 39.6 1353 63,252 197.5 1800 600
8 C212D2b 140.0 142.5 190.0 39.6 1353 63,252 197.5 1800 600
9 C216D2a 140.0 140.6 190.0 61.7 995 64,152 350.4 1800 600

10 C216D2b 140.0 140.6 190.0 61.7 995 64,152 350.4 1800 600
11 C316D2a 140.0 140.6 190.0 60.1 995 64,152 525.6 1800 600
12 C316D2b 140.0 140.6 190.0 60.1 995 64,152 525.6 1800 600

13
[40]

A1 150 165 200 46.2 1506 50,080 176.71 2610 870
14 B1 150 165.2 200 46.2 1506 50,080 265.07 2610 870
15 C1 150 153.5 200 46.2 1506 50,080 353.43 2610 870

16

[41]

B1-1 150 275 300 60 482.2 57,982 100.5 1600 300
17 B1-2 150 275 300 60 636.3 43,939 157.1 1600 300
18 B1-3 150 275 300 60 745.6 37,500 226.2 1600 300
19 B2-1 150 275 300 50 482.2 57,982 100.5 1600 300
20 B2-2 150 275 300 50 636.4 43,939 157.1 1600 300
21 B2-3 150 275 300 50 745.6 37,500 226.2 1600 300

22
[42]

FB-1 180 186.0 230 27 841 42,100 144 1600 685
23 FB-2 180 186.0 230 27 841 42,100 216 1600 685
24 FB-3 180 173.5 230 27 841 42,100 288 1600 685
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Table A1. Cont.

No Reference Specimen b d h f’
c ff Ef Af L La

25

[22]

B1 150 165 200 20 490 41,000 142 2000 650
26 B2 150 165 200 20 490 41,000 471 2000 650
27 B3 150 165 200 20 490 41,000 671 2000 650
28 B4 150 165 200 38 490 41,000 142 2000 650
29 B5 150 165 200 38 490 41,000 471 2000 650
30 B6 150 165 200 38 490 41,000 671 2000 650
31 B7 150 165 200 64 490 41,000 142 2000 650
32 B8 150 165 200 64 490 41,000 471 2000 650
33 B9 150 165 200 64 490 41,000 671 2000 650

34
[43]

BRC1 120 175.3 200 42.6 1676 135,900 147.2 1750 675
35 BRC2 120 175.3 200 41.7 1676 135,900 147.2 1750 675

36

[44]

GB1-1 180 268 300 35 695 40,000 250.8 2800 1200
37 GB1-2 180 268 300 35 695 40,000 250.8 2800 1200
38 GB2-1 180 268 300 35 695 40,000 381.1 2800 1200
39 GB2-2 180 268 300 35 695 40,000 381.1 2800 1200
40 GB3-1 180 225 300 35 695 40,000 445.5 2800 1200
41 GB3-2 180 225 300 35 695 40,000 445.5 2800 1200

42
[45]

2G12 230 254 300 40 1000 50,000 226.2 3700 1250
43 3G12 230 254 300 40 1000 50,000 339.3 3700 1250
44 3G16 230 252 300 40 1000 50,000 603.2 3700 1250

45

[46]

2 200 157.5 210 31.3 700 35,630 1134 2900 1250
46 3 200 210.7 260 31.3 886 43,370 507 2900 1250
47 4 200 247.5 300 40.7 700 35,630 567 2900 1250
48 5 200 197.5 250 40.7 700 35,630 1134 2900 1250

49

[47]

2D16-8S70-N 250 214 250 30 775 46,000 402 2000 800
50 2D16-10S110-N 250 212 250 30 775 46,000 402 2000 800
51 2D16-8S35-N 250 214 250 30 775 46,000 402 2000 800
52 2D16-10S55-N 250 212 250 30 775 46,000 402 2000 800
53 5D10-8S70-N 250 217 250 30 789 44,000 393 2000 800
54 5D10-10S110-N 250 215 250 30 789 44,000 393 2000 800
55 5D10-8S35-N 250 217 250 30 789 44,000 393 2000 800
56 5D10-10S55-N 250 215 250 30 789 44,000 393 2000 800
57 3D18-8S70-N 250 213 250 30 800 42,000 763 2000 800
58 3D18-10S110-N 250 211 250 30 800 42,000 763 2000 800
59 3D18-10S55-N 250 213 250 30 800 42,000 763 2000 800
60 3D18-10S55-N 250 211 250 30 800 42,000 763 2000 800
61 5D14-8S70-N 250 214 250 30 825 45,000 770 2000 800
62 5D14-10S110-N 250 212 250 30 825 45,000 770 2000 800
63 5D14-8S35-N 250 214 250 30 825 45,000 770 2000 800
64 5D14-10S55-N 250 212 250 30 825 45,000 770 2000 800

65
[48]

CC 230 184 250 75.9 2130 146,200 256 1900 800
66 GG 230 184 250 75.9 941 48,100 762 1900 800

67

[23]

BF1 127 286 305 38.6 724 26,200 253 3050 990
68 BF2 127 286 305 40.7 724 26,200 253 3050 990
69 BF3 127 286 305 40.0 724 26,200 379 3050 990
70 BF4 127 286 305 38.6 724 26,200 379 3050 990
71 BF5 127 286 305 37.2 724 26,200 506 3050 990
72 BF6 127 286 305 35.2 724 26,200 506 3050 990
73 BF7 127 273 305 32.4 724 26,200 632 3050 990
74 BF8 127 273 305 29.7 724 26,200 632 3050 990
75 BF9 127 273 305 29.7 724 26,200 758 3050 990
76 BF10 127 273 305 35.2 724 26,200 758 3050 990
77 BF11 127 273 305 39.3 724 26,200 885 3050 990
78 BF12 127 273 305 30.4 724 26,200 885 3050 990
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Table A1. Cont.

No Reference Specimen b d h f’
c ff Ef Af L La

79

[49]

A1 100 125 150 55.4 732 37,500 63.3 2400 900
80 A2 100 125 150 55.4 732 37,500 95.0 2400 900
81 A3 100 125 150 55.4 732 37,500 126.7 2400 900
82 B1 100 125 150 70.8 1764 55,600 142.7 2400 900
83 B2 100 125 150 70.8 1764 55,600 214.0 2400 900
84 B3 100 125 150 70.8 1764 55,600 285.3 2400 900
85 C1 100 125 150 90.1 1605 48,600 253.4 2400 900
86 C2 100 125 150 90.1 1605 48,600 380.0 2400 900
87 C3 100 125 150 90.1 1605 48,600 506.7 2400 900

88

[50]

BC2HA 130 160 180 57.2 773 38,000 241.28 1500 500
89 BC2VA 130 160 180 97.4 773 38,000 241.28 1500 500
90 BC4NB 130 140 180 46.2 773 38,000 504.14 1500 500
91 BC4HA 130 140 180 53.9 773 38,000 504.14 1500 500
92 BC4VA 130 140 180 93.5 773 38,000 504.14 1500 500

93
[51]

G-1 130 210 230 41.6 778 54,000 175 1900 1500
94 C-0-1 130 210 230 41.6 1875 178,000 175 1900 1500

95

[52]

40#2-0.5 100 127.8 150 40 732 37,500 63.4 2000 667
96 40#3-1.0 100 126.2 150 40 1764 55,600 142.6 2000 667
97 40#4-2.0 100 124.7 150 40 1605 48,600 253.4 2000 667
98 80#2-0.5 100 127.8 150 80 732 37,500 63.4 2000 667
99 80#3-1.0 100 126.2 150 80 1764 55,600 142.6 2000 667

100 80#4-2.0 100 124.7 150 80 1605 48,600 253.4 2000 667

101

[53]

B1-35-12 200 262 300 35 1166 65,000 226 2700 500
102 B2-35-16 200 262 300 35 1122 63,000 402 2700 500
103 B3-35-20 200 262 300 35 1117 69,000 628 2700 500
104 B4-35-25 200 262 300 35 1340 65,000 980 2700 500
105 B5-65-12 200 250 300 65 1166 65,000 226 2700 500
106 B6-65-16 200 250 300 65 1122 63,000 402 2700 500
107 B7-65-20 200 250 300 65 1117 69,000 628 2700 500
108 B8-65-25 200 250 300 65 1340 65,000 980 2700 500

109
Current
study

GFRP-1 650 133.5 180 45.4 649.5 49,000 488 1800 600
110 GFRP-2 650 133.5 180 45.4 649.5 49,000 488 1800 600
111 BFRP-1 650 133.5 180 45.4 747.0 50,500 488 1800 600
112 BFRP-2 650 133.5 180 45.4 747.0 50,500 488 1800 600
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