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Abstract: Noble metal nanoparticles have attracted attention in recent years due to a number of their
exciting applications in plasmonic applications, e.g., in sensing, high-gain antennas, structural
colour printing, solar energy management, nanoscale lasing, and biomedicines. The report embraces
the electromagnetic description of inherent properties of spherical nanoparticles, which enable
resonant excitation of Localized Surface Plasmons (defined as collective excitations of free electrons),
and the complementary model in which plasmonic nanoparticles are treated as quantum quasi-
particles with discrete electronic energy levels. A quantum picture including plasmon damping
processes due to the irreversible coupling to the environment enables us to distinguish between
the dephasing of coherent electron motion and the decay of populations of electronic states. Using
the link between classical EM and the quantum picture, the explicit dependence of the population
and coherence damping rates as a function of NP size is given. Contrary to the usual expectations,
such dependence for Au and Ag NPs is not a monotonically growing function, which provides a new
perspective for tailoring plasmonic properties in larger-sized nanoparticles, which are still hardly
available experimentally. The practical tools for comparing the plasmonic performance of gold and
silver nanoparticles of the same radii in an extensive range of sizes are also given.

Keywords: Localized Surface Plasmons (LSP); plasmon damping; coherence dephasing; dispersion
relation; open quantum system; quasi-particle; Au nanoparticles; Ag nanoparticles; size effects;
quality factor

1. Introduction

The plasmonic properties of nanoscale structures lay the groundwork for many future
technologies, applications, and materials (e.g., [1–8]). Plasmonics exploit the unique prop-
erties of metal/dielectric interfaces [9–19] and references therein), which enable the concen-
tration manipulation of electromagnetic (EM) fields on the subwavelength scale. Plasmonic
nanostructures provide ways to generate, confine, guide, modulate and detect light.

Metal-dielectric interfaces support surface plasmons—collective surface charge density
oscillations of free electrons [15,20–22]. In the case of finite-size nanostructures, such
oscillations form the standing waves of Localised Surface Plasmons (LSP) [15,23,24], which
are damped as a result of basically different physical mechanisms.

In spherical metal nanoparticles (MNPs), the basic plasmonic properties can be manip-
ulated by the radius. The contribution of LSPs, which is resonant in character, is present
in the scattering, absorption, or extinction spectra and, if dominant, manifests in the form
of maxima with a size-dependent spectral position, spectral width, and amplitude. So
the maxima in the far-field spectra reflect the resonant character of the EM excitations, which
arise at the metal-dielectric interface and are direct consequences of the size-dependent
intrinsic properties of plasmonic nanoparticles (NPs) [15,25] itself. In optical research,
the scattering and absorption spectra can be predicted using the Lorentz–Mie scattering
theory applied to MNPs of a chosen radius. However, Mie theory does not give direct
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information either about the size-dependent pick positions in the spectra, the LSP reso-
nance condition or the basis of plasmon damping processes reflected in the spectral width
of the maxima and their amplitudes.

So, in many optical issues related to LSPs, it is not the behaviour of the electrons that
is of primary interest, but the surface-localized EM fields coupled to charge oscillations
and confined to the metal–dielectric interface. In resonance, the incoming EM waves are
effectively captured at the spherical metal/dielectric interface forming 3D standing waves
coupled to oscillations of the nanoparticle’s conduction band electrons.

LSP resonance frequencies and damping rates in the function of particle size are
the core parameters in applications as size-dependent plasmon dynamics is a fundamental
tool in applications. In particular, understanding the dephasing of coherent electron
oscillation and its consequences on associated EM fields is crucial. The sketchily called
T1 and T2 times introduced in analogy to the widely used phenomenological formula
from NMR spectroscopy used e.g., in [26–31] are in general not satisfactory for the case
of plasmons. Therefore, the more general description of the multipolar plasmon times
(rates) seems to be interesting.

The first part of the present report contains a recapitulation of the EM description,
which includes the LSP dynamics resulting from considering the dispersion relation (DR)
for Surface Localized EM (SLEM) fields in gold and silver nanoparticles. The noble metal
nanoparticles have been used in different applications such as biosensing, catalysis, pollu-
tant degradation, solar cells, and hydrogen production (e.g., [7,12,32–36]). Experimental
studies [25,37–39] and applications of the noble MNPs are limited by the sizes of NPs due
to production technology problems. Large sodium droplets [40] induced from the vapour
phase make an exception, which is, however, not interesting for solid-state plasmonics.
In many basic studies, the commercially available, highly monodisperse particles of limited
size are used. Theoretical studies need not be constrained by similar problems, and that
allows us to promote the interest in plasmonic properties of relatively large MNPs, still
hardly available experimentally.

After a brief summary of the classical EM cavity surface mode description based
on DR for SLEM modes [15,41,42], we recall results obtained from the model, in which
the plasmonic system is treated in terms of atomic quasi-particles (QP) of energy levels
corresponding to the energies of plasmonic mode oscillations. In particular, using the QP
picture and Lindblad (e.g., [43,44]) equations for open systems, we distinguish between
decoherence damping, which affects the relative phases, and population relaxation, which
affects the number of electrons involved in the coherent motion in the processes of the ra-
diative and nonradiative damping experienced by LSPs.

Linking classical and quantum pictures, we provide the size dependence of the deco-
herence and the depopulation damping rates of higher than a dipole, multipolar plasmons,
in the NPs size range not limited by approximations. It allows us to discuss the quality fac-
tors of plasmonic cavities and to demonstrate the high efficiency of plasmonic performance
of nanoparticles in size ranges, which are still not available experimentally.

2. Classical Picture Based On Maxwell’s Equations
2.1. Mie Scattering Theory versus Dispersion Relation (DR) for Surface Localized EM Fields

Mie scattering theory answers the question of how the EM field of the incident plane
wave is modified by the presence of a homogeneous sphere of a chosen radius [45]
in a non-absorbing dielectric medium. After applying the appropriate continuity re-
lation at the sphere’s boundary, the distribution of the EM fields inside and outside
the sphere can be found [46]. Then, e.g., the total cross-sections for absorption, scat-
tering, and extinction (and the corresponding efficiencies (e.g., [15])) or the far-field spectra
(which display maxima in size-dependent spectral ranges) can be obtained (see Figure 1a).
Such maxima are manifestations of plasmon resonances.
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Figure 1. Illustration of the differences between the schemes used and the obtained data
from (a) Mie scattering formalism (incoming field from external sources present) and (b) the self-
consistent approach with no EM field present, which allows finding the dispersion relation at
the spherical metal–dielectric interface.

However, in Mie scattering formalism, the resonance condition and its size dependence
are not specified. Additionally, there is no direct information about the decay processes
nor the size dependence of the rates of such processes. Answers to these questions are
hidden in the intrinsic characteristics of a plasmonic particle alone (Figure 1b) and manifest
in the measured quantities, when the particle is illuminated.

2.2. Dispersion Relation and the Resulting Oscillation Energies and Damping Rates of Plasmonic
Cavity Modes Versus Metal NP’s Radius

Dispersion relation (DR) connects spatial and temporal characteristics of the waves,
which can propagate in a medium. In the elementary case of harmonic waves in the bulk di-
electric medium, the DR connects the oscillation frequencies to the wave numbers of waves,
which can propagate in the medium.

When looking for the DR for plasmonic SLEM fields at a spherical metal-dielectric inter-
face, one considers a formal scheme similar to that of the Mie scattering theory (Figure 1a),
but in the absence of the field from outer sources (Figure 1b) [12,15,41,47–49]. Such a scheme,
in the case of the TM (Transverse Magnetic) component of EM field (see Figure 2) is analogous
to that for a flat metal–dielectric interface, which describes the propagation of Surface Plas-
mon Polariton (SPP) (e.g., [15]). In both cases, the component of the electric field normal to
the interface is present and plays a crucial role. However, in the case of a spherical interface,
the dispersion relation is formally more complicated:

√
εinξ ′l(koutR)ψl(kinR)−

√
εoutξl(koutR)ψ′l(kinR) = 0 (1)

as it contains the special functions of complex arguments and the derivatives of these
functions with respect to these arguments. For the transverse electric (TE) component
of the field, the corresponding dispersion relations have no solutions for Re εin(ω, R) < 0.
The complex ψl(z), ξl(z) are Riccati–Bessel spherical functions (of complex arguments),
which can be expressed by the Bessel Jl+1/2(z), Hankel H(1)

l+1/2(z), and Neuman Nl+1/2(z)
cylindrical functions of the half-order (Let us note, that in some ready-to-use numeri-
cal procedures dealing with special functions it is assumed, that the arguments are real.
However, in the numerical search of conditions for the existence of solutions of the DR
(Equation (1)) the complexity of the arguments must be taken into account). kin and kout
are the wave vectors inside the sphere, and in the sphere surroundings, respectively;
kin(ω, R) =

√
εin(ω, R) · ω/c, and kout(ω) =

√
εout · ω/c are the dispersion relations
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in the extended media inside and outside the sphere; εin(ω, R) and εout are the dielectric
functions of the metal sphere and of the dielectric non-absorbing environment, respec-
tively, and c is the speed of light. The dielectric function of the metal NP εin(ω, R) in-
cludes the size-dependent effect of an additional electron relaxation due to collisions with
the sphere boundary (taken into account phenomenologically) and the impact of the inter-
band electronic transitions (see [15]). All the numerical results below are obtained for gold
and silver NPs in immersion (nout =

√
εout =1.5).

The dispersion relation (Equation (1)) results from the continuity relations at the sphere
boundary imposed on the solutions of the self-consistent, divergent-free Maxwell equations
in the absence of the incoming light field [47] (recollected in [48]), according to the scheme
presented in Figure 2. The solutions exist only for the complex, discrete eigenvalues
ωl(R) − i2Γl(R) (In our previous papers (see e.g., [15] and references therein) we have
used 2Γl(R) for denoting the imaginary part of the complex eigenvalues. Such a choice
has been motivated by connecting Γl to the Lorentzian profile of LSP resonances mani-
festing in the spectra in the case of small damping (Γl � ωl) for the normalized profile
such that the central intensity of the mode l I(ωl) = I0. In such a case, the Lorentzian

profile I(ω) = I0
Γ2

l
(ω−ωl)2+Γ2

l
with 2Γl denoting the full width at half maximum (FWHM)

of the profile [50]). Calculated for successive radii R, it allows us to find the radius-
dependent oscillation dynamics of the mode l of the surface localized harmonic EM field
ESLEM

l (r = R, θ, φ, t) allowed at the interface:

ESLEM
l (r = R, θ, φ, t) ∝ exp((iωl(R)− 2Γl(R))t) (2)

Such oscillation dynamics are unambiguously determined by the intrinsic proper-
ties of the NP of a given size and its dielectric environment. The parameters ωl and Γl
characterise the plasmonic NP itself, disregarding whether the particle is illuminated or
not. The excitation of LSP is a resonance process, which takes place when the frequency
of the incoming light ω fits the eigenfrequency (-ies) of a plasmonic resonator ωl(R) (of
the cavity mode(s) l), with l = 1,2,3, . . . .

However, as far as the role of ωl is rather clear, the role of the damping rates Γl needs
further clarification. For this purpose, one can use an image, in which the plasmonic particle
is described as a quasi-particle [42].

Figure 2. The scheme leading to the dispersion relation for TM surface-localized fields and the re-
sulting conditions for the existence of solutions, which define the frequencies of the oscillations
and damping of these oscillations for the consecutive modes l =1, 2, 3,. . . ψ and ξ are Riccati–Bessel
spherical functions, the prime indicates differentiation with respect to the (complex) argument,
kin,out =

ω
c
√

εin,out.
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3. The Plasmonic Quasi-Particle Decay Dynamics

The pairs of ωl(R) and Γl(R), found in absence of the illuminating radiation, character-
ize an NP of the radius R in the same way as the energy levels and the inverse of lifetimes
characterize an atom or a molecule. In both cases, these quantities manifest in the spectra,
when the systems are illuminated.

Let us ascribe [42] the oscillation energies ωl of the classical EM modes of the plasmonic
cavity of radius R to the discrete energy levels of electronic states, which are higher than
the zero-energy non-oscillatory level by the energies h̄ωl(R) (see Figure 3). The correspond-
ing states of the plasmonic system S in the Hilbert space are |l〉 with l = 1, 2, 3. . . . The only
possible transitions are those with the absorption or emission of a photon with the energy
h̄ωl . Such transitions occur between the states |l〉 and the non-oscillatory state |0〉. N
electrons of the plasmonic system S can be, in general, distributed over the states |n〉 ,
n = 0, l =1, 2. . . if the system was initially excited accordingly. If the system is not excited,
all electrons remain in the ground state |0〉, which is the lower energy, stationary state
of the system S.

Figure 3. The scheme of relating the oscillation energies of LSP cavity modes to the energy levels
of a plasmonic quasi-particle.

3.1. The Density Matrix Operator and Quantum Master Equation

To describe the state of the plasmonic system S and its evolution, we use the density
matrix formalism, which is convenient for describing the quantum systems in mixed states
and for time-dependent problems. The diagonal elements of the density matrix correspond
to the probabilities pn of occupying quantum states |n〉, which are proportional to the rela-
tive electron populations Nn/N of these states. The complex off-diagonal elements describe
quantum coherences, which contain time-dependent phase factors. In time-dependent
problems, the off-diagonal elements describe the evolution of the coherent superposition
of these states.

As no physical system is absolutely isolated from its surroundings, the plasmonic
system S has to be considered an open quantum system, which is a subsystem of a larger
combined quantum system S + E, where E represents the environment to which the open
system S is coupled. Following the main assumption of the basic theory of open quantum
systems (e.g., [51,52]), the environment is assumed to be a large system with an infinite
number of degrees of freedom. The interaction of the open system S with the environment is
assumed to cause an irreversible behaviour for the open system S and leads to decoherence
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(randomization of phases) and dissipation of energy into the surroundings. The evolution
of S can be described by a quantum Markovian master equation.

The system S can be described as a sum of independent, open, two-level subsystems
Sl [42]: S = ∑l=1 Sl under the assumption that the states |l〉 (of energy corresponding
to the self-frequency of the cavity modes) are not coupled. Each two-level sub-system
(Figure 4a) consists of: the excited |l〉 state and the ground, non-oscillatory state |0〉, which
is the lowest energy, stationary state. The dynamics of the system S thus result from
the independent dynamics of the systems Sl , which can be described following the scheme
of a standard textbook 2-level systems applied to many model physical systems. In the basis
of states:

|l〉 =
(

1
0

)
, |0〉 =

(
0
1

)
, (3)

the density-matrix operator ρSl (t) is represented by a 2 × 2 matrix:

ρSl (t) =
(

ρll(t) ρl0(t)
ρ0l(t) ρ00(t)

)
. (4)

Figure 4. Illustrations of (a) two-level plasmonic QP and (b) irreversible coupling of a two-level
plasmonic QP to the environment consisting of radiation and heat reservoirs.

3.2. The Hamiltonian of the Uncoupled System

Quantum properties of the uncoupled EM cavity modes l are carried by the mode
“amplitudes”: annihilation al and creation a+l operators of photons, which satisfy:[

al , a+l
]
= ala+l − ala+l = 1.

A quantisation of the classical field Hamiltonian (e.g., [53]) gives the Hamilton operator
of the EM field: HF

l = (h̄ωl/2)
(
ala+l + a+l al

)
= h̄ωl

(
ala+l − 1/2

)
. By redefining the zero

energy level, one can drop 1/2 in the l-th field Hamiltonian: HF
l = h̄ωlala+l . The additional

argument for dropping 1/2 is that the constant energy in the Hamiltonian commutes with
a and a+ so it cannot affect the quantum dynamics described by the Heisenberg equations
of motion.

In the picture of the plasmonic QP, we introduce the Hamiltonian Hl , phenomenologi-
cally equivalent to HF

l , in the form [42]: Hl = h̄ωlσ+σ−, where σ− and σ+ are the energy-
lowering (a photon is created) and energy-rising operators (a photon is annihilated)
(see Figure 4a). In the isolated (closed) system Sl (no damping processes) the system
Sl is in the state of the initial coherent superposition of states caused by absorption and
annihilation of photons from and into the mode l, which in the model of plasmonic
QP in a self-cavity is equivalent to energy loss and gain at an amount h̄ωl , as sketched
in Figure 4a. Phenomenological association of the Hamiltonians HF

l and Hl enables a stan-
dard description of the losses suffered by the quantum system Sl (see next Subsection).
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Let us note for clarity, that the system described here is much simpler than that in the case
of the Jaynes–Cummings (e.g., [54]) model and its extensions.

3.3. Relaxation Processes

An excited plasmon, like an excited atom, decays to a state of lower energy sponta-
neously emitting a photon. In the theory of open quantum systems, such decay is assumed
to be due to the coupling of the system to the environment (see Figure 4b). Such cou-
pling introduces the radiative losses via spontaneous decay (coupling to the EM vacuum
fluctuating fields) and heat losses due to the inevitable collisions of electrons in metal
(coupling to a heat bath in thermal equilibrium). The dynamics of both coupling processes
are assumed to be much faster than those of the open system Sl , so the dynamics of Sl
(and that of S) are Markovian.

Each system Sl is assumed to be coupled to the environment independently. In such
a case, the general form of the Lindblad equation (e.g., [43,44]) also guarantees that the
dynamics of each matrix operator ρSl describing Sl are governed by the Lindblad equation
in the form:

∂ρSl (t)
∂t

= − i
h̄

[
Hl , ρSl (t)

]
− 1

2 ∑
α=r,nr

(
L†

α,l Lα,lρ
Sl + ρSl L†

α,l Lα,l − 2Lα,lρ
Sl L†

α,l

)
(5)

The first term on the right-hand side of Equation (5) describes the unitary evolu-
tion of the two-level subsystem Sl under the Hamiltonian Hl = h̄ωlσ+σ−. In the sec-
ond, dissipative term (the so-called Lindblad dissipator), the summation over α extends
over all processes (radiative and nonradiative) of coupling the system Sl to the environ-
ment. The Lindblad dissipator contains the “jump” operators Lα,l expressed by the energy-
lowering operators:

Ls,l =
√

Γs
l σ−, Lcol,l =

√
Γcol

l σ− (6)

which describes the random, sudden emission of a photon from the state |l〉 to the state
|0〉. The radiative and nonradiative rates Γr

l = Γs
l and Γnr

l = Γcol
l are the rates of damping

processes resulting from irreversible coupling to the outer radiation and heat reservoirs (see
Figure 4b). σ− = |0〉〈l| is the energy lowering operator, σ+ = σ†

− = |1〉〈0|, is the energy rising
operator. σ− and σ+ operators can be expressed by means of 2 × 2 Pauli matrices σ1 and σ2:
σ− = (σ1 − iσ2)/2, σ+ = (σ1 + iσ2)/2.

After algebra involving 2 × 2 matrices, the Lindblad master Equation (5) including
radiative and nonradiative dissipation processes (e.g., [25]) allows finding the evolution
of populations of the excited and ground states:

ρll(t) = ρll(t0) exp
(
−Γtot

l (t− t0)
)
, (7)

ρ00(t) = ρll(t0)
(
1− exp

(
−Γtot

l (t− t0)
))

+ ρ00(t0) (8)

and of coherences:

ρl0(t) = ρ0l(t0) exp
(
iωl − Γtot

l /2)(t− t0)
)
= ρ∗0l(t), (9)

where Γtot
l = Γs

l + Γcol
l . So the dephasing of coherences Γcoh

l = Γtot
l /2 is twice as slow as

the damping of populations: Γpop
l = Γtot

l .

4. Linking the Results of the Classical EM and Quantum Modelling
4.1. Size Dependence of the Damping Rates of Coherences and Population

Classical modelling, based on the DR, allows finding the intrinsic size-dependent
oscillation frequencies ωl(R) of harmonic waves at the interface and damping rates
2Γl(R) of these oscillations as the function of the NP’s radius R. The resulting damping
of oscillation of the SLEM fields ESLEM

l (r = R, θ, φ, t): ESLEM
l (t)/E0,l(r = R, θ, φ, t) =
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exp(iωl − 2Γl)(t) corresponds to the dynamics of coherences exp
(

iωl − Γcoh
l )
)
(t − t0)

(Equation (9)) in the quantum QP modelling, which describes the decoherence (dephasing
of electron oscillations) process at the rate of Γcoh

l (Equation (9)). Linking the quantum and
classical picture, one can get the size dependence of the rates of decoherence, as we know
the dependence on the size of the classical quantity Γl(R). Thus, Γcoh

l (R) = 2Γl(R).
The diagonal elements of the density matrix (Equation (8)), which are proportional to

relative populations of the excited state ρ
Sl
ll (t) = Nl(t)/N, correspond to amplitudes E0,l(t)

of the SLEM field ESLEM
l (Equation (2)) in the classical modelling. Therefore, in a free-

evolving plasmonic system, we can ascribe size dependence to Γpop
l : Γpop

l (R) = Γl(R).
The resulting size dependence of the coherence and population damping rates Γcoh

l (R)
and Γpop

l (R) for gold and silver NPs are presented in Figure 5.

Figure 5. Size dependence of (a) the rates (left axis) of coherence damping Γcoh
l (R) and population

damping Γpop
l (R) = 2Γcoh

l (R) and corresponding times (right axis) (b) the energy levels of plasmonic
QP (oscillation energies of SLEM fields resulting from the dispersion relation) for gold and silver
NPs based on [15].

4.2. Transient Decay Dynamics of a Plasmonic System

The example of the SLEM field dynamics resulting from the dephasing of electron
motion with the rate of Γcoh

l=1(R) is presented in Figure 6 for the case when only the dipole
plasmon mode in an NP of the radius R =10 nm was initially excited (or equivalently, only
the state |l = 1〉 of a QP was initially populated).

The transient decay dynamics of the total plasmonic SLEM field :

ESLEM
l (t) = E0,l(t = t0) exp

(
−Γpop

l

)
exp

(
iωl − Γcoh

l

)
(t) (10)

in the dipole mode is presented in Figure 6b.
In general, the damping of the total SLEM field in the successive l modes takes place

with the rates: Γpop
l + Γcoh

l = 3
2 Γpop

l = 3Γcoh
l = Γl .
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Figure 6. Illustration of the dynamics of the dipole-mode SLEM field produced by the free-electrons
excited to the state l =1 for gold and silver NPs R =10 nm: (a) pure dephasing of the coherent
oscillations (decay of coherence), (b) total dynamics of the SLEM field, which also includes the decay
of the amplitude (of the population in the excited state).

5. Quality Factors of LSP Cavity

The quality factors of the plasmonic nano-cavity, which we discuss, are based on
the definition of a quality factor of a resonator defined as the ratio of the initial energy
stored to the energy lost in one radian of the cycle of oscillation. For EM fields with
time dependence: E ∝ exp(−αt) cos(ωt + φ1) and H ∝ exp(−αt) cos(ωt + φ2) the EM
energy is proportional to 1

4 ε|E|2 + 1
4 µ|H|2, so the time-average of EM energy is:

〈W〉 = 〈WE〉 + 〈Wh〉 = W0e(−2αt). The average stored energy decreases to 1/e value
of its initial value at t = τ = 1/2α. Therefore, the quality factor is Q = ω/2α.

The quality factor Qcoh
l (R) of plasmonic nano-cavity pertaining to the energy con-

tained in the oscillating part of the SLEM field is a measure of the mean energy lost due
to the decoherence of free-electron motion. The corresponding part of the EM field is
proportional to exp

(
iωl − Γcoh

l

)
(t) (Equation (10)), so:

Qcoh
l (R) =

ωl(R)
2Γcoh

l (R)
. (11)
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However, the damping of the amplitude of the total freely evolving SLEM field causes,
that the total quality factor of the SLEM field (Equation (10)):

Qtot
l (R) =

ωl(R)
2(Γpop

l (R) + Γcoh
l (R))

=
Qcoh

l (R)
3

(12)

is smaller by the factor of 3: Γpop
l + Γcoh

l = 3Γcoh
l . Size dependence of the quality factors for

successive modes is presented in Figure 7 (left column).

Figure 7. A diagram for optimisation of quality factors Ql of NPs of (a) gold and (b) silver. The left
column shows the radius dependence, while the right column shows the corresponding dependence
versus the resonant oscillation energy in the successive plasmon modes l =1,2,. . . 6. (see also Table 1).
The inset shows the radii Rl of Ag nanoplasmonic cavity with Ql>1 as high as that of Ql=1(ω

opt
l=1).
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Table 1. The optimal radii Ropt
l and the optimal resonance frequencies ω

opt
l of NP cavity in the dipole

(l = 1) and the quadrupole (l = 2) modes for gold and silver NPs in immersion oil (nout = 1.5), λ0’s
are the corresponding wavelengths enabling the resonance excitation of LSPs.

l Ropt
l [nm] h̄ω

opt
l [eV] λ0 [nm]

Au 1 23 2.216 560 (green)
2 70 2.16 560 (green)

Ag 1 7 3.11 399 (violet)
2 20 3.24 383 (violet)

Optimization of the Quality Factors for Gold and Silver NPs with Respect to Spectral Range and Size

Radius dependence of the quality factors versus NP radius for gold and silver NPs are
presented in Figure 7a. Their maximal values fall in the size range of relatively large NPs
and increase with the mode multipolarity l (with exception of the dipole mode in Au NP)
undergoing a shift towards still larger sizes.

In particular, the optimal radius Ropt
l in the dipole mode (l = 1) is 23 nm for gold and

7 nm for silver NPs (see also Table 1). For still larger NPs, the plasmonic cavity in the dipole
mode becomes weakly effective, as Ql=1(R) is a fast-decreasing function of R in that size
range. However, quality factors for the consecutive modes with l >1 have their own
maxima, with the optimal values for still larger radii. So, the optimal Ql,R can be obtained
not in the range of smallest sizes, which is usually exploited in the experiments, but
rather for relatively large nanoparticles for the above presently-available sizes, especially
in the case of Ag NPs.

Figure 7b shows the dependence of the quality factors on the resonance frequencies
ωl of multipolar plasmon modes. The LSP resonance frequencies ω

opt
l corresponding to

the maxima of the quality factors Qtot
l (ωl) with different l (and those of Qcoh

l (ωl)) are
grouped in two spectral ranges: in the green in the case of gold and in the violet for silver
NPs (see Figure 8) (see also Table 1).

Table 1 gathers the parameters Ropt
l and h̄ω

opt
l , which are expected to optimize the perfor-

mance of the plasmonic cavity in the dipole (l = 1) and the quadrupole (l = 2) modes for gold
and silver NPs. The optimal resonance frequencies h̄ω

opt
l=1,2 can be excited with light wavelength

λ0 of the green and violet spectral range given in the right column of Table 1.
Let us notice, that the EM waves of frequency ω = ω

opt
l=1 (black, dashed lines in Figure 7)

is not only quite effective in resonant excitation of higher multipolarity LSPs of the same
radius as Ropt

l=1, but also for larger radii Rl (Figure 7), since NPs excited at such frequency
possess relatively large quality factors Ql(ω

opt
l=1(R)). LSP excitation with the light wave

of frequency ω ≈ ω
opt
l=1 is expected to excite not only the dipole plasmon but also the higher

multipolar plasmons. For the increasing size, Ql=1(R) diminishes. However, all the plas-
mon modes with l > 1 are excitable for a given R until the decrease in Ql for the consecutive
l. From a practical point of view, this effect is especially interesting in the case of Ag NPs,
as relatively smaller Ag NPs form the effective plasmonic cavity at ω ≈ ω

opt
l=1. The inset

in Figure 7b shows the radii Rl of Ag nanoplasmonic cavity with Ql>1 as high as that
of Ql=1(ω

opt
l=1(R)). The corresponding quality factors are considerably higher than those

for Au NPs.
However, the resonant plasmonic contributions to the measured intensities, associated

with the TM modes of the EM field (described by the BTM
l coefficient of the Mie scattering

theory [46]) are dominated by the contribution of the specular reflection [41] described by
the terms containing a BTE

l coefficient. As the result, the resonant TM mode contribution,
though important, can be obscured in the observation.
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Figure 8. Quality factors Qtot
l versus LSP’s resonant oscillation energies h̄ωl for plasmon modes

l =1,2. . . 7 for gold (left ordinate) and silver (right ordinate) nanoparticles. The upper horizontal axis
corresponds to the wavelengths of the incoming light wave enabling resonant excitation of plasmon
modes. In the inset: the magnification of the first three LSP modes.

Let us also note, that in spite of the advantage of Au NPs as those possessing higher
chemical inertness than Ag NPs, the quality factors for gold NPs are significantly smaller
than those for silver nanoparticles in all consecutive modes and size ranges (Figure 8).

6. Conclusions

Understanding the properties of plasmonic systems and the application of their
full potential to nanophotonic devices requires embracing their rich dynamic properties.
One of the promising directions is the comprehension of plasmonic phenomena in nanos-
tructures of larger sizes (radii of tens of nanometers or even larger), which are poorly
explored. Knowledge of the exact size dependence of the multipolar properties of noble-
metal nanoshperes, such as those of size-dependent resonance frequencies and damping
rates (times), seems to suit that purpose.

The model of the plasmonic quasi-particle, complementary to the classical EM descrip-
tion allows finding the size dependence of the oscillatory dynamics of plasmonic EM fields
and, above all, permits a clear distinction between the dephasing of the coherent behaviour
of electrons involved in plasmonic oscillations and damping of the number of such elec-
trons. It allowed us to clarify the meaning of the plasmon damping times, provisionally
called T1 and T2, where T2 is attributed to “the homogeneous line broadening” (e.g., [26–31]
and references therein). Moreover, the applied model allows us to define such times for
the case of multipolar plasmons described by the rates of populations and coherence damp-
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ing, including their size dependence: 1/T1 → Γpop
l (R) and 1/T2 → Γcoh

l (R), which is not
monotonic. The derived radius dependencies allow flexible control of the dephasing times
(especially in the case of silver NPs), contrary to some expectations (e.g., [31]).

Noble-metal nanostructures are most frequently used both in nanoscience and nan-
otechnology due to their superior plasmonic characteristics resulting from high optical
conductivity and chemical inertness (especially gold) under ambient conditions. The size
dependence of the quality factors Ql(R) for consecutive multipolar plasmons makes an
objective tool for assessing the plasmonic performance of gold and silver nanoparticles.
Due to the non-monotonic behaviour of both ωl(R) and Γl(R), the quality factors Ql(R)
display characteristic maxima. It allows for optimizing the plasmonic performance of NPs
in the spectral range from visible to near UV, by choosing the size of gold or silver NPs
accordingly. All the parameters of NPs of practical interest (parameters of PI) (the radii R,
the resonance frequencies related to the radii ωl(R) and the resulting quality factors Ql)
are reflected in the EM near-field intensity and far-field absorption and scattering spectra,
which display resonance-type behaviour. However, the manner they manifest in different
measured quantities can be different. The expectations about the rules governing PI param-
eters manifestation in the measured quantities are usually based on the dipole-type model
of a linear oscillator of self-frequency much smaller than the damping rate of oscillations
(Lorentz profile, size effects not present). The present study of LSP intrinsic properties
goes far above such approximation which is valid only in some ranges of parameters of PI
presented in Figures 5, 7 and 8. In particular, it is shown that the values of IP parame-
ters for the dipole mode in the lower limit of studied radii can be also found in a larger
size range in the dipole mode, but also in the higher multipolarity modes. The expected
LSP characteristics are nonmonotonic functions that can be interesting for different types
of applications. In some applications, the radiative properties of a plasmonic nanoantenna
are the most interesting. Such properties are expected in larger radius ranges, in regions
where the rate of damping in consecutive modes increases with size and stays large. How-
ever, for some applications, it is crucial to have a sharp maximum on (or near) the LSP
resonance frequency, and then the PI parameters are those corresponding to the maxima
in the quality factors and take the values which are named optimal in the manuscript.
In still other applications, the possibility of tailoring the plasmonic properties by size (or
other PI parameters) is interesting. In that context, Figures 5, 7 and 8 deliver data about
the ranges of PI parameters that strongly influence plasmonic characteristics.

However, AuNPs possess much poorer plasmonic properties than AgNPs. Addition-
ally, the size dependence of the plasmonic resonance frequencies and quality factors for
AuNPs is flatter than for AgNPs in the corresponding size ranges. That strongly favours
silver NPs in applications (e.g., [7]), where tailoring plasmonic performance by engineering
their size is of importance.

In addition, plasmons with higher multipolarity have interestingly large quality factors
with maxima corresponding to larger NP sizes. As far as we know, this feature of NPs with
larger sizes (over tens of nanometers in radius) has not yet been exploited experimentally.
It is hoped that the rich dynamics of LSPs in spherical NPs covering a large range of sizes
can also be helpful in understanding the plasmonic behaviour of larger plasmonic particles
with non-spherical shapes.
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