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Advanced ceramics are referred to in various parts of the world as technical ceramics,
high-tech ceramics, and high-performance ceramics. They represent an important technol-
ogy that has considerable impacts for a large variety of industries, branches and markets.
It is considered as an enabling technology that has the potential to deliver high-value
contributions for solving the challenges of our future. From a general point of view, the
advanced ceramics sector comprises the following categories [1]:

(1) Functional ceramics: Electrical and magnetic ceramics (i.e., dielectrics, piezoelectrics,
ferromagnetics), ionic conductors and superconductive ceramics.

(2) Structural ceramics: Monoliths and composites, e.g., oxides, nitrides, carbides, borides,
and composite materials based on these materials.

(3) Bioceramics: e.g., hydroxyapatite and alumina.
(4) Ceramic coatings: Oxides, nitrides, carbides, borides, cermets and diamond-like coat-

ings, deposited by technologies such as spraying, vapor deposition and sol-gel coating.
(5) Special glasses: Processed flat glass, fire resistant glazing and glasses for optoelectronics.

Figure 1 shows some representative advanced ceramics developed in recent years.
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Figure 1. Some representative advanced ceramics developed in recent years: (a) Electronic ceram-
ics, (b) 3-D printed high-strength ceramics, (c) Superconductive ceramics, (d) Various structural 
ceramics, (e) HAP bioceramics, (f) Nano-ceramic coatings, (g) Fire-resistant glasses 
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Figure 1. Some representative advanced ceramics developed in recent years: (a) Electronic ceramics,
(b) 3-D printed high-strength ceramics, (c) Superconductive ceramics, (d) Various structural ceramics,
(e) HAP bioceramics, (f) Nano-ceramic coatings, (g) Fire-resistant glasses.

Advanced ceramics are usually composed of dense and fine-grained microstructures,
thus can also be called fine ceramics. Due to their special mechanical performances and/or
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unique functional properties, advanced ceramics are useful in various applications cover-
ing thermal conductors, cutting tools, auto-motive/atomic energy/electronic/biomedical
devices, energy conversion/sensor/actuation systems, and environmental and aerospace
engineering. Japan Fine Ceramics Association (JFCA) published the “FC Roadmap 2050
(2021 edition)” in December 2021 [2]. The world market of the production of the fine ceram-
ics industry is about USD 70 billion in 2018. Although the global production of automobiles
and smartphones fell far short of the previous year’s level due to the impact of COVID-19 in
recent years, fine ceramics output increased due to higher demand for semiconductors used
in equipment, such as PCs and memory devices [3]. It is well known that after the outbreak
of COVID-19 in 2020, ceramic materials have played an important role in combating the
epidemic, especially piezoelectric ceramics, which play an important role in respirators,
masks and advanced ultrasonic medical equipment (Figure 2). Besides the applications
in the medicine field, piezoelectric ceramics can be also used as sensitive materials for
various kinds of electroacoustic and piezoelectric devices, including sensors, detonators,
micro-displacement actuators, ultrasonic transducers etc. In 2021, Global Industry Analysts,
Inc published the latest global sales market forecasts of advanced ceramics. In the global
sales market, China and the United States have large shares. An average annual growth of
6.3% is expected from 2020 to 2027 [4].
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Advanced ceramics possess the tunable compositions and designable microstructures.
First, advanced ceramics tend to lack a glassy component; i.e., they are “basically crys-
talline”. Second, microstructures are usually highly engineered, meaning that grain sizes,
grain shapes, porosity, and phase distributions (for instance, the arrangements of second
phases such as whiskers and fibers) can be carefully planned and controlled. Such planning
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and control require “detailed regulation” of composition and processing. Finally, such
advanced ceramics with both well-designed microstructures tend to exhibit unique or
superior functional attributes that can be “precisely specified” by careful processing and
quality control [5]. There are many examples regarding the unique electrical properties
such as excellent piezoelectricity, superconductivity or superior mechanical performances,
including enhanced toughness or high-temperature strength, which were achieved by
the microstructural design for ferroelectric/piezoelectric ceramics, bioceramics, structural
ceramics, metal–ceramic composites, etc. [6–12].

The preparation of advanced ceramic components involves the heating process of
ceramic powders, which must undergo special handling to control the heterogeneity,
chemical compositions, purity, particle size, particle size distribution (PSD) and specific
shape [13]. The aforementioned factors play a significant role in the properties of finished
ceramic components. Moreover, the preparation of advanced ceramics usually involves
more sophisticated processing steps. In short, processes become rather complex and can
differ for various applications during the development of advanced ceramics [14]. The
fabrication methods and processing conditions of advanced ceramics also impel their
characteristics including excellent thermal properties, optical and electrical properties,
corrosion-resistant, mechanical strength, hardness and anti-aging [15–17].

For example, in the editors’ laboratory, the PMN-29PT-1.6Gd ferroelectric ceramics
were fabricated by a A-site modified oxide precursor method with two processing steps [18].
The removal of polar defect pairs with Gd-doping was considered to promote greater field-
induced PNR reorientation and thereby increase the permittivity greatly. The combination
of exquisite microstructural design and optimum processing control helped the ceramics
to achieve an ultra-high piezoelectric coefficient (d33) up to 1210 pC/N, associated with a
high dielectric permittivity of εr = 7059 at room temperature. Figure 3 shows the synthetic
strategy of the PMN-29PT-1.6Gd ceramics designed by the authors.
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Because of the attention to microstructural design and processing control, advanced
ceramics are often high value-added products. Developments in advanced ceramic pro-
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cessing continue at a rapid pace, constituting what can be considered a revolution in the
kind of materials and properties obtained.

This special issue contains ten papers that reported the results of several studies
on functional ceramics, structural ceramics, ceramic composites, ceramic coatings and
special glasses. The exquisite chemical compositions, novel and controllable fabrication
process, subtle and designable meso/micro/nano-structures, unique physical and chem-
ical properties as well as potential applications of these materials will be presented to
the readers.

The editors’ research group focused on the preparation, microstructures and electri-
cal behaviors of the modified bismuth layer ferroelectric (BLSFs) ceramics. The authors
of [19] studied the microstructures and electrical conduction behaviors of Gd/Cr co-doped
Bi3TiNbO9 Aurivillius-phase ceramics. The authors of [20] reported the effects of oxide
additives on the phase structures and electrical properties of SrBi4Ti4O15 high-temperature
piezoelectric ceramics. The authors of [21] revealed the structures, electrical conduction
and dielectric relaxation behaviors of the Gd/Mn co-doped CaBi4Ti4O15 Aurivillius-phase
ceramics. By means of the chemical (substituting ions and oxide additives) modification
and microstructural (phase composition and grain size/orientation) design for these three
kinds of BLSFs ceramics, the electrical properties of materials were greatly improved. Such
BLSFs ceramics are expected to obtain wide applications in the piezoelectric sensors with
an operating temperature exceeding 500 ◦C.

The authors of [22] reported the microstructure and mechanical properties of com-
posites obtained by spark plasma sintering of Ti3SiC2-15 vol.%Cu mixtures, and the mi-
crostructure and tribological properties of spark-plasma sintered Ti3SiC2-Pb-Ag composites
at elevated temperatures were further investigated in [23]. The authors of [24] explored
the effect of Al2TiO5 content and sintering temperature on the microstructure and residual
stress of Al2O3-Al2TiO5 ceramic composites, and the effects of material design and sintering
process on residual stresses were expounded from macro- and micro-levels. The authors
of [25] studied the electron escape condition in semiconductor nanomaterials via photode-
position reaction. The authors of [26] prepared the boron nitride ceramic fibers containing
amounts of silicon nitride using hybrid precursors of PBN and PCS via melt-spinning,
curing, decarburization under NH3 to 1000 ◦C and pyrolysis up to 1600 ◦C under N2. The
authors of [27], via a facile sol-gel method, explored the effects of the relative humidity
(RH) on the BiFeO3 film in terms of capacitance, impedance and current-voltage (I–V). The
authors of [28] investigated the tribological behaviors in Zr-based bulk metallic glass with
a high heterogeneous microstructure.

In the manufacturing process of advanced ceramics, such as electronic ones, which
have a high global market share, complicated physical and chemical changes occur. The
characteristics of advanced ceramics, such as performance, reliability, and durability, are
determined by the microstructure resulting from the transformation of the manufactur-
ing process.

The experimental research and theoretic analysis aiming at some common scientific
and technological problems in advanced ceramics presented above constitute the thematic
scope of this Special Issue, entitled “Microstructural Design and Processing Control of
Advanced Ceramics”. In conclusion, the published papers demonstrate the microstructures
and processes’ relevance of the topics dealt with. The main purpose of this Special Issue is
to publish significant papers presenting advanced research in the field of ceramic materi-
als and ceramic composites with excellent functional and/or mechanical properties and
broad applications.
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