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Abstract: Brillouin scattering spectroscopy with diamond anvil cells was used by measuring the
pressure dependence of the sound-relevant polymer material, glass-forming liquid, and H2O (water
and ice VII) velocities of the material from ambient pressure to 12 GPa at room temperature. Mea-
surements of 20%, 10%, and 4% gelatin solutions were performed. For comparison purposes, we also
measured the pressure dependence of the sound velocity of animal tissue up to 10 GPa. We analyzed
the Brillouin data using the Tait and Vinet equations of state. We discussed the possible influence of
frequency dispersion on bulk modulus at low pressure. We compared the elastic moduli obtained for
gelatin to those of several other polymers.
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1. Introduction

External stimuli, such as temperatures and pressure, have a pronounced influence on
the mechanical behavior of polymers. An important biopolymer is gelatin, a yellow-white
protein-rich powder extracted by acid or base hydrolysis from collagen, the main matrix
material of animal skin, bone, and connective tissue. Gelatin also refers to aqueous solutions
of this powder. As an aggregate material, the molecular weight ranges between 17,000 and
300,000 Daltons. Thus, only the average molecular weight can be used to characterize the
material [1]. Gelatin is one of the most versatile hydrocolloids and has a wide variety of
industrial uses, including food, pharmaceuticals, and photography. Another use of this
polymer gel is as the model of the effects of traumatic impacts on animal tissue, i.e., bullet
penetration of so-called “ballistic gelatin” [1], for which the elastic behavior and equation
of state (EOS) to gigapascal pressures are of interest.

Despite numerous studies of polymer gels [2,3], proteins [4], and aqueous solutions [5,6]
as a function of temperature, limited experiments have been performed to examine pressure
effects on these materials. Some efforts have been made to investigate the glass transition and
EOS of glass-forming liquids under pressure by Brillouin scattering [7,8]. Similar investigations
of the EOS and elastic properties of various polymers under pressure have been conducted
during the past decade. For example, the EOS and elastic properties of three elastomers,
sylgard (a crosslinked polydimethylsiloxane), estane (a segmented polyester-polyurethane
copolymer), and VCE (a crosslinked terpolymer poly-ethylene-vinyl acetate-vinyl alcohol),
have been studied by high-pressure Brillouin scattering up to 10 GPa [9]; Kel-F 800, a binder
for explosives, has been measured up to 85 GPa by Brillouin scattering, and the EOS and
pressure-dependent elastic properties were obtained [10,11].

Here we present the results of a detailed study of gelatin water solution in diamond
anvil cells (DACs) in conjunction with Brillouin scattering from ambient pressure to 12 GPa.
Motivated the implications for traumatic impacts on animal tissue, we also measured the
pressure dependence of the sound velocities of several animal tissues, i.e., lamb muscle and
brain tissues. The results extend the EOS and provide additional analyses of experimental
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data presented previously for the material in an unpublished report [12]. Specifically, we
assess the elastic parameters and compare related materials that provide insight into the
microscopic structure of these materials.

2. Experimental Methods
2.1. Sample Preparation

The samples of gelatin (20%, 10%, and 4%) were prepared with the methods described
in [1]. Images of as-made 4% and 20% gelatin solution are shown in Figure 1. Before
loading, gelatin solutions were refrigerated for at least 24 h. Gelatin samples were then
loaded into diamond anvil cells (DACs) (Figure 2). The DACs consist of two opposed
diamond anvils on the piston and cylinder sides of a cell, with a metal gasket with a
hole in its center used as a sample chamber sandwiched between the diamonds [13].
Preindented stainless gaskets with gasket holes of 120–150 µm were used. We used the
standard ruby fluorescence method [14] to determine the pressure. We measured the
pressure dependencies of velocities of 20%, 10%, and 4% gelatin solutions as well as fresh
lamb muscle and brain tissues. These experiments did not involve the use of a separate
pressure medium because the materials studied remain soft and serve as a hydrostatic or
quasi-hydrostatic medium.
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Figure 1. Images of gelatin solutions taken after the gelatin powders were mixed with water; (a) 4%
solution; (b) 20% solution.
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Figure 2. The photographs of gelatin solutions and animal tissue in DACs; (a) 20% gelatin solution
at 2 GPa, 150 µm gasket hole; (b) 20% gelatin solution at 11 GPa, gasket hole is same as (a); (c) 4%
gelatin solution at 1 GPa, 120 µm gasket hole; and (d) lamb brain tissue at 2 GPa, 150 µm gasket hole.

2.2. Brillouin Scattering

Brillouin light scattering is the inelastic scattering of an incident optical wave field
by thermally excited elastic waves in a material [15,16]. The technique has been widely
used in biology [17], chemistry [18], earth science [19], materials science [20], and polymer
science [10]. In Brillouin scattering, incident light induces dynamic fluctuations in the
strain field to bring about fluctuations in the dielectric constant; these in turn translate
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into fluctuations in the refractive index due to elasto-optic scattering. The phonons in the
material move in thermal equilibrium with very small amplitudes and may be viewed as a
moving diffraction grating by an incident light wave. The frequency shift of inelastically
scattered light is given by

∆ν =
υ

λ

√
(n2

i + n2
s − 2nins cos θ) (1)

where ∆ν is the Brillouin shift, λ is the wavelength of incident light, ni is the refractive index
in the direction of the incident light, ns is the refractive index in the scattering direction,
υ is the velocity of acoustic phonons, and θ is the scattering angle.

In the present experiments, light from a single-mode Ar-ion laser was used as the
excitation source with an average power of 100 mW. The DAC sample was placed symmet-
rically with respect to the incoming and collected light such that the difference vector of
the incoming and detected light is in the plane of the sample. Scattering angles of 80◦ and
70◦ degrees were employed in these experiments (Figure 3). Since samples were placed
symmetrically with respect to the incoming and collected light, the frequency shift of the
incident light is independent of the refractive index of the samples. Thus, Equation (1) can
be reduced to

∆ν = (2υ/λ) sin(θ/2) (2)

where υ is sound velocity, λ = 514.5 nm (laser wavelength), and θ is the scattering angle.
The scattered light was collected by a lens and analyzed by a 3 + 3 tandem Fabry–Perot
interferometer, detected by a photon-counting photomultiplier, and output to a multichan-
nel scalar (Figure 3a). Spectra were collected for 10 to 120 min at each pressure at 295 K.
Additional details about the Brillouin scattering system setup can be found in [21–23].
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Figure 3. Schematic diagrams of Brillouin scattering setup and the symmetric scattering geometry.
(a) Incident light is focused on the sample by the first lens, with scattered light collected by sec-
ond lens, sent to the Fabry–Perot interferometer (FP1 and PP2), and measured by the detector.
(b) The enlarged sample region inside of a DAC, showing the incident light entering the sample
with the angle θ/2. By Snell’s law, n0sin(θ/2) = nsin(ϕ/2), where n0 is the refractive index of air
and n is the refractive index of samples. Therefore, the Brillouin shifts have the following form:
∆νφ = 2nυ

λ sin(φ/2) = 2υ
λ sin(θ/2) = ∆νθ . The Brillouin shifts are uniquely defined by the scattering

angle between the incident and scattering light, as the sound velocity of the sample (assumed to be
isotropic) does not depend on the scattering angle.

3. Results and Analysis
3.1. Brillouin Scattering

A typical set of Brillouin spectra from 20% gelatin measured at room temperature is
shown in Figure 4. There are two pairs of spectra peaks in each spectrum and a Rayleigh
peak at zero frequency. One pair of peaks corresponds to the longitudinal acoustic (LA)
mode; the other pair corresponds to the transverse acoustic (TA) mode.
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line shown at zero frequency. The Brillouin peaks appear at around 5 and 12.5 GHz for transverse
acoustic (TA) and longitudinal acoustic (LA) modes, respectively.
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Figure 5 shows the pressure dependence of sound velocities for the 20% gelatin
solutions. The results reveal that pressure dependencies of sound velocities from different
experimental runs are consistent. On the other hand, the results for 4% and 10% gelatin
differ from run to run (Figure 6). We attribute these differences to sample heterogeneity of
the samples as evident from Figure 1.
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3.2. Density Calculations

Given that the gelatin samples are isotropic, we can calculate the pressure depen-
dence of the density to obtain a pressure–density (pressure–volume, P-V) equation of state
(EOS) from

ρ− ρ0 =
∫ P

P0

γ

υ2
B

dP, (3)

where ρ and ρ0 are the densities at pressure P and P0, respectively, υB is the bulk sound
velocity, and υ2

B = υ2
L −

4
3 υ2

T , and υL and υT are LA and TA velocities, respectively;
γ = CP

CV
([2,3,5]) is the ratio of heat capacities at constant pressure and constant volume.

To fit Equation (3) to the experimental data, we note the definition of the bulk modulus
K = −V

(
dP
dV

)
= ρ

(
dP
dρ

)
, which can be measured under isothermal (KT) or adiabatic (KS)

conditions. The latter is directly related to the bulk sound velocity by Ks = ρυ2
B, and

KT = γKS. Replacing KT with γρυ2
B, the right side of Equation (3) is integrated to obtain

the change in density with pressure. Further, from thermodynamics, we have the following
relations between the two heat capacities:

CP − CV = VT
α2

βT
, and

CP
CV

=
βT
βS

=
KS
KT

, (4)

where α = 1
V ( ∂V

∂T )P is the thermal expansion coefficient, βT = − 1
V ( ∂V

∂P )T = 1
KT

is the

isothermal compressibility, and βS = − 1
V ( ∂V

∂P )S = 1
KS

is the adiabatic compressibility. Thus,
the relationship between KT and KS is

KT − KS =
Tα2

CP
(5)

One can estimate the difference between KT and KS if the CP and α are known or vice
versa. For example, for crystalline MgO, KT = 162 GPa and KS = 160 GPa; thus, γ = 1.01 [24].
For gelatin, the γ is slightly larger than 1 [25]. Given that γ = CP

CV
≈ 1 in materials under

pressure, we assume a limiting value of unity in the density calculations (Equation (3)).
The density can be determined by integrating the pressure dependence of the square

of inversed bulk sound velocity (Equation (3)). Note that the pressure dependence of
squared inverse bulk sound velocity shows a drastic change below 1 GPa for gelatin in
contrast to, for crystalline materials, the pressure dependence of the square of inversed
bulk sound velocity; e.g., see the almost linear behavior for MgO [20] (Figure 7 inset). To
reduce the error in the density calculation, we measured the pressure dependence of the
sound velocity in small pressure increments below 2 GPa (Figure 7).

To compare with gelatin, we also measured the pressure dependence of the velocity of
lamb muscle and brain tissues. Figure 8 shows the Brillouin spectra from lamb brain tissue
at selected pressures. The broad Brillouin peaks at low pressures indicate that the relaxation
processes couple strongly with the acoustic modes. The Brillouin shifts from the animal
tissue behaved similarly under pressure (Figure 9). Measurements performed on tissue
from different animal sources yielded similar results. The TA peaks from the brain tissue
sample were found to be extremely weak and were only observed above 4 GPa. On the
other hand, the TA peaks were readily observed for the muscle tissue samples (Figure 9).
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Figure 7. Pressure dependence of the square of inversed bulk velocity; different symbols correspond
to the experiments performed at different times. Area under curve gives the density. More data
points are obtained at lower pressures to improve the calculation of density. Dashed line is guide for
eyes. Inset shows the pressure dependence of the square of inverse bulk sound velocity for crystalline
MgO [20].
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Solid circles correspond to the longitudinal and transverse acoustic mode of 20% gelatin sample
described in legend; open circles correspond the acoustic modes from lamb muscle tissue, whereas
open squares correspond 10% gelatin samples; and crosshair with cross marks correspond to the
longitudinal LA mode of the lamb brain tissue. Lines are guides for the eye.

3.3. Equation of State Analysis

The P-V EOS of gelatin is useful for understanding the behavior of this complex
material and can provide information on effective intermolecular interactions. To begin,
we analyze the P-V data with the Tait EOS [26], which was developed for liquids at
modest pressures,

P = Bexp
[

1
C

(
1− V

V0

)]
− B (6)

where V/V0 is the relative volume at P, and B and C are empirical parameters. The
isothermal bulk modulus at ambient pressure K0 = B/C [26]. We also use the Vinet EOS [27]

P = 3K0

[
1− (V/V0)

1/3

(V/V0)
2/3

]
exp[

3
2
(
K′0 − 1

)(
1−

(
V/V0)

1/3
)]

(7)

where K0 is the bulk modulus, K0
′ is its derivative at zero pressure, and V0 is the initial

volume at room temperature.
The Tait EOS fit to the data below 0.5 GPa yields a bulk modulus of 1.7 (±0.2) GPa

(inset of Figure 10). However, it cannot be used to describe the compression over the entire
pressure range or up to 12 GPa. We use Vinet EOS to fit P-V data up to 12 GPa. We also
show that the Vinet EOS fits just the lower pressure range (Figure 10) and obtain a very
similar bulk modulus. Given that the Tait EOS was developed for modest compressions
(e.g., of fluids) and the Vinet EOS was developed for crystalline solids over a broad range
of compression, the results are not surprising. We also include the shock Hugoniot for the
20% gelatin solution [27]. As described in [27], these shock compressions corresponded to
extremely low frequency velocity.
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Figure 10. P-V EOS of 20% gelatin. Open circles are the data obtained from Equation (3). The black
and red curves are fits to the Tait and Vinet EOS, respectively. The Tait EOS was fit to data only below
0.5 GPa; a Vinet EOS for data over this range was also performed (see inset); fitting curves are similar
for both EOSs. The Tait EOS and Vinet EOS fit to the lower pressure data give similar bulk moduli
of 1.7 (±0.2) and 1.6 (±0.2), respectively. Both EOS forms fail to represent the data over the entire
pressure range studied. The dashed line is the Hugoniot reported for 20% gelatin [28].

3.4. Elastic Moduli

Elastic moduli C11 and C12 (Voigt notation) are directly related to the acoustic velocities
through the following:

ρυ2
L = C11 (8)

ρυ2
T =

1
2
(C11 − C12) (9)

where ρ is the density, υL is the LA velocity, and υT is the TA velocity. The pressure
dependence of C11 and C12 for 20% gelatin is shown in Figure 11. We fit the data with
the second-order polynomial function to obtain the pressure derivative of the moduli
( ∂C11

∂P = 9.3 and ∂C12
∂P = 5.8 for 20% gelatin). C12 is approximately half of C11 for gelatin

under pressure. C11 increases much faster with pressure than C44 or C12. Substituted
into Equation (9), the ambient pressure transverse TA velocities would be expected to be
1050 m/s for gelatin, corresponding to Brillouin frequency shifts of approximately 2.4 GHz
in our measurements. The frequency shifts place the TA peak on the wings of the Rayleigh
line, which is, in principle, experimentally resolvable. However, C11 and C12 approach one
another near ambient pressure (Figure 11), such that in the limit of ambient pressure, the
TA velocity goes to zero, collapsing into the Rayleigh line. Furthermore, we compared
Young, bulk, and shear moduli obtained for 20% gelatin solution to that of VCE polymer in
Figure 12.
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3.5. Poisson’s Ratio

Isotropic materials have two independent elastic constants: C11 and C12. The pressure
dependencies of elastic constants of 20% gelatin are shown in Figure 11. Unfortunately, our
lack of knowledge of the initial density of 4% and 10% gelatin and lamb tissue complicates
calculating the pressure dependence of density and high-pressure elastic constants. Instead,
we can calculate Poisson’s ratio:

σ =
υ2

L − 2υ2
T

2(υ2
L − υ2

T)
(10)
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The pressure dependencies of Poisson’s ratio σ for 10% and 20% gelatin solutions
and lamb muscle tissue are shown in Figure 13. The σ value for 20% gelatin is 0.36 at
10 GPa, which is comparable with that of silicate glass at the same pressure [16]. The
value for a stable, isotropic, and elastic material cannot be less than −1 nor greater than
0.5 because Young’s modulus, the shear modulus, and the bulk modulus must be positive;
most materials have a value between 0 and 0.5. Liquid or rubber deformed elastically
under small strain has σ near 0.5, whereas for metals, the value is around 0.35. For gelatin
solutions, particularly at lower pressures, the TA velocities are zero; thus, Poisson’s ratio is
0.5 for that pressure regime. The TA velocities in the Brillouin measurement appear above
0.5 GPa, and σ is 0.36, comparable with that of metals and other materials.
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3.6. Cauchy-Like Relations

The Lame coefficient, λ, is given by the following equation:

λ = K− 2
3

G (11)

where K is the bulk modulus and G is the shear modulus. For Cauchy’s identity [29], valid
for an isotropic substance composed of particles interacting with two-body central forces,
the λ is identical to G, or K = 5

3 G. It is also equal to M = 3G, where M is the longitudinal
modulus [29]. The M/G ratio is an indicator of the character of the force field: if atoms
interact through a central potential, M/G = 3. However, most glasses exhibit behavior
suggesting principal effective interactions that are far from those of a central potential or
ideal Cauchy relation.

Zwanzig and Mountain [30] generalized the Cauchy-like relation to M∞ = 3G∞ + F(T,P)
for isotropic liquids, where M∞ is an unrelaxed longitudinal modulus and G∞ is an unrelaxed
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shear modulus, and the term F(T,P) depends on both temperature and pressure. Expanding
this argument, Yamura et al. [31] and Krüger et al. [32] found the Cauchy-like relation

M∞ = A + BG∞ (12)

to hold across the glass transition for many different liquids at ambient pressure, where A
is a system-dependent parameter and B is a parameter found close to 3. Departure from B
of 3 indicates deviation from a central potential and possible effects of anharmonicity.

Figure 14 shows the M as a function of G for various materials. Fitting the data with
Equation (12) for 20% gelatin gives A = −0.2 (±0.1) and B = 5.1 (±1.3). The B coefficient
is larger than the ideal case: B = 3, the original definition of Cauchy relation. Many glass-
forming liquids follow a Cauchy-like relation with B = 3 at ambient pressure. For example,
Scarponi et al. [26] obtained A = 1.4 and B = 2.8 in a fit of M∞ = A + BG∞ to data for
glycerol across the glass transition temperature at ambient pressure. The closeness of the B
parameter to 3 suggests that the relevant interaction for glycerol molecules in this regime
can be described by a two-body central potential. However, we have found B values equal
or greater than 4 for many polymers under pressure: VCE polymer has B = 4.2 for VCE [6],
B = 4.9 for Kel-F 800 [7,8], and B = 4.4 for amber glass [27]. Thus, B = 5.1 for 20% gelatin
shows the largest deviation from Cauchy-like behavior, suggesting a strong departure from
two-body central interactions within this model.
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Figure 14. Longitudinal modulus (M) as the function of shear modulus (G). Open circles represent
the data obtained from Brillouin scattering experiments. Linear fit shows a Cauchy-like relationship
with the coefficients of A = −0.19 ± 0.1 (GPa) and B = 5.12 ± 1.3. For comparison, we also listed the
data for VCE polymer [9] with A =−±1.1 and B = 4.2 and Kel-F 800 polymer [11] with A =−1.9± 1.1
and B = 4.9 ± 0.1.

4. Discussion

We first discuss the EOS analysis. As shown in Figure 10 and Table 1, the empirical
EOSs we used (Vinet and Tait) do not fit the whole P-V range well. However, the Vinet
EOS fit data between 0.7 and 12 GPa well. On the other hand, the Tait and Vinet EOSs fit
well to the data below 0.5 GPa and provide similar bulk moduli for 20% gelatin (Table 1).
The inability of a single EOS to fit data over a wide range of compression is also evident
for phases of materials that exhibit large pressure stability fields (i.e., ice VII in Table 1).
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As regards gelatin, we note that the change in the square of inverse bulk velocity with
pressure is appreciable (Figure 7). Such a change can be attributed to the collapse of the
free volume in polymers on compression. This is consistent with the finding that a single
empirical EOS cannot describe the P-V relation over a wide pressure range (Figure 10). Our
results allow us to compare the pressure-dependent elastic moduli of 20% gelatin solution
to those of other selected polymers (Figures 12–14) [6]. The bulk modulus for 20% gelatin
is comparable to that of VCE and sylgard polymers [9]. However, the pressure derivatives
of these materials vary considerably (Table 1). In addition, the lamb muscle and brain
tissues suggest a lack of shear strength at zero frequency and suggest a strong frequency
dependence of velocities and moduli.

Table 1. Gelatin and comparison with several polymers and H2O. The reference ambient pressure
density of 20% gelatin solution used in the analysis is 1.007 gm/cm3.

Material K0 (GPa) K0
′ References

20% gelatin 1.7 (±0.2) This work
(Tait < 0.5 GPa)

20% gelatin 1.6 (±0.2) 53 (±3) This work
(Vinet < 0.5 GPa)

20% gelatin 6.1 (±0.2) 7.5 (±0.2) This work (Vinet)
VCE 2.05 9.99 [9]

estane 2.84 17.1 [9]
sylgard 1.13 8.95 [9]

Kel-F 800 7.5 10 [10]
n-pentane/isopentane 0.45 10.5 [7]

methanol
water

0.96
2.2

[33]
[34]

ice VII 5
23.7 (±0.9)

8.1
4.15 (±0.07)

[35]
[36]

The absence of observed shear modes for gelatin at ambient pressure arises from the
liquid as opposed to the glassy character of the material. Atomic mobility and even the
local structure change across the glass transition, whether determined as a function of
temperature (Tg) or pressure (Pg). For example, in PMMA, the pressure dependence of Tg
initially shifts by 200◦/GPa, asymptotically approaching a limiting high-pressure value
around 0.6 GPa [28]. The ambient pressure Tg of −73 ◦C of the gelatin [29] indicates that it
would be difficult to observe the shear mode at room temperature and ambient pressure.
The shear mode appears above 1 GPa for 20% gelatin at room temperature. Similar behavior
is observed for sylgard, with a Tg of −120 ◦C and the shear mode observed at 3 GPa by
Brillouin scattering. On the other hand, a shear mode is observed for Kel-F 800 polymer
at ambient pressure, and its Tg is near room temperature. A lower Tg equates to a more
flexible polymer backbone and more “liquid-like” behavior.

We point out that, in optical Brillouin scattering, the measured sound wave is in
the GHz range. Because of the dependence of the elastomer mechanical properties on
frequency, the Brillouin data appear stiffer than the equilibrium measurements regardless
of pressure. Indeed, in such complex polymeric systems, the elastic moduli are expected
to have a frequency dependence, especially over the pressures measured. Although as-
sessment of this dispersion of the moduli is beyond the scope of this paper, we can make
qualitative comments. In glass-forming materials such as gelatin solutions according to
the viscoelastic theory [18], the low-frequency-limit velocity (υ0) approaches the ultra-
sonic frequencies (Hz–MHz) at high temperature or low pressure with respect to the glass
transition temperature Tg or Pg; when the temperature or pressure approaches the glass
transition, the υ0 transitions to a high-frequency-limit (GHz) velocity (υ∞). Such a change
in velocity has been observed in glass-forming liquids [18] as a function of temperature [37]
or pressure [7,8,21].
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LA Brillouin peaks measured at high temperatures [37] and pressures [7,8,21] can
be broad, indicating coupling of modes and strong relaxation effects. In high-pressure
experiments on fluids, the TA mode is observed when material approaches to the glass
transition pressure [7,8]. In the 20% gelatin solution, we observed the TA mode above
0.5 GPa, indicating that the glass transition pressure is near. Therefore, the observed
velocity at low pressure is slightly higher than υ0. This observation is consistent with
the shock experiment and our data (Figure 10). Additional studies are needed to address
these questions.
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