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Abstract: This study primarily focuses on conducting, both experimentally and numerically, a modal
analysis of a cantilever composite beam. Through extended numerical simulations, we investigate
Campbell diagrams, which, depending on the rotation speed of the structure, comprise natural
frequencies and their corresponding modal shapes. Our results are categorized into two main aspects:
the classical single-mode behavior and an innovative extension involving linearly coupled modal
analysis. One key novelty of our research lies in the introduction of an analytical description for
coupled mode shapes, which encompass various deformations, including bending, longitudinal
deformations, and twisting. The most pronounced activation of dynamic couplings within the linear
regime for a 45◦ preset angle is observed, though the same is not true of the 0◦ and 90◦ preset angles,
for which these couplings are not visible. In addition to the modal analysis, our secondary goal is to
assess the lift, drag forces, and moment characteristics of a rectangular profile in uniform flow. We
provide insights into both the static and dynamic aerodynamic responses experienced by the beam
within an operational frequency spectrum. This study contributes to a deeper understanding of the
dynamics of composite rotating beams and their aerodynamic characteristics.

Keywords: composite material; rotating structure; modal interactions

1. Introduction

Beams are among the most popular construction elements in engineering. Therefore,
it is crucial to have a solid understanding of both the basic and advanced theories related to
beam modeling. This knowledge is not only applied but also enhanced in the case of rotat-
ing beams, which find widespread use in various industrial applications. Some of the most
common applications include wind turbines, helicopter rotors, and airplane propellers.

In their work [1], the authors provided a comprehensive review of the most common
theories pertaining to beams, which have been utilized by scientists over the past few
decades. They examined classical approaches, such as those by Da Vinci, Euler-Bernoulli,
and Timoshenko, in addition to the Generalized Beam Theory. Special emphasis was
placed on the Carrera Unified Formulation (CUF) in one dimension, and the authors pre-
sented numerical examples illustrating its application in static, dynamic, and aeroelastic
problems. Furthermore, they conducted an overview of two recently developed methods:
axiomatic/asymptotic and component-wise approaches. The primary conclusion drawn
from this critical review is that beam theories are still in need of further development and
improvement. In another study by Wang et al. [2], a reduced model for vortex-induced
vibrations (VIVs) in turbine blades is derived. In this study, the authors modeled the blades
as uniform cantilever beams and employed the multiple scale method to investigate non-
linear dynamics. Subsequently, they calculated frequency–response curves and identified
two types of bifurcation. The results presented underscored the necessity of employing
coupled models to analyze the rich dynamics of VIVs.

The asymptotic development method is employed in [3] to investigate the free non-
linear oscillations of initially straight Timoshenko beams. The authors focused on two
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different definitions of curvature: one with respect to the deformed length and the other
with respect to the undeformed length. The comparison of these two methods was the
primary objective of their study, and the authors demonstrated that the results for slender
beams are very similar when using both approaches. Furthermore, in [4], the authors
analyzed the model of a geometrically exact nonlinear Timoshenko beam. They derived
the equations of motion for the structure but primarily concentrated on one-dimensional
constitutive equations. The paper presents basic numerical results. A similar approach
is applied in [5] to analyze the dynamics of an elastic isotropic rotating beam. The eigen-
values and mode shapes are obtained for the linear problem, and the coupling between
flapping, lagging, axial, and torsional components is studied. In the second part of the
paper [6], the authors focused on analytical calculations. They applied the multiscale
method directly to the partial differential equations of motion and drew backbone curves.
Additionally, they analyzed three flapping modes as the angular speed varied from low
to high. The scientists demonstrated that the nonlinearities of the flapping modes are
strongly correlated with angular speed and can transition from hardening to softening and
vice versa. In addition, Thomas et al. [7] conducted a study on the influence of rotation
speed on the nonlinear vibrations of a cantilever beam. They focused on the phenomena of
hardening/softening and jump effects, particularly when dealing with large amplitudes. To
analyze these phenomena precisely, they employed three different models: two analytical
models and one original model based on finite-element discretization. On a related note, the
nonlinear vibrations of a rotating Timoshenko beam were investigated using the p-version
finite element (FE) method in [8]. This study considered two types of nonlinearities: the
strain–displacement relationship and the inertia force resulting from the rotation speed.
Nonlinear forced vibrations were analyzed in the time domain, with consideration for both
constant and non-constant rotation speeds. Carrera et al. [9] examined the free vibrations
of a rotating composite blade. They employed the Carrera Unified Formulation (CUF) and
the FE method to solve the governing equations. The authors placed their focus on both
flapwise and lagwise motion, and they also accounted for the Coriolis force in their analysis.
In a related study, presented in [10], the authors delved into the nonlinear vibration of a
rotating beam with variable angular velocity. They concentrated on the coupling between
longitudinal and bending vibrations. The authors derived the governing equations of
motion using Hamilton’s principle and the Galerkin method. They then applied the multi-
scale method to obtain a first-order approximate solution. Their results were compared to
those obtained through numerical integration, demonstrating a very good agreement. In
the work of [11], the same methods were applied to derive the equations of motion for a
rotating composite Timoshenko beam with both open and closed box-beam cross-sections.
The authors stated that the change in pitch angle significantly influences the coupling
between flapwise bending and chordwise bending motions, which is associated with the
centrifugal force. The presented results take into account nonconstant angular speed as well
as a nonzero pitch angle. Given the practical applications of rotating beams and structures,
it is of paramount importance to consider the significant impact of aerodynamic loads on
their dynamics. In the paper by DiNino et al. [12], an in-depth analysis of a homogeneous
viscoelastic beam was conducted under the influence of uniformly distributed turbulent
wind flow. This study encompasses an examination of both the steady and turbulent
components of the wind, with a particular focus on their roles in Hopf bifurcation and
parametric excitation. The authors also emphasized the interaction between bifurcation
phenomena and the critical and post-critical behavior of the beam. Meanwhile, in [13],
Elmiligui et al. present results obtained from numerical simulations of flow past a circular
cylinder. Two distinct approaches are employed to prepare the model for simulations,
and the resulting data are compared with previously published experimental findings.
Nonlinear vibrations of the blade under high-temperature supersonic gas flow and varying
angular speed are presented in [14]. The authors assume that the blade is pre-twisted,
presetting, and a thin-walled rotating cantilever beam is used. The equations of motion
are derived using Hamilton’s principle and the Galerkin method, revealing the presence of
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1:1 internal resonance as well as primary resonance. The numerical results presented in
the paper show that not only periodic motions but also chaotic motions can occur in the
nonlinear vibrations of the rotating blade when the angular speed varies. Furthermore,
in [15], a bifurcation analysis of a rotating pre-twisted beam is presented, taking into ac-
count varying speed and aerodynamic forces. The model is analyzed in both the chordwise
and flapwise directions, revealing phenomena such as jumps, saturation, and double jumps.
Additionally, in [16], a model of an Euler–Bernoulli beam with nonlinear curvature and
coupled transversal–longitudinal deformation is introduced. The authors applied Hamil-
ton’s principle to derive the equations of motion, with a focus on time delay control as
the primary task. They presented the influence of linear and cubic control methods on
vibration reduction for different rotating speeds. Meanwhile, nonlinear vibrations of a
slowly rotating beam with a tip mass are studied in [17]. The authors applied the extended
Euler–Bernoulli theory to analyze longitudinal–bending–twisting vibrations. They utilized
the multiple time-scale method to solve partial differential equations and demonstrate
the influence of angular speed, tip mass, and hub on nonlinear vibrations. Furthermore,
the free vibrations of the beam model with a tip mass are explored in [18]. The authors
focused on cross-sectional rotations, lateral bending, and transverse bending. The numeri-
cal simulations illustrate the effects of tip mass, rotary inertia, viscoelastic damping, and
the beam inertia ratio on the stability of the system, as well as on natural frequencies. In
their work, Huang et al. [19] presented fascinating results from experimental studies on
slowly rotating cantilever beams. They employed Digital Image Correlation, the Phase
Mapping Method, and direct measurements under operational conditions to analyze three
beams, subjecting them to twenty different angular velocities. Their findings revealed
centrifugal hardening behaviors in the flap-wise direction, confirming the accuracy of their
chosen model. Notably, they achieved excellent agreement between experimental data
and numerical calculations for hardening frequency. Another study of rotating composite
beams is discussed in the paper by Gawryluk et al. [20]. In this research, the authors
assumed a constant angular velocity for the rotating beam and utilized a Macro Fiber
CompositeTM (MFC) actuator for excitation. They employed numerical solutions via the
FE method, which were subsequently validated through experimental testing. Addition-
ally, Rafiee et al. [21] provided a critical review of scientific papers focused on rotating
beams. The authors examined various approaches to calculations, including analytical,
semi-analytical, and numerical methods, and discussed different beam theories. This paper
offers a comprehensive overview of research on beam vibrations that has been conducted
in recent years.

In a study by Teter et al. [22], modal analysis of a rotor composed of three active
composite beams is presented. They compare experimental results obtained from a laser
vibrometer and a LMS Test.Lab analyzer® with modal hammer to numerical simulations
performed using Abaqus® software. The authors achieved excellent agreement among all
methods, not only for natural frequencies but also for mode shapes. In the subsequent
paper authored by Mitura et al. [23], the dynamics analysis of the rotor operating at a
constant angular velocity is presented. The authors employed a Digital Signal Processing
(DSP) system to excite vibrations in the beams and control angular speed. The authors
investigated the influence of the piezoelectric effect and the hub’s speed on the rotor’s
dynamic behavior. An analysis of force vibrations in a mistuned three-bladed rotor is
presented in Warminski et al. work [24]. They assumed that beam mistuning in the rotor
results from manufacturing processes in composite production. The rotor was excited
by harmonic torque, or by chaotic oscillations. This study revealed the localization phe-
nomenon. Furthermore, the localization and synchronization in a rotor with three beams
were studied by Szmit in [25]. The model was analyzed numerically based on equations
of motion and through numerical simulations using Abaqus® software. Additionally, the
paper presented results from experimental studies, including natural and force vibrations.
Finally, Szmit et al. [26] conducted fully experimental studies on a three-bladed rotor.
They used high-speed cameras during constant angular speed rotation to analyze the
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aerodynamic loads at different preset angles. The results include polynomials describing
aerodynamic loads based on camera images.

Despite the extensive literature on rotating beams’ vibrations, in which the single-
mode linear behaviour of the eigenvalue problem is corrected through nonlinear effects,
the mechanical coupling, which already occurs in the linear problem between two distinct
orthogonal modes, appears to be overlooked in the analytical/numerical models. This
provided motivation for conducting a numerical modal analysis within detailed inspection
of interactions already in the the linear scope. Furthermore, the linear dynamics of beams is
supplemented with aerodynamic characteristics that are closely dependent on the beam’s
geometry. Research on this aspect is lacking in the majority of studies on rotating beams.

The paper is organized as follows. In Section 2 linear modal analysis of the rotating
structure are presented. Graphs illustrating the change in natural frequencies and associated
linear mode shapes with rotor rotational speed are discussed, and linear mode couplings
of bending, longitudinal motion and torsion in the spatial coordinate system are explored.
The aerodynamic characteristics of static and dynamic lift/drag forces, together with
aerodynamic momentum, are investigated in Section 3. The article concludes with final
remarks and a description of future scientific research directions in Section 4.

2. Dynamic Response of Composite Structure

Let us consider a composite beam attached to a rigid hub with a radius R; see Figure 1.
The beam is made of highly elastic ThinPregTM 120EP-513/CF resin and M4JB-12000-50B
(TORAY) carbon fibers. Moreover, a specific stacking sequence [0/−60/60/0/−60/603/
−602/02/−60/02/602/−60] ensures isotropic properties of material in the linear elastic
regime, as defined by Hook’s law [27]. Uniform distribution of the material along the
specimen’s length L = 595 mm and cross-sectional area b × h = 35 mm × 0.9 mm is
assumed [25]. The effective mechanical properties of the composite structure are gathered
in Table 1. In Figure 1a, only one coordinate system exists that rotates with the rotating
beam–hub structure. The x-axis aligns with the longitudinal axis of the undeformed beam,
the z-axis coincides with the hubs’ rotation axis and the y-axis completes the right-handed
Cartesian coordinate system. Additionally, in Figure 1b, an angle Θ is measured from
xy-plane positively defined in accordance with the right-hand rule about the x-axis. A
preset angle Θ can be varied from 0◦ to 90◦, and describes the orientation of the blade
attached to the hub. The system rotates with a constant speed ϕ̇. The hub’s mass moment
of inertia is infinite; hence, the rotating imbalance and inertial coupling between successive
beams are not taken into account. The target of this assumption is to eliminate additional
interactions between consecutive beams. The attention is devoted only to the beam as a 3D
continuous structure, which can be deformed out of plane (outplane bending i), in-plane
(inplane bending j), along the main of the beams’ axis (longitudinal k) as well as twist
(torsion l). Note that, since the xyz coordinate system is embedded in the rotating hub, the
directions of introduced deformations i and j are not aligned with the xy and yz planes.
Only longitudinal k and twisting l motions can be referenced relative to the x-axis.

Table 1. Effective mechanical properties of the composite beam: density, mass per unit length,
Young’s modulus, shear modulus, Poisson’s ratio [16].

ρ µ E G ν

kg/m3 kg/m GPa GPa (-)

1350 0.042525 55.7225 20.4862 0.36
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Figure 1. The beam–hub structure: (a) an isometric top view, and (b) a viewpoint orthogonal to the
primary axis of the beam.

Commercial Ansys® software was used for all numerical simulations presented in
the paper. In the first step, the natural frequencies and associated mode shapes were
validated in accordance with analytical calculations, simulations of competitive commercial
software [17,28], as well as experimental studies performed in the absence of rotation
(ϕ̇ = 0) e.g., by neglecting the centrifugal force [16]. Nevertheless, the experimental
investigations were restricted solely to the first two modes of natural vibrations. This
prompted the authors to explore higher frequencies of the system’s natural vibrations
within the frequency range that aligns with forthcoming numerical analyses.

Experimental measurements were conducted in the laboratory of the Department of
Applied Mechanics at the Lublin University of Technology. An advanced PSV 500 laser
scanning vibrometer and an electromechanical exciter SmartShaker K2007E01 were used
for the measurements [22]. The measurement system setup is illustrated in Figure 2. The
experiment was conducted based on a periodic chirp excitation in the frequency range
of 0–25,132.7 rad/s (0–4 kHz), with the excitation applied at the base of the beam using
the head of the electromechanical shaker. The calibrated scanning head performed three
measurements for each of the 385 predefined points. Fast Fourier Transform (FFT) was
then applied to the recorded time-domain signals for each point to identify resonant peaks
and their associated vibration modes. The results of the vibration tests are presented as
the first twenty detected modes of vibrations shown in Figure 3, and the corresponding
magnitude–frequency plots are presented in Figure 4.

Figure 2. The scheme of the experimental setup.
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ω1 = 17.67 rad/s ω2 = 111.90 rad/s ω3 = 314.16 rad/s ω4 = 394.65 rad/s ω5 = 610.60 rad/s

ω6 = 942.48 rad/s ω7 = 1077.94 rad/s ω8 = 1240.93 rad/s ω9 = 1421.57 rad/s ω10 = 1653.26 rad/s

ω11 = 2281.58 rad/s ω12 = 3025.73 rad/s ω13 = 3885.77 rad/s ω14 = 4843.96 rad/s ω15 = 5317.15 rad/s

ω16 = 5910.12 rad/s ω17 = 6381.20 rad/s ω18 = 7164.72 rad/s ω19 = 7353.27 rad/s ω20 = 8391.82 rad/s

Figure 3. Experimental linear (single) mode shapes.

Figure 4. Frequency magnitude curves of dynamic tests for measured signals: velocity multiplied by
force sensors’ voltage, displacement, velocity, and acceleration (from top to bottom).
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It is worth noting at this stage that in the absence of angular velocity, despite the use
of a composite structure and a very broad frequency spectrum, no dynamic couplings were
observed in the linear range of the dynamic response. The detected natural frequencies
align with the numerical calculations reported in the Section 2.1. The authors regret that,
due to technical constraints, they were unable to perform modal analysis considering a
rotating structure. Consequently, experimental measurements were complemented only
with numerical simulations using the finite element method.

2.1. Campbell Diagram

In this Section, the rotating system is axially pre-stressed due to centrifugal forces and
then subjected to linear modal analysis. The distribution of centrifugal forces depends on
angular velocity ϕ̇ as well as the dimensions of the beam and the radius of the hub. It
interferes with inertia and stiffness matrices and has a significant impact on eigenvalue
problems such as linear eigenfrequencies and associated modes shapes. Natural frequen-
cies as a function of rotational speed, e.g., Campbell diagrams, for five preset angles are
presented in Figure 5. The linear natural frequencies up to 3000 rad/s are reported, and
extended analysis for higher-order modes with logarithmic scale on ordinate are gathered
in Appendix A.

(a)

(b)

(c)

Figure 5. Cont.
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(d)

(e)

Figure 5. Campbell diagram of the rotating beam for predefined preset angle: (a) Θ = 0◦, (b) Θ = 30◦,
(c) Θ = 45◦, (d) Θ = 60◦, (e) Θ = 90◦.

In the angular velocity absence ϕ̇ = 0, the natural frequencies are the same regardless
of the radius of the hub and the preset angle of the blade. When rotation is activated, the
two boundary angles Θ = 0◦ and Θ = 90◦ represent the dynamics of clear single-modes
of vibration. In Figure 5a,b, despite numerous intersections of natural frequencies, no
couplings occur. It is very interesting that for a rotational speed of 260 rad/s, three curves
intersect at 650 rad/s. In general, values of natural frequencies increase with increasing
rotational speed, but the slope trends are different. In contrast to the other curves, only
the first torsion mode at Θ = 0◦ has a constant value of natural frequency. In the scenario
in which linear modal couplings occur, indications on Campbell charts are not reported
because they cannot be assigned to the conventional vibration modes included in the legend
of the graphic. The individual interpretation will be performed in Section 2.3. Therefore, for
preset angle Θ = 30◦, Θ = 45◦ and Θ = 60◦ strong linear modal interactions are observed
in Figure 5b–d. In the first and third cases, the 1st inplane bending mode is lacking only for
300 rad/s and 400 rad/s, respectively. The preset angle Θ = 45◦ seems to be the critical
one, for the sake of only torsion modes, and the 1st outplane modes were matched in the
studied angular speed interval. This means that in the linear range, there is already a strong
coupling or multiple instabilities in simulations on the beam.

2.2. Linear Mode Shapes

Campbell diagrams display only natural frequencies and lack information about the
deformation of the shape. Based on three selected angular speeds, the change in linear
mode shapes necessitates a proper discussion on deflection half-waves and the modal nodes
location. To facilitate the observed changes, selected higher-order modes are presented
in Figure 6. The third out-of-plane bending mode is very susceptible to angular velocity
in the range of up to 1000 rad/s. Firstly, the natural frequency varies from 295.591 rad/s
to 3917.31 rad/s. Secondly, the two modal nodes shift at approximately 1.5% and 0.84%
at 100 rad/s. The changes become more prominent at approximately 3.7% and 3.5% at
100 rad/s. The mentioned shifts in % refer to nodals’ displacements over the length of
the beam in the free rest configuration. Standardization of the results to the maximum
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beam deflection also shows that with the increase in rotational speed, the amplitude of
the first two half-waves decays with respect to the free end. Moreover, the deflection
arrows of the half-waves are inclined to the right. The second flexural in-plane mode shape
remains constant for increasing rotational speed, while its natural frequency changes from
3968.35 rad/s to 4569.89 rad/s, which provides an increase of about 15% (see Figure A1).
Analogously to the bending mode in the susceptible direction, torsional vibrations display
a shift in the modal node by approximately 0.5% and 5.9% for 100 rad/s and 1000 rad/s,
respectively. The second analogy is the reduction in the maximum twist in the first half-
wave. We note that standard linear mode shape projections (Φi, Φj, Φk and Φl) consisting
of amplitudes (A1–A4, B1–B4, C1–C2 and D1–D2) and characteristic coefficients (λ1, λ2, λ3
and λ4) can be described in the form

Φi(x) = A1 sin (λ1x) + A2 cos (λ1x) + A3 sinh (λ1x) + A4 cosh (λ1x), (1)

Φj(x) = B1 sin (λ2x) + B2 cos (λ2x) + B3 sinh (λ2x) + B4 cosh (λ2x), (2)

for outplane/inplate bedning, and

Φk(x) = C1 sin (λ3x) + C2 cos (λ3x), (3)

Φl(x) = D1 sin (λ4x) + D2 cos (λ4x), (4)

for longitudinal and twisting are sufficient. Hoverer, the indicated amplitudes and char-
acteristic coefficients must satisfy the sclerotic boundary conditions at x = 0 and rheo-
nomic constraints x = L by balancing internal forces, centrifugal forces, Coriolis forces
and inertia terms. To date, finding an analytical solution to such a complex problem
remains challenging.

outplane bending inplane bending torsion

(a)

(b)

(c)

Figure 6. Linear mode shapes for preset angle Θ = 90◦ and varying angular velocity: (a) ϕ̇ = 0 rad/s,
(b) ϕ̇ = 100d rad/s and (c) ϕ̇ = 1000 rad/s.

2.3. Linear Mode Couplings

In this section, we devote attention to more sophisticated mode shapes, which involves
combining at least two linear unidirectional mode shapes [29]. The introduced i, j, k, l
notations can be extended to combined mode shapes Φ(i, j, k, l) in the linear regime, e.g., the
third inplane bending mode interacting with the first longitudinal mode and second twist
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mode can be classified as Φ(0, 3, 1, 2). In proposed notation, the frequency dependence
is omitted for simplicity. Referring to Campbell charts of Figure 5c, a set of the most
interesting solutions of numerical simulations for preset angle Θ = 45◦ and ϕ̇ = 800 rad/s
is presented in Figure 7. This is a particularly complicated case, in which twin modes of
vibrations Φ(4, 2, 0, 0) for ω7 = 4164.62 rad/s and Φ(4, 2, 0, 0)∗ for ω9 = 4662.44 rad/s are
obtained. Despite the fact that both consist of the fourth flexible mode and the second
flexible mode with greater stiffness, their natural frequencies differ. Moreover, in Figure 7a
the i-type mode is dominant, while in Figure 7b, the j-type mode is more exposed. Since
the notation counts only the dominant modes, it is conventional to implement weights (Ā,
B̄, C̄ and D̄) for each mode of vibration

Φ̄(t, x) = sin (ωnt)Φ(i, j, k, l) = sin ωnt
[
ĀΦi(x) + B̄Φj(x) + C̄Φk(x) + D̄Φl(x)

]
, (5)

Ā + B̄ + C̄ + D̄ = 1, (6)

where ωn corresponds to the nth natural frequency of a given ϕ̇, while t is the time.
Other detected modal couplings include the combination of the 9th outplane bending

with the 3rd in plane bending and 1st longitudinal with 10th torsion, which are presented
in Figure 7c and Figure 7d, respectively. We have observed that neither the first in-plane
bending singular mode nor any coupled modes are detectable; therefore, this mode can be
subtly incorporated into other coupled modes of vibration.

(a) Φ(1, 1, 0, 0), ω7 = 157.45 rad/s

(b) Φ(4, 2, 0, 0), ω7 = 4164.62 rad/s

(c) Φ(4, 2, 0, 0)∗, ω9 = 4662.44 rad/s

Figure 7. Cont.
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(d) Φ(9, 3, 0, 0), ω17 = 11332.35 rad/s

(e) Φ(0, 0, 1, 10), ω25 = 16904.28 rad/s

Figure 7. Linear mode couplings for preset angle Θ = 45◦ and ϕ̇ = 800 rad/s.

Extended results for fixed preset angle Θ = 45◦ and gradually varied rotational speed
ϕ̇ for 200 rad/s, 300 rad/s, 400 rad/s, 500 rad/s, 600 rad/s, 700 rad/s, 900 rad/s and
1000 rad/s are reported in Figures A2–A8. These results provide a solid basis for further
analyses using analytical methods, indicating the level of complexity of the issue in 4D
space and in the time/frequency domain.

3. Aerodynamic Simulations
3.1. Lift/Drag Forces and Momentum

In this section, we focus on the aerodynamic aspects of the 2D blade in the flow of
uniform air. The rectangular cross-section of the beam is placed at a given preset angle, Θ.
In the studied case of a non-deformable structure, the preset angle is consistent with the
angle of attack. Geometric details of the Computational Fluid Dynamics (CFD) simulations
are presented in Figure 8. During the simulations, aerodynamic forces were recorded over
time. In post-processing, the maximum and minimum magnitudes, as well as the mean
values, of steady-state motion time histories were grouped according to the angle of attack
Θ and varying airflow conditions. The translational airflow to rotation of the beam–hub
structure is converted as follows

ϕ̇ =
v

R + L
(7)

where v corresponds to the air flow velocity at the tip of the blade and R + L describe the
distance between the main axis of rotation and the beam tip in a free and undeformed
configuration, with dynamic and centrifugal forces disabled. This assumption will be
utilized to simplify our analysis.
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Figure 8. Geometry of CFD simulation domain 60D × 40D (upstream 20D and wake 40D), the
near-field cylinder 10D and the blade 1D corresponding to the width of the beam b.

Figure 9 presents lift drag forces in the function of preset angle Θ and angular speed ϕ̇.
At zero angle of attack, no lift force was detected, and the drag forces were at their minimum
compared to the entire chart. Moreover, in the steady-state flow of the considered velocities,
oscillations did not occur. Increasing the angle of attack to 5◦ resulted in a significant
increase in lift force with only a slight increase in drag force. Further increasing the angle
of attack to 15◦ and 30◦ led to significant air resistance with only a minor rise in lift force.
Karman vortices and the associated oscillations of forces in time histories appeared at
an angle of attack of 45◦. For this angle of attack, the values of lift and drag forces were
nearly equal to each other. Subsequent changes in the angle of attack to 75◦ and 90◦

resulted in a significant increase in oscillations with increased drag and decreased lift
forces. Furthermore, at a preset angle of 90◦, the lift force oscillated around zero while drag
reached its maximum values.

Figure 9. Aerodynamic lift (red) and drag (black) forces acting on the beam for the constant flow
rate; see Equation (7).
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The analogous chart depicting the values of the aerodynamic moment acting on
the beam is presented in Figure 10. For high airflow velocities, negative values of the
aerodynamic moment for angles of attack at 5◦, 15◦, 30◦, and 45◦ draw attention. The
remaining three angles of attack either exhibit zero moment values for 0◦ or symmetric
oscillations around zero for 75◦ and 90◦. It is worth noting that slight oscillations also occur
at Θ = 45◦ and v = 100 m/s, but they diminish with increasing velocity.

Figure 10. Aerodynamic momentum acting on the beam for the constant flow rate, see Equation (7).

The above-mentioned aerodynamic loads can induce quasi-static deformations of
mechanical system or excite its vibrations near resonance frequencies. This provides the
foundation for examining another crucial aspect; namely, the frequency windows that
impact the sample, along with the measurement of their magnitudes. In essence, we are
establishing the groundwork for a comprehensive analysis of how specific frequency ranges
may affect the sample and the extent of their influence.

3.2. Frequency Spectra

The time histories were subjected to a Fast Fourier Transform (FFT) to determine the
airflow frequencies. In many cases, the frequency–magnitude plots exhibited one or two
peaks. In order to consolidate the results, Figure 11 depicts a bubble chart on the rotational
speed vs. response frequency plane. The bubble sizes are normalized to the dominant
value, corresponding to the highest indication, while the remaining values (if present) are
proportionally smaller.

For rotational speeds below 5 rad/s, oscillations occur only at 30◦, 45◦, and 75◦.
Additionally, two harmonics are excited only for preset angle 30◦ and 45◦. For angular
speeds between 5 rad/s and 15 rad/s, a zero-degree angle of attack are inactive. However,
for rotational speeds exceeding 20 rad/s, the first indication is observed at 150 rad/s, and
the second at 300 rad/s.
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Figure 11. Frequency spectra of aerodynamic loads.

The arrangement of bubbles can be divided into two groups: the first group includes
angles of attack of 30◦ and 45◦ with a nonlinear trend of decreasing frequency indication
values, while the second group includes 75◦ and 90◦ degrees with a trend of increasing
frequency with the rotational speed ϕ̇. The angle of attack 5◦ has only three data points
and appears to exhibit a linear trend. All time histories containing two distinct indications
show that the lower harmonic has a greater value. However, it is essential to consider
both frequencies to excite or avoid vibrations when their values coincide with the natural
vibration frequencies, as depicted in the Campbell diagrams in Figures 5 and A1 as well as
coupled vibration mode shapes presented in Figures 7 and A2–A8.

4. Final Remarks and Further Developments

The numerical tools presented in the paper for the FE method and CFD simulations
depict the issues related to rotating composite laminates, in which, in addition to the
specimen fabrication processes, rotational speed play an important role. After presenting
the linear single modes of vibrations and their corresponding natural frequencies, the
focus shifted towards linear modal interactions and their deformation field description
using an analytical method, considering a combination of two bending directions, i and j;
longitudinal motion k; and torsional l mode shapes. The mechanical system can be subjected
to external loads arising from aerodynamic flow and centrifugal forces. Depending on
whether we want to avoid vibrations or excite them, the natural frequencies must be either
isolated from the excitation frequencies or targeted. Beyond the excitation frequency, the
amplitude and the force/momentum distribution represent critical factors that have a
direct impact on the efficiency of motion excitation. It is worth mentioning the possibility
of indirectly exciting vibrations, for instance, by stimulating torsional modes and utilizing
mechanical couplings to induce significant longitudinal motion. One should consider
various types of internal resonances, external subharmonics, and superharmonics, which
may arise from both linear and nonlinear mechanical couplings.

In the future research development of rotating composite structures, three main topics
will be explored: (i) analytical modelling of vortex-induced vibrations, (ii) the utilization
of an electromechanical system for energy harvesting from mechanical vibrations, and
(iii) control of coupled vibrations via MFC patches. The first topic involves the expansion
of an analytical model presented in the [17]. Besides the nonlinear beam model and
aerodynamic flow, there is a plan to incorporate nonlinear Van der Pol equations based on



Materials 2023, 16, 7356 15 of 25

the aerodynamic characteristics of the rectangular cross-section beam and its associated
frequency spectra. The second research area includes experimental measurements on
the prototype presented in [26]. Based on the vibration modes, it is possible to estimate
the optimal location for a harvester that operates proportionally not to the maximum
displacement amplitude, but to the maximum curvature. Furthermore, linearly coupled
modes of vibrations appear to be a choice of higher efficiency. The final issue pertains
to the vibration suppression during rotor operation, which involves avoiding resonant
frequencies associated with aerodynamic flow or an vibration reduction active control by
piezoelectric transducers.

5. Conclusions

The primary objective of this study was to perform experimental and numerical modal
analysis of a composite cantilever beam. In the laboratory investigations with specialized
vibration measurement equipment, detailed maps of beam deformations (mode shapes)
and magnitude-frequency curves were executed. Additionally, in the absence of rotation,
the study conclusively affirmed the absence of linear modal interactions in the composite
beam. Through numerical simulations, we delved into the intricacies of Campbell diagrams,
determining the natural frequencies and their corresponding modal shapes. Our findings
were classified into two distinct categories: the classical single-mode behavior and the
pioneering extension of linearly coupled modal analysis. The two fundamental preset
angles of Θ = 0◦ and Θ = 90◦ did not have dynamic couplings within the linear range.
However, when the preset angle was adjusted to Θ = 30◦ and Θ = 60◦, couplings between
linear mode shapes in the plane emerged. Rotational speeds exceeding ϕ̇ = 300 rad/s and
a preset angle of Θ = 45◦ proved to be the most linearly coupled, with flexural–flexural and
longitudinal–torsion modes strongly interfering with each other, respectively. The results
for the preset angle were categorized based on the coupling type and presented graphically.

Notably, we introduced an analytical description of coupled mode shapes, encompassing
various deformations such as bending, longitudinal deformations, and twisting. This contri-
bution is a noteworthy advancement in understanding the behavior of rotating structures.

In addition to the modal analysis, our secondary objective was to assess the lift, drag
forces, and moment characteristics of a rectangular profile in uniform flow. The preset
angle variation between Θ = 0◦ and Θ = 90◦ demonstrated lift/drag force transmission, in
which, for the preset angle of Θ = 45◦, these forces were almost equal over the entire range
of rotational speeds. Comprehensive insights into both the static and dynamic aerodynamic
responses acting upon the beam within its operational frequency spectrum were provided.
For preset angles 30◦ and 45◦, the vortex-induced vibrations occurred at very small angular
speed ϕ̇ = 1 rad/s, exhibiting two prominent harmonics.

This study represents a substantial step forward in the field of composite rotating
beams, offering a deeper understanding of their dynamic characteristics and their in-
teraction with aerodynamic forces. These findings hold significant promise for various
engineering applications and contribute to the broader knowledge of dynamic systems.
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Nomeclature
R Radius of a hub, mm
ϕ̇ Angular velocity of a hub, rad/s
L Length of a beam, mm
b Width of a beam, mm
h Height of a beam, mm
Θ Preset angle of a beam, ◦

$ Effective density of a composite beam, kg/m3

µ Mass per unit length of a beam, kg/m
E Effective Young modulus of a beam, GPa
G Effective shear modulus of a beam, GPa
ν Effective Poisson’s ratio of a beam, -
i Notation for out-of-plane bending deformation of a beam, -
j Notation for in-plane bending deformation of a beam, -
k Notation for longitudinal deformation of a beam, -
l Notation for torsional deformation of a beam, -
Φi(x), Φj(x), Φk(x), Φl(x) linear mode shape projections, m, m, m, rad
A1–A4 Normalized amplitudes of ith linear mode shape, m
B1–B4 Normalized amplitudes of jth linear mode shape, m
C1–C4 Normalized amplitudes of kth linear mode shape, m
D1–D4 Normalized amplitudes of lth linear mode shape, rad

λ1, λ2, λ3, λ4
Characteristic coefficients for ith, jth, kth and lth linear mode shape,
respectively, 1/m, 1/m, 1/m, 1/rad

Φ̄(t, x) Linearly coupled mode
ωn nth natural frequency of a beam, rad/s
Φ(i, j, k, l) Linearly coupled mode shape, m, m, m, rad
Ā, B̄, C̄, D̄ Weights of a linearly coupled mode shape, -
v Air flow velocity, m/s

Appendix A

(a)

Figure A1. Cont.
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(b)

(c)

(d)

(e)

Figure A1. Campbell diagram of the rotating beam for predefined preset angle: (a) 0◦, (b) 30◦, (c) 45◦,
(d) 60◦, (e) 90◦.
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(a) Φ(2, 1, 0, 0), ω3 = 654.46 rad/s

(b) Φ(7, 2, 0, 0), ω12 = 4061.58 rad/s

(c) Φ(14, 3, 0, 0), ω25 = 10918.92 rad/s

(d) Φ(0, 0, 1, 13), ω34 = 16968.37 rad/s

Figure A2. Linear mode couplings for preset angle Θ = 45◦ and ϕ̇ = 300 rad/s.
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(a) Φ(2, 1, 0, 0), ω2 = 712.89 rad/s

(b) Φ(6, 2, 0, 0), ω11 = 4143.64 rad/s

(c) Φ(12, 3, 0, 0), ω23 = 10986.78 rad/s

(d) Φ(0, 0, 1, 13), ω32 = 16959.57 rad/s

Figure A3. Linear mode couplings for preset angle Θ = 45◦ and ϕ̇ = 400 rad/s.
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(a) Φ(1, 1, 0, 0), ω2 = 769.82 rad/s

(b) Φ(5, 2, 0, 0), ω10 = 4216.58 rad/s

(c) Φ(11, 3, 0, 0), ω22 = 11073.49 rad/s

(d) Φ(0, 0, 1, 12), ω30 = 16948.89 rad/s

Figure A4. Linear mode couplings for preset angle Θ = 45◦ and ϕ̇ = 500 rad/s.
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(a) Φ(1, 1, 0, 0), ω2 = 835.41 rad/s

(b) Φ(5, 2, 0, 0), ω10 = 4462.57 rad/s

(c) Φ(0, 0, 1, 11), ω29 = 16936.95 rad/s

Figure A5. Linear mode couplings for preset angle Θ = 45◦ and ϕ̇ = 600 rad/s.

(a) Φ(1, 1, 0, 0), ω2 = 909.30 rad/s

Figure A6. Cont.
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(b) Φ(4, 2, 0, 0), ω7 = 3745.28 rad/s

(c) Φ(4, 2, 0, 0)∗, ω9 = 4428.26 rad/s

(d) Φ(9, 3, 0, 0), ω19 = 11268.89 rad/s

(e) Φ(0, 0, 1, 9), ω27 = 16921.87 rad/s

Figure A6. Linear mode couplings for preset angle Θ = 45◦ and ϕ̇ = 700 rad/s.
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(a) Φ(1, 1, 0, 0), ω2 = 1073.67 rad/s

(b) Φ(4, 2, 0, 0), ω7 = 4467.28 rad/s

(c) Φ(8, 3, 0, 0), ω17 = 11555.41 rad/s

(d) Φ(0, 0, 1, 10), ω24 = 16884.80 rad/s

Figure A7. Linear mode couplings for preset angle Θ = 45◦ and ϕ̇ = 900 rad/s.
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(a) Φ(3, 2, 0, 0), ω6 = 3745.47 rad/s

(b) Φ(4, 2, 0, 0), ω7 = 4693.92 rad/s

(c) Φ(8, 3, 0, 0), ω16 = 11626.41 rad/s

(d) Φ(0, 0, 1, 8), ω22 = 16862.81 rad/s

Figure A8. Linear mode couplings for preset angle Θ = 45◦ and ϕ̇ = 1000 rad/s.
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