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Abstract: A novel approach to electric explosion of intertwined wires to obtain homogeneous powder
mixtures intended for preparing feedstock for extrusion 3D printing has been applied. The powder
were composed of spherical micron- and nano-sized W/Cu particles in-situ alloyed by Zn and Ni
during electric explosion of intertwined dissimilar metal wires is offered. The mean particle size
measured by micron-sized particles was not more than 20 µm. The average number size of these
particles was 3 µm and it was dependent on the energy input. The powders contained phases such as
α-W, β-W/W3O as well as FCC α-Cu(Zn) and α-Cu(Ni) solid solutions with the crystalline lattice
parameters 3.629 and 3.61 A, respectively.
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1. Introduction

The W-Cu pseudoalloys are widely used in different industries as functional materials
possessing high electric and heat conductances, and high resistance to erosion, wear
and radiation [1–3]. The use of casting for producing the W/Cu pseudoalloys is limited
due to great difference in their thermodynamic and physical parameters, and therefore
powder metallurgy is the most promising method that allows improving both the W/Cu
pseudoalloy’s physico-mechanical and functional characteristics [1].

The W/Cu pseudoalloys may be produced also using mechanical alloying [4] as well
as chemical [5,6] and physical [7,8] methods. An alternative method is used such as electric
explosion of wires that allows obtaining completely spherical particles [9] by passing a
current pulse with a current density as high as 106–109 A/cm2 through a metallic wire [10].
The instant heating changes the wire metal state from the solid to a two-phased state
defined as explosion products composed of micron- and nano-sized droplets + low ionized
plasma [11]. The next stage will be cooling and condensation of the expanding products
into spherical micron- and nanosized particles [12,13]. An advantage of this method would
be an opportunity for particle size adjustment by varying the energy input into a wire and
thus varying both the size and volume fraction of the micro- and nano-sized components
in the mixture [9,14].

It was shown [15,16] that the use of homogeneous powder blends prepared from both
micron- and nanosized particles allows obtaining feedstocks with improved characteristics
required for fabricating materials with high physico-mechanical properties using either
extrusion 3D printing or metal injection molding (MIM).

The use of simultaneous electric explosion of two and more dissimilar metal wires
allows obtaining particles composed of two or more elements [17,18]. Varying the wire
diameter and keeping its length constant makes it possible to vary the element content
in a particle as well as to modify its macrostructure for obtaining either Janus-like or
core-shell particles [19,20].
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The as-synthesized W/Cu particle metal may oxidize when exposed to air [21] and it
is especially crucial for the copper whose electric resistance greatly depends on the content
of oxygen. Therefore, particles should be subjected to hydrogen reduction before using any
consolidation method. Development of processes that permit either full or partial avoidance
of the copper particle oxidation is urgent for preparation of the copper-base feedstock for
both extrusion 3D printing and MIM. Depending on the chemical composition of a polymer
binder, all technological operations intended for homogenization of the feedstocks or
those performed in 3D extrusion printing are carried out at the temperatures in the range
100–250 ◦C, i.e., temperatures high enough for oxidizing the copper nanoparticles [22].

An alternative solution to this problem may be alloying the copper component by
such metals as Zn, Ni, Sn, Ag and thus reducing its oxidation degree, for example, in
fabricating the water-base copper-containing conductive ink for printing the integrated
electric circuits [23].

An analogous approach has been used in this work for producing micron- and nano-
sized W/Cu-Zn and W/Cu/Ni-Cr particles by electric explosion of wires in argon. The in
situ alloying of W/Cu particles with the above indicated elements would allow improving
mechanical and physico-mechanical characteristics of the feedstock and consolidated com-
ponents [1]. Alloying the particles with elements such as Zn, Ni and Cr would improve
wetting between W and Cu components, intensify sintering (Ni) and increase their hardness
due to precipitation of Cr in the copper matrix [24].

A part of the work must be devoted to analyzing the energy input effect on both
particle size distribution and formation of phases. Establishing these relationships is
necessary for producing the quality feedstock powders with different particle size dis-
tributions to be used for tailoring the characteristics of either consolidated or additively
manufactured composites.

2. Experimental Procedure
2.1. Electric Explosion Synthesis of Multimetallic Particles

The electric explosion of intertwined dissimilar metal W/Cu-37%Zn and W/Cu/79%Ni-21%Cr
wires was used to obtain the W/Cu-Zn and W/Cu/Ni/Cr powders composed of both micro- and
nano-sized particles in an electric explosion machine whose functioning utilized the RLC circuit
principle [25]. The explosion frequency was 0.5 Hz and the explosion parameters were determined
from the current dependencies I(t) measured using the Rogowski belt. The moment of time cor-
responding to the explosion of wire was determined by detecting a local minimum at the dI/dt
curve [26]. The amount of energy E input into the wire was calculated according to Equation (1) [27]
as follows:

E(t) = U0

t∫
0

I(t)dt − 1
2C

 t∫
0

I(t)dt

2

− LI2(t)
2

− R
t∫

0

I2(t)dt (1)

where U0 is the capacitor bank charging voltage (kV), C is the total electric capacity of
the bank (µF), L is the inductance of the RLC-circuit (~0.75 µH), R is the ohmic resistance
of the RLC circuit (~0.086 Ohm) and ΣEs is the total sublimation energy of the wires
intertwined calculated from the reference data [28]. All the process parameters used for
producing both W/Cu/Zn and W/Cu/Ni/Cr powders are shown in Table 1. The wire
geometry parameters provided the relative contents of the constituent metals as follows
(mass %): W-17Cu-9.4Zn, W-23Cu-4.4Ni-1.1Cr. The energy input was varied by varying
the magnitude of the charging voltage U0.
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Table 1. Electric explosion parameters used for producing W/Cu/Zn and W/Cu/Ni/Cr powders.

Composition
Wire Diameter, mm

Wire Length, mm C, µF U0, kV ΣEs, J P, MPa
W Cu63Zn37 -

W/Cu/Zn 0.24 0.22 - 70 1.26

17

261 0.322

27

W/Cu/Ni/Cr
W Cu Ni79Cr21

0.24 0.20 0.1 70 1.26 18 310 0.3

2.2. Characterization of Powders

Two powder lots of 300 g each were produced and then passivated in air for 24 h to
exclude spontaneous oxidizing in further handling them. The basic diagram of electric ex-
plosion of wire process and machine used for producing the W/Cu/Zn and W/Cu/Ni/Cr
powders is shown in Figure 1a together with the macrograph of intertwined wires (Fig-
ure 1b). The intertwined wire pitch was 1 wind per 1 cm of length. It was found out that
this value allows neglecting the wire deformation effect on the energy release in passing
the current through it [29].
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Figure 1. Schematic diagram (a) and view of intertwined dissimilar metal wires (b).

The powder production process is as follows. The intertwined wires are reeled up
and fixed inside the wire feeding device (Figure 1a, pos.1). The high-voltage electrode is
connected with the energy capacitor (Figure 1a, pos.8) via an air-gap discharge device and
then displaced to set the gap between the high-voltage and grounded electrodes inside the
explosion chamber (Figure 1a, pos.2). This gap defines the length of wire to be exploded.
On such an adjustment of the inter-electrode gap, the chamber is closed and evacuated
until reaching the residual air pressure of ~1 Pa. The next stage is filling the chamber with
argon up to its residual pressure of 0.3 MPa. On reaching this pressure level, the capacitor
system (Figure 1a, pos.8) starts charging as well as both argon circulation system (Figure 1a,
pos.7) and wire feed device (Figure 1a, pos.1) are activated

Adjusting the angular velocity of the wire feeder rollers allows specifying the required
value of the explosion frequency. The electric explosion of wire occurs when this wire
touches the high-voltage electrode. The explosion products are carried away by the argon
flow from the explosion chamber (Figure 1a, pos.2) to the separator (Figure 1a, pos.3) where
the non-exploded wire chunks as well as large >50 µm in size drops are separated from
the powders which then carried away to the cyclone apparatus (Figure 1a, pos.5) and then
settle in the bin (Figure 1a, pos.6). On producing the desired amount of powder, the argon
pressure is decreased to the atmospheric level and powder is passivated in air.
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The particle micrographs were obtained using an SEM instrument, the Quanta 200 3D
(FEI Company, Hillsboro, OR, USA) attached with an EDS analyzer. The particle size
distribution was reconstructed from measuring the particle sizes in those SEM micrographs.
An X-ray diffractometer, the Shimadzu XRD 6000, CuKa (Shimadzu, Kyoto, Japan), was
used to obtain the powder diffractograms whose further identification was carried out using
the PDF2 database and XPowder 2004 software The coherent scattering area sizes (dcsr)
as well as crystalline lattice microdistortions were determined according to the Williams-
Hall method [30].

3. Results and Discussion

It is known [9] that the particle size distribution resulting from an electric explosion of
wire (EEW) is determined by the energy input with respect to total wire sublimation energy,
i.e., E/ΣEs so that varying this ratio it becomes possible to produce either micron- or nano-
sized particles. If E/ΣEs value is within the 0.3-0.9 range then the major part of the powder
is represented with both micron- and submicron-sized particles. The nanosized particles
are the main fraction at E/ΣEs > 1.5. When E/ΣEs values are within the 0.9–1.5 range the
powder is a homogeneous mixture composed of both micron- and nanosized particles.

Apart from the RLC-circuit parameters, the E/ΣEs ratio magnitude is also dependent
on the wire material, for instance, it is possible to provide an energy input much higher
than the total sublimation energy using wires made of metals possessing high electric
conductance and simultaneously low-melting points [11]. This kind of electric explosion
may be used for producing mainly nanosized particles of metals or alloys. According
to [31], the instant heating of a brass wire by passing through it a current pulse resulted
in its full sublimation and then condensation of the gaseous phase into the nanosized
particles. In comparison with the wire composition, the zinc-lean a-Cu solid solution
and zinc-rich Cu5Zn8 phases are formed under conditions like that. The evaporation
of the brass wire creates conditions for enriching the nanoparticles with zinc because of
considerable differences in melting and boiling among the W, Cu and Zn metals. This
enriching leads to formation of ZnO on the particle surfaces, which is detrimental for the
W/Cu/Zn powder consolidation.

It should be noted, however, that the feasibility of full evaporation of a metal by
passing a current pulse through it is still in dispute [26,32].

Electric explosion of wires made of metals characterized by both a low electric conduc-
tance (79NiCr21 alloys) and high melting point can be carried out with an energy input
comparable to the total sublimation energy [11]; therefore, only micron-sized particles
would be obtained [33]. The above-discussed data allow suggesting that alloying the
copper particles with refractory elements in the electric explosion conditions can be limited
by not suitable particle size distribution of powders obtained from the intertwined W/Cu
and 79Ni21Cr wires.

Producing the W/Cu/Zn and W/Cu/Ni/Cr powders composed of both micro- and
nanosized particles and containing the desired a-W+ a-Cu(Zn, Ni) phases is feasible under
condition that there is a dependence between the energy input and phases formed

3.1. Electric Explosion Synthesis of W/Cu-Zn Powders

The time-dependent oscillograms of current (Figure 1a) and energy (Figure 1b) input
recorded during electric explosion of intertwined tungsten and brass wires showed that
increasing the charging voltage from 17 to 27 kV resulted in obtaining powders with the
energy input ratio E/ΣEs varying within the range 0.5 to 1.25.

The current vs. time dependencies give evidence on existing different electric explosion
regimes depending upon the E/ΣEs-ratio. For instance, the explosion regime close to that
of short circuiting occurs at E/ΣEs ≈ 0.5. This regime is characterized by the low energy
release in the bulk of the metal [34]. There is a local minimum on the dI/dt curve at
t ≈ 2.15 µs that indicates on the sharp change in conductance caused by the explosion of
one of the wires. It is obvious that the brass wire would be first to explode in passing the
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current pulse because of its lower melting point and higher conductance in comparison to
the partner wire.

The intertwined wires are connected in parallel circuit so that their equivalent resis-
tance Rwires is determined by the resistance Rw of the tungsten one, which is increased
in passing the current in the time interval 2.15–4.0 µs and overpass the 2(LC)−0.5 value
at t ≈ 4.0 µs. An aperiodic discharge regime is established at t > 4.0 µs when partial wire
metal is dispersed into melted drops whose diameter is close to that of the wire [35].

More discharge regime changes occur at E/ΣEs ≈ 0.8 and E/ΣEs ≈ 1.25 when two
more local minimums appear at the dI/dt curves at t ≈ 1.9 and t ≈ 1.65 µs (marked by
crosses in Figure 2b). These minimums can be related to the conductance changes caused
by the exploding brass wire. It is only a little of time when the discharge go into oscillation
regime which is characterized also as arcing. This transition to the oscillating arc discharge
means that Rwires < 2(LC)−0.5 is true, i.e., there is sharp Rwires fall that plausibly is due to
discharge occurring either by the brass wire explosion product or by the tungsten wire
surface. These discharges may also occur simultaneously as observed by the example
of exploding both copper and tungsten wires [36]. It is obvious that if occurred these
discharges would interfere with the efficiency of energy input.
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Figure 2. Temporal oscillogram curves of current I(t) (a) and energy E/ΣEs (b) for electrical explosion
of W/Cu63Zn37(brass) wires. The cross marks denote transition to the arc discharge regime.

The BSE SEM micrographs and corresponding EDS maps of the W/Cu-Zn powders
showed they were composed of micron-sized tungsten particles and nano-sized copper
alloy ones (Figure 3). The mean particle size is decreased when increasing the E/ΣEs
ratio thus making more even the particle distribution histogram. It is noticed that more
tungsten particles form at higher E/ΣEs (Figure 3c,f,i). It is suggested that reducing the
W content when decreasing the E/ΣEs can be explained by preferential settling of the
large > 50µm –sized tungsten particles in the separator bin (Figure 1, pos.4), and vice versa
smaller tungsten particles are formed at higher E/ΣEs values whose settling in the separator
is less probable.

Typical micrographs of the W/Cu-Zn particles produced with E/ΣEs ≈ 0.5, E/ΣEs ≈ 0.8,
E/ΣEs ≈ 1.25 are presented in Figure 4a–c together with the corresponding particle size
distributions, which show that the majority of the micron-sized particles were smaller than
10 µm. The increase in U0 from 17 to 27 kV was accompanied by the increase in the E/ΣEs
ratio so that the micron-sized particles changed their mean size from 3.8 to 2.8 µm. Note
that the increase in E/ΣEs from 0.8 to 1.25 kV has almost no effect on the mean size of the
micron-sized particles. Such a situation can be explained by formation a conductive channel
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at U0 > 22 kV (Figure 2a) that interfered with the energy input and, correspondingly, with the
particle size refining under conditions of the experiment.

Figure 5 shows the presence of phases such as α-W, β-W/W3O, and FCC α-Cu(Zn)
solid solution irrespective of the energy input level. A semi-quantitative analysis of the
corresponding XRD peak heights allows us to suggest that the amount of the β-W/W3O
phase increased with the energy input. Such a finding might have resulted from increasing
the cooling rate of the smaller liquid W drops produced by the explosion at higher energy
input, and better stabilization of the metastable β-W. The increased amount of the W3O
may be related to increasing the specific particle surface area, and, consequently more
intensive oxidizing.

The FCC α-Cu(Zn) phase with the crystalline lattice parameter a = 3.629 A corresponds
to a solid solution of Zn in Cu that also follows from the almost identical distributions of
Cu and Zn in the EDS maps (Figure 3).

Table 2 contains data on the size of coherent scattering areas dcsr and crystalline lattice
microdistortions ∆d/d of phases identified in the sample using the XRD. The magnitudes
of both dcsr and ∆d/d decrease with increasing the E/ΣEs that can be provided by reducing
the mean particles size of particles and forming more perfect crystalline lattice, respectively.
The latter can be achieved by due to transition to the arc discharge and corresponding
reducing the particle cooling rate.
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Table 2. Structural characteristics of W/Cu/Zn powders.

Phase
Sample_1 Sample_2 Sample_3

dcsr, nm ∆d/d dcsr, nm ∆d/d dcsr, nm ∆d/d

α-Cu(Zn) 58 ± 14 0.129 ± 0.018 27 ± 5 0.069 ± 0.024 34 ± 5 0.026 ± 0.020

α-W 174 ± 53 0.083 ± 0.021 48 ± 2 0.012 ± 0.005 46 ± 2 0.012 ± 0.006

β-W/W3O 56 ± 8 0.199 ± 0.102 48 ± 4 0.030 ± 0.008 35 ± 6 0.042 ± 0.036

3.2. Electric Explosion Synthesis of W/Cu/Ni-Cr Powders

The current and energy input diagrams were obtained during electric explosion
of intertwined W/Cu/79%Ni/21%Cr wires at the energy input levels 18, 22 and 27 J
(Figure 6a,b). The corresponding E/ΣEs ratio increased from 0.5 to 1.1.

The time dependencies of the current allows us to suggest the existence of different
explosion regimes, for instance, the regime close to that of short circuiting occurs for
E/ΣEs ≈ 0.5 and E/ΣEs ≈ 0.7. The dI/dt curves allow identifying local minimums at t ≈ 2.4
and t ≈ 2.0 µs which can be related to explosion of the copper wire. The aperiodic regime
is established for E/ΣEs ≈ 0.5 and E/ΣEs ≈ 0.7 at t > 4.5 µs and t > 3.5 µs, respectively.
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No explosion regime changes occur for E/ΣEs ≈ 1.1, and dI/dt minimum at t ≈ 1.7 µs
testify on the conductance changes appeared dute to explosion of the copper wire. The next
stage is the transition to the oscillating current regime denoted by cross marks in Figure 6a.

The SEM micrographs and EDS element distribution maps (Figure 7) were obtained
from the W/Cu/Ni-Cr powder and suggested it was composed of both micron- and
nano-sized particles. The micron-sized ones are represented by nickel-chromium and
tungsten ones. It was noted above that increasing the E/ΣEs ratio improves the particle
size distribution homogeneity due to reduction of the mean particle size. Also the content
of W in the W/Cu/Ni-Cr powder is increased analogously to that in the above-discussed
W/Cu/Zn powders (Figure 7c,f,i).

The W/Cu/Ni-Cr powder micrographs (Figure 8a–c) and corresponding particle size
distributions show that almost all the micron-sized particles were smaller than 10 µm
irrespective of the energy input U0. Their mean size decreased from 4.4 to 3.6 µm in
accordance to corresponding increasing of the E/ΣEs ratio. Again, increasing the E/ΣEs
from 0.7 to 1.1 had not any essential effect on the micron-sized particles because of formation
of the conductive channel at E/ΣEs > 0.7 (Figure 6a) with the corresponding detrimental
effect on the efficiency of energy input under existing experimental conditions.

The XRD patterns in Figure 9 demonstrate that all the samples contain the same phases
such as α-W, β-W/W3O, and an FCC phase irrespective of the energy input level. Again,
the higher energy input resulted in the increased content of the β-W/W3O phases. The FCC
phase obtained after electric explosion at charging voltages above 22 kV had the crystalline
lattice parameter a = 3.61Å and was identified as an α-Cu(Ni) solid solution earlier detected
when studying the Cu(Ni) nanoparticles produced via electric explosion [37].

Table 3 demonstrates the the data on measuring the coherent scattering area sizes dcsr
and crystalline lattice microdistortions ∆d/d obtained from the XRD peak broadening of
phases detected in W/Cu/Ni-Cr powders. Analogously to the above–described data for
W/Cu/Zn (Table 2) both these characteristics reduce as the E/ΣEs ratio is increased.

Table 3. Structural characteristics of W/Cu/Ni/Cr powders.

Phase
Sample_1 Sample_2 Sample_3

dcsr, nm ∆d/d dcsr, nm ∆d/d dcsr, nm ∆d/d

α-Cu(Ni) 4721 0.089 ± 0.022 22 ± 9 0.084 ± 0.018 20 ± 15 0.055 ± 0.034

α-W 237 ± 22 0.048 ± 0.023 123 ± 31 0.037 ± 0.012 69 ± 12 0.032 ± 0.011

β-W/W3O 35 ± 12 0.137 ± 0.072 26 ± 11 0.077 ± 0.038 27 ± 13 0.068 ± 0.041
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The results obtained from the above-described experiments demonstrate that the
electric explosion method allows producing micron-and nano-sized powders directly from
dissimilar metal wires. It is worth noting that the energy input level had different effects
on the particle size of W/Cu/Zn and W/Cu/Ni/Cr powders. For W/Cu/Zn powders
the micron particle size distribution became more narrow when increasing the charging
voltage U0 (energy input) while coarse >10 µm in size particles retained their presence
in W/Cu/Ni/Cr powders. This fact can be explained by specific heating conditions
existing on a high electrical-resistance nickel-chromium wire while passing a current pulse
through it. The current is limited by high electric resistance of the wire and, therefore, the
explosion products are represented by both micron- and nanosized droplets without the
gas phase [28]. The crossover to current oscillation regime at U0 > 22 kV interferes with the
energy input either into the wire or its explosion products so that the micron-sized Ni-Cr
particles are retained.

It can be concluded that alloying copper particles by nickel in W/Cu powders by
means of using nickel-chromium wires is almost useless because of obtaining inhomoge-
neous α-Cu(Ni) particle size distributions. The more promising approach here may be to
use W/Cu/Ni wires because of lower electric resistance of Ni or CuNi alloys as compared
to that of Ni-Cr.
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For the W/Cu-Zn powders, the increase in U0 results in reducing the micron-size
particle size distribution range. In our opinion, this is due to lower specific resistance of
copper as compared to that of tungsten and, therefore, achieving of a higher energy input
ratio E/ΣEs, which, however, does not result in full sublimation of copper as follows from
the absence of any Zn-base phases in the powders obtained [31].

The results obtained in the course of this work indicate on the necessity of further
investigations to be focused on optimization of elemental composition of the powders. It is
known [1] that the majority of W-Cu composites contain not less than 30 wt.% of copper.
Our results show that the content of tungsten in our powders is 65–60 wt.%, i.e., less that
of the intertwined wires (71–73 wt.%). Enriching the produced powder with tungsten
to >70 wt.% may be achieved by using the tungsten wires of large diameters as well as
adjusting the separation procedure.

Materials 2023, 16, 955 11 of 15 
 

 

 
Figure 8. The BSE SEM image and particle size distribution of W/Cu/Ni-Cr. (a) E/ΣEs = 0.5, (b) 
E/ΣEs = 0.7, (c) E/ΣEs = 1.1. 

The XRD patterns in Figure 9 demonstrate that all the samples contain the same 
phases such as α-W, β-W/W3O, and an FCC phase irrespective of the energy input level. 
Again, the higher energy input resulted in the increased content of the β-W/W3O phases. 
The FCC phase obtained after electric explosion at charging voltages above 22 kV had the 
crystalline lattice parameter a = 3.61Å and was identified as an α-Cu(Ni) solid solution 
earlier detected when studying the Cu(Ni) nanoparticles produced via electric explosion 
[37]. 

Figure 8. The BSE SEM image and particle size distribution of W/Cu/Ni-Cr. (a) E/ΣEs = 0.5,
(b) E/ΣEs = 0.7, (c) E/ΣEs = 1.1.



Materials 2023, 16, 955 12 of 14Materials 2023, 16, 955 12 of 15 
 

 

 
Figure 9. XRD patterns of the W/Cu/Ni/Cr as-exploded powder. Sample_1—E/ΣEs = 0.5, Sam-
ple_2—E/ΣEs = 0.7, Sample_3—E/ΣEs = 1.1. 

Table 3 demonstrates the the data on measuring the coherent scattering area sizes 
dcsr and crystalline lattice microdistortions Δd/d obtained from the XRD peak broadening 
of phases detected in W/Cu/Ni-Cr powders. Analogously to the above–described data for 
W/Cu/Zn (Table 2) both these characteristics reduce as the E/ΣEs ratio is increased. 

Table 3. Structural characteristics of W/Cu/Ni/Cr powders. 

Phase 
Sample_1 Sample_2 Sample_3 

dcsr, nm Δd/d dcsr, nm Δd/d dcsr, nm Δd/d 
α-Cu(Ni) 4721 0.089 ± 0.022 22 ± 9 0.084 ± 0.018 20 ± 15 0.055 ± 0.034 
α-W 237 ± 22 0.048 ± 0.023 123 ± 31 0.037 ± 0.012 69 ± 12 0.032 ± 0.011 

β-W/W3O 35 ± 12 0.137 ± 0.072 26 ± 11 0.077 ± 0.038 27 ± 13 0.068 ± 0.041 

The results obtained from the above-described experiments demonstrate that the 
electric explosion method allows producing micron-and nano-sized powders directly 
from dissimilar metal wires. It is worth noting that the energy input level had different 
effects on the particle size of W/Cu/Zn and W/Cu/Ni/Cr powders. For W/Cu/Zn powders 
the micron particle size distribution became more narrow when increasing the charging 
voltage U0 (energy input) while coarse >10 μm in size particles retained their presence in 
W/Cu/Ni/Cr powders. This fact can be explained by specific heating conditions existing 
on a high electrical-resistance nickel-chromium wire while passing a current pulse 
through it. The current is limited by high electric resistance of the wire and, therefore, the 
explosion products are represented by both micron- and nanosized droplets without the 
gas phase [28]. The crossover to current oscillation regime at U0 > 22 kV interferes with 
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4. Conclusions

Simultaneous electric explosion of the intertwined W/Cu-Zn and W/Cu/Ni-Cr wires
allowed producing W/Cu/Zn and W/Cu/Ni/Cr powders containing micron- and nano-
sized particles. As shown, the increase in the energy input into the W/Cu-Zn wire from
0.5Es to 1.25Es resulted in reducing the mean particle size from 3.6 to 2.8 µm. The powder
was composed of phases as follows: α-W, β-W/W3O, and FCC α-Cu(Zn) with crystalline
lattice parameter a ≈ 3.629 A.

Increasing the energy input into W/Cu/79Ni/21Cr wires from 0.5Es to 1.1Es reduced
the mean particle size from 4.4 to 3.6 µm. The phases detected in the powder were α-W,
β-W/W3O and FCC α-Cu(Ni) with crystalline lattice parameter a ≈ 3.61 A. The particle
size analysis and EDS elemental distribution indicated the presence of micron-sized Ni-Cr
particles. Such a finding demonstrated the inefficiency of using nickel-chromium wires
for electric explosion production of copper-nickel-containing powders and necessity of
replacing them with nickel ones.

As shown by varying the wire diameter it is possible to obtain homogeneous mixtures
of micron- and nanosized particles with various element content ratio values, which allows
for synthesizing W-30 wt.%(Cu, Ni, Zn, etc.) powders possessing the desired functional
characteristics.

It was shown by the above-discussed results that electric explosion of intertwined dis-
similar metal wires is a promising method for synthesizing homogeneous powder mixtures
composed of dissimilar metal particles with different particle-size distributions that allow
tailoring the characteristics of the powder feedstocks intended for 3D extrusion printing.
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