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Abstract: LaFe0.4Ni0.6O3/CeO2 (1:1) two-phase composite materials were prepared by mechanochem-
ical (MC) and Pechini routes. The catalytic properties of the composites in methane and CO oxidation
reactions strongly depend on their preparation conditions. In low-temperature (<600 ◦C) catalytic
CO oxidation the composites demonstrate a higher activity compared with LaFe0.4Ni0.6O3 perovskite.
The highest activity was observed for the composite prepared by mechanical treatment of perovskite
and fluorite precursors. There is a correlation between activity and the content of weakly bound
surface oxygen species. Catalytic activity in high-temperature (>750 ◦C) catalytic methane oxidation
correlates with the reducibility of samples. The highest activity was observed for the composite
prepared by the one-pot Pechini route with higher reducibility of the sample up to 600 ◦C.

Keywords: LaFe0.4Ni0.6O3/CeO2 composites; preparation; methane; CO oxidation

1. Introduction

Progress in high-temperature processes such as membrane, catalytic, SOFC, etc., de-
pends on the development of new active and stable functional materials with high conduc-
tivity, bulk oxygen mobility, and catalytic activity. It is very difficult to find a monophasic
material satisfying all these demands. One of the ways to solve the problem is the prepa-
ration of composite materials consisting of two phases with different properties. Among
them, perovskite–fluorite composites are very promising for high-temperature applications
due to the possibility to form coherent interphase boundaries and combine properties of
constituent components (high bulk oxygen mobility of fluorites with a high rate of oxygen
heteroexchange as well as electron conductivity and catalytic activity of perovskites) [1–5].
In addition, synergistic effects were observed in such two-phase systems. Thus, the ap-
plication of CeO2-based supports in the synthesis of supported perovskite catalysts en-
hances the activity in oxidation reactions, which is attributed to the non-additive effect
upon the interaction of these phases [6–8]. A similar result was noted when studying the
La0.8Sr0.2MnO3/MeOx (Me = Sr, La, Ba, Ce) composites obtained by mechanochemical treat-
ment of La0.8Sr0.2MnO3 and MeOx oxides, in which the non-additive effect was observed
only in the case of Me = Ce and became more pronounced with increasing calcination
temperature of the composite [9]. The authors related this to the unique properties of the
CeO2–high content of oxygen and its ability (in comparison with other oxides) to readily
exchange with the environment, which increases when CeO2 is modified with other cations.

In a recent review on composites in methane oxidation, the clear evidence of mixed
oxide cerium-containing catalysts in achieving highly active catalysts in complete methane
combustion was demonstrated as well as that such catalysts may be valid alternatives to the
more expensive and sensible noble metal catalysts. Ce1−xFexO2−x (x = 0.3−0.4) and 20%
NiO/CeO2 composites were shown to be among the most active. Their activity in methane
oxidation was comparable with the activity of the industrial catalyst Pd/Al2O3 [10].

The effect of phase ratio in a composite on its properties was studied in some works [4,11].
The authors of [11] investigated (0.1 or 0.8) LaFeO3/CeO2 composites, which were obtained
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by mechanical activation of the calcined oxides, in methane oxidation and nitrous oxide
decomposition reactions. The non-additive effect was shown to manifest itself only after
thermal treatment of the composites. In the oxidation of methane, the composites, despite
a smaller content of LaFeO3, compared well in activity with LaFeO3, whereas in the
decomposition of nitrous oxide their activity strongly exceeded that of LaFeO3. The study
did not reveal an essential difference in activity (reaction rate) of the composites with
different (0.1 or 0.8) CeO2 content in the tested reactions. At the same time, a wider
variation of the phases ratio in the La0.65Sr0.35MnO3/CeO2 composites demonstrated that
the maximum oxygen exchange rate (which is important for the red-ox processes where
reoxidation of the active site serves as the limiting step) was achieved exactly at the
1:1 ratio [4].

One of the promising composites for application in different high-temperature red-ox
processes—catalytic, membrane, SOFC, and others—is the LaFe0.4Ni0.6O3/CeO2 composite
due to the high catalytic activity, mixed conductivity, and high-temperature stability of
LaFe0.4Ni0.6O3 [12–15]. For example, LaFe1-xNixO3 (x = 0.2–0.8) catalysts showed high
activity and resistance to coking in carbon dioxide and steam reforming of methane, in dis-
tinction to LaFeO3 and LaNiO3 [12,13]. In [14,15], high conductivity of LaFe0.4Ni0.6O3 was
observed, which made this material very promising for use in medium-temperature solid
oxide fuel cells (SOFC). Investigation on the compatibility of LaFe0.4Ni0.6O3 with CeO2 or
ZrO2, which was performed in [16,17], revealed a higher stability of LaFe0.4Ni0.6O3/CeO2
composites. The acquired data on the conductivity of the composites in dependence on
the perovskite content suggest that by increasing the perovskite content above 50% the
main contribution to conductivity is made by the electronic conductivity, whereas at a
perovskite content below 50%, the main contribution is made by the ionic one. At the
1:1 ratio of components, the composite simultaneously possesses high electronic and ionic
conductivity, which is essential for its application as the SOFC anodes and cathodes. A
similar dependence of conductivity on the perovskite content was obtained in [18] for
the composites prepared using mischmetals (nonseparated mixtures of lanthanides with
different contents of lanthanum).

The data available in the literature allow assuming that the LaFe0.4Ni0.6O3/CeO2
composite with the phase ratio 1:1 will be highly active and stable in high-temperature
methane and CO oxidation reactions, which is interesting for its application both as the
deep oxidation catalyst and the material for direct SOFC.

The LaFe0.4Ni0.6O3/CeO2 composite can be prepared in different ways in one or
two stages before calcination. The perovskite and fluorite oxides previously prepared via
different routes (the first stage) are usually combined in the second stage, and after that, the
obtained mixture of oxides is calcined to form a composite material (the preparation in two
stages) [4,11,19]. A one-stage (or one-pot) preparation route means that all raw materials
are combined at the first stage with the formation of a precursor, which forms a composite
material after calcination. New possibilities for composite preparation have emerged due to
the development of the mechanochemical (MC) method, which may be applied at different
stages: for preparation of perovskites (the first stage) [20–22], for combination of perovskite
and fluorite phases (the second stage) [11,23], and for one-pot preparation of composite
materials [24]. The MC method makes it possible to also prepare materials without wet
stages and waste water [20–22].

The properties of composite materials are determined not only by the properties of
constituent components and their quantitative ratio, but also by the preparation method
that influences the particle size of constituent phases, homogeneity of the particles (phases)
distribution and their mutual modification, as well as the length of interphase boundaries
that affect the properties of the composites [10,24–26].

It is reputed that the best methods for low-temperature LaFe0.4Ni0.6O3 preparation are
Pechini, sol–gel, and co-precipitation methods [12,16,27,28]. The ceramic method, being
the simplest one, requires a long high-temperature (>1200 ◦C, >100 h) calcination [14]. The
mechanical treatment of raw materials in high-power planetary ball mills, due to their disin-
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tegration, homogenization, and activation, also provides the possibility of low-temperature
preparation of a LaFe0.4Ni0.6O3 perovskite and LaFe0.4Ni0.6O3/CeO2 composite.

The main goal of this paper is the preparation of LaFe0.4Ni0.6O3 perovskite and
LaFe0.4Ni0.6O3/CeO2 (1:1) composites using mechanical and Pechini routes and inves-
tigation of their physical and chemical properties including catalytic activity in CO and
CH4 oxidation processes.

2. Materials and Methods
2.1. Materials Synthesis

For MC preparation of LaFe0.4Ni0.6O3, a mixture of lanthanum, iron, and nickel oxides
in the required stoichiometry was treated in a high-power planetary ball mill VRR835V/4B
for 3 min at a powder to ball ratio of 1:5. The activated powder mixture was then calcined
at 900 ◦C for 6–100 h with several intermediate millings.

A LaFe0.4Ni0.6O3 (sample 1), CeO2 (sample 2), and a LaFe0.4Ni0.6O3/CeO2 composite
with a La:Ce ratio of 1:1 (sample 3) were prepared via the Pechini method [27,28] using
nitrate salts that were applied in the required proportion. After drying of the amorphous
precursors (1–3), the obtained powders were mechanically treated in the high-power plane-
tary ball mill for 3 min and then calcined at 900 ◦C for 8 h in air. A LaFe0.4Ni0.6O3/CeO2
composite (sample 4) was also prepared using the calcined LaFe0.4Ni0.6O3 (sample 1) and
CeO2 (sample 2) oxides that were generated with the La:Ce ratio 1:1. After their joint
mechanical treatment in the high-power planetary ball mill for 3 min, the powder was
additionally calcined at 900 ◦C for 8 h. The LaFe0.4Ni0.6O3/CeO2 composite (sample 5) was
also prepared using amorphous precursors of samples 1 and 2 (before their calcination).
Precursors 1 and 2 taken with the La:Ce ratio of 1:1 after their joint mechanical treatment in
the high-power planetary ball mill during 3 min were also calcined at 900 ◦C for 8 h.

In summary, a pure perovskite LaFe0.4Ni0.6O3 (sample 1), a fluorite CeO2 (sample
2), and three LaFe0.4Ni0.6O3/CeO2 composites with a La:Ce ratio of 1:1 were prepared.
Composite 3 was prepared by the Pechini route in one stage, whereas composites 4 and
5 were prepared in two stages using different precursors. Details of the samples preparation
are indicated in Table 1.

Table 1. Samples preparation conditions.

No. Reagents for Samples Preparation La/Ce Preparation Details Phase Composition

1 La, Fe, and Ni nitrate salts taken in a
stoichiometric ratio 1/0

Prepared via the Pechini route
precursor 1: milled and then

calcined at 900 ◦C, 8 h
LaFe0.4Ni0.6O3

2 Ce nitrate salt 0/1
Prepared via Pechini route

precursor 2: milled and then
calcined at 900 ◦C, 8 h

CeO2

3 La, Fe, Ni, and Ce nitrate salts taken in a
stoichiometric ratio 1/1

Prepared via one pot Pechini
route precursor 3: milled and
then calcined at 900 ◦C, 8 h

* LaFe0.4Ni0.6O3, * CeO2

4 Sample 1 + sample 2 1/1
Sample 1 and sample 2 with a

La:Ce ratio = 1:1 were milled and
then calcined at 900 ◦C, 8 h

LaFe0.4Ni0.6O3, CeO2

5 Precursor 1 + precursor 2 1/1
Precursor 1 and precursor 2 with
a La:Ce ratio = 1:1 were milled
and then calcined at 900 ◦C, 8 h

LaFe0.4Ni0.6O3, CeO2

* Bulk modified phases.

2.2. Materials Characterization

X-ray diffraction (XRD) patterns were obtained using an X’TRA (Thermo ARL, Switzer-
land) diffractometer with CuKα monochromatic radiation. Each sample was scanned in
the 2θ range from 10 to 70◦ with a 2θ step of 0.05◦. The X-ray crystallite sizes (CS) and
phase compositions were calculated in the X’Pert HighScore Plus (PANalytical B.V., Almelo,
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The Netherlands) software. The calculation and refinement of lattice parameters were
performed in the Polycrystal software package [29] (BIC SB RAN, Novosibirsk, Russia)
software by the method of least squares.

Transmission electron microscopy (TEM) micrographs were obtained with a JEM-
2010 instrument with a lattice resolution of 1.4 Å and an acceleration voltage of 200 kV
(JEOL, Japan).

EDX mappings were conducted using a ThemisZ transmission electron microscope
(Thermo Fisher Scientific, USA) operated at an accelerating voltage of 200 kV. The mi-
croscope was equipped with a SuperX spectrometer (Thermo Fisher Scientific, USA) for
EDX mapping measurements. For electron microscopy studies, samples were deposited
on perforated carbon substrates attached to copper grids using an ultrasonic dispersant
with ethanol.

Surface composition of the samples was investigated by X-ray photoelectron spec-
troscopy (XPS) using a SPECS spectrometer with a PHOIBOS-150-MCD-9 hemispherical
energy analyzer (Al Kα irradiation, hv = 1486.74 eV, 200 W). The samples were secured
with a double-sided conducting copper scotch tape. The binding energy (BE) scale was pre-
liminarily calibrated against positions of the peaks of Au4f7/2 (BE = 84.0 eV) and Cu2p3/2
(BE = 932.67 eV) core levels. The binding energy of peaks was calibrated against the posi-
tion of the C1s peak (BE = 284.8 eV) corresponding to the surface hydrocarbon-like deposits
(C-C and C-H bonds). The ratio of surface atomic concentrations of the elements was calcu-
lated from the integral intensities of photoelectron peaks corrected by the corresponding
atomic sensitivity factors based on Scofield photoionization cross-sections [30]. Analysis of
the data obtained by XPS was carried out by the software XPS Peak 4.1. [31].

The data on the samples’ thermoprogrammed reduction with hydrogen (H2-TPR
data) were obtained using a flow reactor equipped with a thermal conductivity detector.
Samples of 200 mg with a particle size of 0.25–0.5 mm were used for H2-TPR. Before the
reduction, the samples were treated in an oxygen flow at 500 ◦C for 0.5 h and then cooled
to room temperature. The samples were heated (10 ◦C/min) in a gas (10% H2 in Ar) flow
(40 cm3 min−1) up to 900 ◦C.

The specific surface area of the samples was measured using Ar desorption at 200 ◦C.

2.3. Catalytic Activity

The catalytic activity was characterized in terms of conversion (X) and rates of CO or
CH4 oxidation (w = 2.69 ×1019 kC0, molecules ·m–2 s–1, where k is the rate constant, and C0
is the initial concentration of methane or CO, %).

Catalytic activity in CO oxidation was determined using a circulating flow reactor (a
circulation rate of 900–1000 l·h−1) in the range of 200–600 ◦C. The sample weight was 1 g,
the reaction gas (1% CO + 1% O2 + 98% N2) flow rate was 10 l·h−1, and the contact time (τ)
was 0.2 s. The rate constant k was calculated under the assumption of perfect mixing mode
of the reaction using the formula

k = XCO·(1−XCO)−1·g−1·Ssp
−1·τ−1 (1)

where XCO is the CO conversion; g—the catalyst weight, g; Ssp—the specific surface area,
m2·g−1; and τ—the contact time, s.

Catalytic activity in methane oxidation in the range of 600–900 ◦C was determined in
the flow reactor with a gas mixture (1% CH4 + 9%O2 + 90%He) at a flow rate of 60 l·h−1 and
a contact time (τ) of 0.006 s. Particles of 0.5–0.25 mm size were used for all the experiments.
The products of methane oxidation were only carbon dioxide and water. The rate constant
k was calculated under the assumption of the plug-flow mode using the formula

k =−ln(1 − XCH4 )·τ−1·Ssp
−1·g−1 (2)

where XCH4 is the methane conversion; τ—the contact time, s; g—the sample weight, g;
and Ssp—the specific surface area of the sample, m2·g−1.
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3. Results and Discussion
3.1. Phase Composition

According to the XRD data, doped LaFeO3, LaNiO3, La2NiO4, and simple oxides
(La2O3, Fe2O3, NiO) were detected in the mixture of the MC-treated initial raw oxides. The
subsequent calcinations at 900 ◦C for 6–100 h led to an increase in the amounts of both (based
on LaFeO3 and on LaNiO3) doped perovskite phases, but the monophase LaFe0.4Ni0.6O3
perovskite was not detected even after calcination during 100 h, probably due to very
mild MC treatment conditions. Therefore, for our subsequent experiments on composites
preparation, the monophase LaFe0.4Ni0.6O3 (perovskite) and CeO2 (fluorite) oxides and
their precursors prepared via the Pechini method were used, while MC treatment was
applied only for their combination. For comparison, the composite prepared via the one-pot
Pechini route (sample 3) was also studied.

The XRD data for the as-prepared samples (Figure 1) indicate the presence of only
the perovskite phase (sample 1) according to PDF card #88-637, only the fluorite phase
(sample 2) according to PDF card #34-394, and both (perovskite and fluorite) phases in the
composites (samples 3–5). It is worth noting that cerium oxide is observed in trace amounts
in sample 3, so the cell parameters for this phase were not calculated. The perovskite
phase in samples 1, 4, and 5 was determined in the rhombohedral modification (PDF card
#88-637) with a small difference in cell parameters, while in sample 3 it was determined
in the orthorhombic modification (PDF card #88-638) with a noticeable difference in cell
parameters (Table 2), which may be due to the weak (samples 4 and 5) or strong (sample 3)
modification of the perovskite structure with Ce cations in the as-prepared composites. A
similar modification of the perovskite phase was observed in the work of Ren et al. [32] for
chemical compositions La0.6Ce0.4FeO3 and La0.8Ce0.2FeO3. This effect can be explained by
a significant difference in the cationic radii of lanthanum and cerium. The partial entry of
cerium cations into the perovskite structure was also confirmed by the absence of visible
reflexes on diffractograms in sample 3 as previously mentioned above.
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Table 2. Cell parameters and X-ray crystallite sizes for perovskite and fluorite phases in samples 1–5
(according to Table 1); specific surface area values (Ssp, m2g−1) of the samples.

No
Cell Parameters and X-ray Crystallite Size for Phases S sp.,

m2g−1LaFe0.4Ni0.6O3 CeO2
a, Å b, Å c, Å CS, Å a, Å CS, Å

1 5.507(1) 5.507(1) 13.304(2) 500 5.5
2 5.419(1) 450 6.8
3 5.544(3) 7.803(5) 5.453(3) 250 2.0
4 5.513(2) 5.513(2) 13.308(5) 400 5.423(1) 400 5.2
5 5.511(2) 5.511(2) 13.299(4) 400 5.419(1) 400 7.3

The X-ray crystallite sizes for both phases (perovskite and fluorite) detected in the
composites depend on the samples preparation conditions. For both phases, the sizes are
nearly 50 nm in the monophase samples (1 and 2), nearly 40 nm in the samples prepared
via the MC combination of oxides or their precursors (samples 4 and 5, respectively), and
nearly 25 nm in the one-pot prepared composite (sample 3). The observed differences in
the perovskite and fluorite cell parameters as well as in the X-ray crystallite sizes detected
for the one-pot prepared composite (sample 3) compared with the other two composites
(samples 4 and 5) or monophase samples (samples 1 and 2) revealed a strong bulk chemical
modification of both the perovskite and fluorite phases in the one-pot prepared composite
(sample 3). The surface mutual modification of the perovskite and fluorite phases can be
proposed for composites 4 and 5 mainly because of the smaller changes in the oxides’ cell
parameters according to XRD (Table 2). The data on the samples’ specific surface area
values are listed in Table 2.

3.2. Microstructure, Bulk, and Surface Particles Composition

TEM and EDX mapping (Figure 2) data revealed the generally separated perovskite
(one type) and fluorite (another type) aggregated particles (both about 1 µm in size) in
composites 4 and 5 and only the mixed (perovskite + fluorite) aggregated particles with
nearly the same size (~ 1 µm) in composite 3. All the aggregates were composed of 20–50 nm
crystallites, which is consistent with the crystallite size range estimated by XRD (Table 2).

According to the EDX data obtained from different local areas in different aggregated
particles, the aggregates in sample 1 are fairly uniform in composition. The enrichment
of the particle surface with La may be proposed for this sample due to its higher content.
Two types of local areas that strongly differ in composition (enriched with perovskite or
fluorite cations) were distinguished in samples 4 and 5 in different aggregates consisting
mainly of perovskite or fluorite phases, respectively. One type of aggregate particles and
areas composition was revealed in sample 3, which is fairly uniform in composition in
different aggregates. Due to a higher Ce content in the analyzed areas, the enrichment of
the particles’ surface with Ce may be proposed for sample 3 since the signal from cerium
on the surface of agglomerates is quite clearly visible on the EDX mapping (Figure 2a).

Hence, according to the TEM + EDX data, two types of aggregates in samples 4 and
5, which differ in chemical composition, and only one type in sample 3 were revealed for
the prepared two-phase composites (samples 3–5). It is clear that the homogeneity of the
LaFe0.4Ni0.6O3 and CeO2 phases’ mutual distribution and their mutual modification are
much higher in sample 3 compared with samples 4 and 5.
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Figure 2. TEM data for LaFe0.4Ni0.6O3/CeO2 composites 3 (b) and 5 (a) at different magnifications
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Due to the difference between X-ray crystallite size and aggregate size, the formation
of interblock and interphase boundaries is very possible in the as-prepared samples. One
may propose a higher density of interphase boundaries in sample 3 due to the formation of
the mixed aggregates and smaller X-ray perovskite and fluorite crystallite sizes. However,
the formation of interphase boundaries was detected in other composites (samples 4 and
5), too. In Figure 3, there is an area between the perovskite and fluorite crystallites in which
the Fourier transform image confirms the formation of interphase boundaries in composite
5 because the detected interplanar spacings correspond to perovskite (0.2860, 0.3879 nm)
and fluorite (0.2743 nm) structures.
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It should be noted that, compared with X-ray diffraction, X-ray photoelectron spec-
troscopy is a surface-sensitive method and the depth of analysis is approximately 6–10 nm,
depending on the kinetic energy of the photoelectrons [33]. According to the XPS data, the
surface of the samples is enriched with oxygen in the perovskite and fluorite structures with
BE (O1s) = 529.2± 0.1 eV (Figure 4, blue lines) and, very probably, in the surface carbonates
because there is oxygen with BE (O1s) = 531.7 ± 0.2 eV (Figure 4, green lines) and carbon
(BE (C1s) = 288.9 ± 0.2 eV) ions in the carbonates [30,34]. Samples 3–5 may contain a lower
quantity of surface carbonates because of a higher O(529)/O(531) ratio. The surface of all
the composites is also enriched with “perovskite” (La, Fe, and Ni) ions compared with
the monophase perovskite sample (Table 3). The samples differ in their La/Ce ratio as
well as the (Fe + Ni)/(La + Ce) and (Fe + Ni)/La ratios (Table 3). The highest content
of “perovskite” ions was revealed for sample 4 (La/Ce = 1.36 and (Fe + Ni)/La = 0.61).
Although for sample 5 the La/Ce ratio is lower (La/Ce = 0.86), the (Fe + Ni)/La ratio
is higher (0.64) than that for sample 4 (0.61). The lowest (Fe + Ni)/La ratio (0.48) at La/
Ce = 1.06 was revealed for the composite prepared via the one-pot Pechini method (sam-
ple 3). Hence, according to the XPS data, surface enrichment with “perovskite” ions
(La + Fe + Ni) in the composites was revealed. Taking into account the highest surface
content of the “perovskite” ions in composites 4 and 5 compared with composite 3 and
with its possible content (at Perovskite: Fluorite = 1: 1 ratio and near the same particles
and X-ray sizes), a significant modification of the surface of the fluorite particles in samples
4 and 5 with La, Fe, and Ni ions in the perovskite and/or simple oxide forms may be
proposed for the samples; this is consistent with the data obtained and discussed in detail
in [11], while the bulk modification with “perovskite” ions may mainly be proposed for
sample 3, which agrees with the X-ray data.
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Table 3. Sample surface composition (at %), ratio of atomic concentrations of elements and ratio of
oxygen states according to XPS data.

N Sample La/Ce (Fe + Ni)/
(Ce + La) C, % O, % Fe, % La, % Ce, % Ni, % O(529)/O(531)

1 LaFe0.4Ni0.6O3 - 0.48 59.7 33.2 0.7 4.8 0 1.6 0.98
3 LaFe0.4Ni0.6O3/CeO2 1.06 0.24 40.5 45.4 1.2 5.8 5.5 1.6 2.07
4 LaFe0.4Ni0.6O3/CeO2 1.36 0.35 41.0 44.4 1.5 6.2 4.6 2.3 1.92
5 LaFe0.4Ni0.6O3/CeO2 0.83 0.29 40.4 45.2 1.1 5.1 6.1 2.1 2.47

Therefore, according to the XPS data, a higher surface content of “perovskite” ions was
revealed for all the composites (samples 3–5) compared with pure perovskite (sample 1).
The composites may also be depleted with carbonates. The main difference between the pre-
pared composites is a higher surface content of 3d ions in the MC samples (samples 4 and 5)
compared with the Pechini sample (sample 3).

3.3. H2-TPR Data

According to H2-TPR (Figure 5a), there are two main peaks of hydrogen consumption
for LaFe0.4Ni0.6O3 perovskite (sample 1) and LaFe0.4Ni0.6O3/CeO2 composites (samples 3–5),
while only one high-temperature peak was revealed for CeO2 (sample 2). No strong
difference in the total (up to 900 ◦C) hydrogen consumption for composites 4 and 5 was
detected (Table 4). Their total consumption (~3.15·10−3 mol H2·g−1) is lower than that
calculated for a mixture of perovskite (sample 1) and fluorite (sample 2) oxides in the
1:1 ratio (3.66·10−3 mol H2·g−1) and points to the bulk modification of both phases in
the as-prepared composites that led to oxygen vacancy formation in both oxides. The
H2-TPR data for sample 3 strongly differ from that of other composites. A lower total (up
to 900 ◦C) hydrogen consumption (2.81·10−3 mol H2·g−1) detected for sample 3 compared
with samples 4 and 5 may be due to a stronger mutual bulk chemical modification of
constituent phases in the one-pot prepared composite, resulting in the higher oxygen
vacancy formation in both phases.
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Figure 5. H2-TPR data (a) and low temperature consumption (b) for samples. Curves designations 
correspond to sample numbers (Table 1). Calculated (black line)—he calculated data for the mix-
ture LaFe0.4Ni0.6O3 + CeO2 in a 1:1 ratio.  
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Table 4. H2-TPR data.

Sample
Total Consumption

Up to 900 ◦C,
mol H2 g−1

Consumption in the
First Peak,

mol H2 g−1

First Peak
Temperature Range,

◦C

1 6.14 × 10−3 1.25 × 10−3 60–400
2 1.17 × 10−3 0.15 × 10−3 60–550
3 2.81 × 10−3 1.38 × 10−3 60–600
4 3.14 × 10−3 0.64 × 10−3 60–400
5 3.17 × 10−3 0.65 × 10−3 60–400

For composites 4 and 5, H2 consumption in the first reduction peaks is also lower
(0.61–0.64·10−3 mol H2·g−1) than the value calculated for the mixture of oxides
(0.7·10−3 mol H2·g−1), while for composite 3 the consumption in the first peak is much
higher (1.38·10−3 mol H2·g−1) compared with the calculated value. Therewith, consump-
tion in the first reduction peaks for samples 4 and 5 is lower compared with sample 1,
and the temperature maximum of the main reduction peak for sample 3 is much higher
compared with the other composites (~200 ◦C). The detected changes in the temperature
maximum of the first reduction peaks for samples 3, 4, and 5 (Figure 5a) may also be due to
the longevity of mutual modification of the phases for sample 3.

As for the hydrogen consumption at lower temperatures (up to 300 ◦C), which may be
due to the removal of the most weakly bound surface oxygen species (that is important for
low-temperature oxidative processes [35]), it decreases in the series 5 > 4 > 3 (Figure 5b),
which correlates with specific surface areas of the samples (m2·g−1, 7.3 > 5.2 > 2). The H2
consumption calculated for the mixture at temperatures up to 300 ◦C is lower than that
for samples 4 and 5 but higher than for sample 3 (Figure 5b). The higher low-temperature
consumption for composites 4 and 5 compared with the calculated value at near the same
values of specific surface areas may be due to the formation of surface oxygen vacancies
in the modified perovskite and fluorite phases with the weakly bound oxygen species
incorporated into vacancies. The smaller amount of the weakly bound oxygen species in
sample 3 may be due to its lower specific surface area.

3.4. Catalytic Activity in CO and CH4 Oxidation

In spite of the lower LaFe0.4Ni0.6O3 content in the composites, their catalytic ac-
tivity (conversion) in CO oxidation is much higher than the monophase activity of the
LaFe0.4Ni0.6O3 and CeO2 samples (Figure 6a).
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mixture (1% CO + 1% O2 + 98% N2) flow rate is 10 L/h; circulation 900–1000 L/h, and contact time
(τ) is 0.2 s. Curves designations correspond to sample numbers (Table 1).

The conversion of CO for composites 5 and 4 was higher than that for the composite
prepared via the one-pot Pechini route (sample 3). Actually, there is a correlation between
the low-temperature hydrogen consumption (up to 300 ◦C) and the catalytic activity of the
samples in CO oxidation. Hence, the difference in activity may be due to the difference
in their specific surface areas but catalytic activities normalized to m2 (Figure 6b) were
in the same (5 > 4 > 3 > 1 = 2) order. Therefore, the clear non-additive effect in CO
oxidation was revealed for all the composites due to the modification of CeO2 with La
and 3d ions and the formation of point defects in the CeO2 subsurface, which led to an
increase in the content of weakly bound surface oxygen species adsorbed on vacancies
and the low-temperature activity of the prepared composites. It should be noted that the
activity (at 300 ◦C) of composite 5, which was prepared by the mechanochemical method
(W = 2.5·1018 CO molecules·m−2 s−1), exceeds virtually 5-fold the activity (measured
at the same conditions) of LaMnO3, which is one of the most active perovskites in the
oxidation reactions (W = 0.45·1018 CO molecules·m−2·s−1 according to [35]). However,
the low-temperature activity in CO oxidation is lower than the activity of the most active
composite Cu0.1[Ce(La)]0.9Ox, which at 200 ◦C and a contact time of 0.09 s in a reaction
mixture of 2% CO + 16% O2 demonstrated 100% conversion, very probably due to the
much higher specific surface area value [36].

In high-temperature (600–900 ◦C) methane oxidation, LaFe0.4Ni0.6O3/CeO2 compos-
ites (samples 3–5) demonstrate a lower conversion than LaFe0.4Ni0.6O3 (sample 1), while
the CeO2 (sample 2) shows the lowest value (Figure 7a). The one-pot prepared composite
(sample 3) demonstrates the lowest conversion, but with an increase in the testing tem-
perature the difference in conversions between composites decreases and at 900 ◦C all
the composites show nearly the same conversion. The reaction rate of methane oxidation
at 900 ◦C obtained for the composite strongly exceeds the value for LaMnO3, which is
equal to 8 µmol·m−2·s−1, and even the oxidation rate for a more active La0.5Sr0.5MnO3
(100 µmol·m−2·s−1) according to [37]. Due to very different testing conditions in methane
oxidation, it is difficult to compare the high-temperature activity of the prepared composites
with the low-temperature activity of the most active ones according to [10,36].

Actually, there is a correlation between the hydrogen consumption in the first peak
(up to 400 ◦C) and the catalytic activity (Figure 7a) of the samples in CH4 oxidation. The
catalytic activity of the samples normalized to m2 (Figure 7b) also revealed a lower activity
of the composites compared with LaFe0.4Ni0.6O3 perovskite at temperatures up to 750 ◦C.
At higher temperatures (T > 750 ◦C), the normalized activity of the LaFe0.4Ni0.6O3/CeO2
composite prepared via the Pechini route (sample 3) strongly increases and becomes even
higher than the activity of composites 4 and 5 and the LaFe0.4Ni0.6O3 perovskite (sample 1).
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Figure 7. Conversion of methane (a) and CH4 oxidation rates (b) for the as-prepared samples. The 
gas mixture (1% CH4 + 9%O2 + 90%He) flow rate is 60 l/h and contact time (τ) is 0.006 s. Curves 
designations correspond to sample numbers (Table 1). 
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designations correspond to sample numbers (Table 1).

The data obtained indicate that the catalytic activity of LaFe0.4Ni0.6O3/CeO2 compos-
ites depends on the sample preparation details and testing conditions.

In the low-temperature CO oxidation, the catalytic activity correlates mainly with the
amount of weakly bound surface oxygen species that were reduced with hydrogen at low
temperatures (up to 300 ◦C), which depends on the specific surface area values, chemical
composition, and microstructure of the samples.

In the high-temperature CH4 oxidation (600–900 ◦C), when a bulk oxygen species may
be involved in the reaction, the reducibility of the bulk samples and the rate of oxygen
heteroexchange may influence the catalytic activity of the oxides [11,36]. The data obtained
are in accordance with this observation. Therefore, the highest H2 consumption in the first
peak (at 300–400 ◦C) was detected for pure LaFe0.4Ni0.6O3, while for composites 4 and 5
it was lower (Table 4); this correlates with activity of the samples in methane oxidation
(Figure 7a). At T > 750 ◦C, the highest H2 consumption up to 600 ◦C was observed for sam-
ple 3 with a stronger modification of phases and a higher expected density of vacancies and
interphase boundaries, which increase the reducibility of the samples, the oxygen transfer
from the bulk to the surface, and the rate of oxygen heteroexchange according to [11,36],
which affect the samples’ activity. Therefore, for high-temperature applications in oxidative
catalytic reactions, the one-pot prepared composite may be attractive. Furthermore, the
as-prepared composite material may be very attractive for SOFC application due to its high
mixed conductivity according to [3,18].

4. Conclusions

The catalytic properties of LaFe0.4Ni0.6O3/CeO2 two-phase composite materials in
oxidative reactions strongly depend on the details of their preparation that influence their
reducibility and reaction conditions.

In the low-temperature (<600 ◦C) oxidation process (CO oxidation), the composites
are very attractive because they are more active than perovskite or fluorite phases at nearly
the same specific surface areas of the samples. There is a correlation between the activity
and content of weakly bound surface oxygen species. A higher activity was demonstrated
by the composite prepared via the mechanical treatment of the precursors of the perovskite
and fluorite phases.

In the middle-temperature (600–750 ◦C) methane oxidation, perovskite is more attrac-
tive due to higher activity that correlates with its higher reducibility up to 400 ◦C.

In the high-temperature (>750 ◦C) methane oxidation, the one-pot prepared composite
becomes attractive, in spite of its lower specific surface area, probably due to a higher
content of vacancy in the bulk and interphase boundaries increasing the reducibility of the
sample up to 600 ◦C.
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