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Abstract: The analytical results of normal contact stiffness for mechanical joint surfaces are quite
different from the experimental data. So, this paper proposes an analytical model based on parabolic
cylindrical asperity that considers the micro-topography of machined surfaces and how they were
made. First, the topography of a machined surface was considered. Then, the parabolic cylindrical
asperity and Gaussian distribution were used to create a hypothetical surface that better matches the
real topography. Second, based on the hypothetical surface, the relationship between indentation
depth and contact force in the elastic, elastoplastic, and plastic deformation intervals of the asperity
was recalculated, and the theoretical analytical model of normal contact stiffness was obtained.
Finally, an experimental test platform was then constructed, and the numerical simulation results
were compared with the experimental results. At the same time, the numerical simulation results
of the proposed model, the J. A. Greenwood and J. B. P. Williamson (GW) model, the W. R. Chang,
I. Etsion, and D. B. Bogy (CEB) model, and the L. Kogut and I. Etsion (KE) model were compared
with the experimental results. The results show that when roughness is Sa 1.6 µm, the maximum
relative errors are 2.56%, 157.9%, 134%, and 90.3%, respectively. When roughness is Sa 3.2 µm, the
maximum relative errors are 2.92%, 152.4%, 108.4%, and 75.1%, respectively. When roughness is
Sa 4.5 µm, the maximum relative errors are 2.89%, 158.07%, 68.4%, and 46.13%, respectively. When
roughness is Sa 5.8 µm, the maximum relative errors are 2.89%, 201.57%, 110.26%, and 73.18%,
respectively. The comparison results demonstrate that the suggested model is accurate. This new
method for examining the contact characteristics of mechanical joint surfaces uses the proposed
model in conjunction with a micro-topography examination of an actual machined surface.

Keywords: plane-cutting surface; asperity; hypothetical surface; normal contact stiffness model;
mechanical joint surface

1. Introduction

The contact stiffness of mechanical joint surfaces plays an important role in the stability
of mechanical systems [1]. Due to the complexity of the machining process of machine
parts, contact-joint surfaces of mechanical parts are not completely smooth [2]. Contact
of joint surfaces is the contact between asperities on rough surfaces, which will result in
the actual contact area of joint surfaces being very small [3]. Therefore, contact pressure
and contact stress of the asperities on joint surfaces are relatively high. From a microscopic
point of view, contact between two actual surfaces is the contact of the asperities on rough
surfaces [4]. For the above reasons, the actual contact pressure is much greater than
the nominal contact pressure. Surface roughness has a great influence on the fatigue,
wear, and other related properties of mechanical parts [5]. In the process of engineering
applications, the micro-topography of mechanical parts determines the performance of the
whole machine, especially in the contact of key parts; the contact stiffness of a joint surface
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usually presents nonlinear characteristics. Therefore, it is of engineering significance to
explore the contact stiffness parameters of joint surfaces.

Research on the stiffness of the whole machine system must start from the normal
contact stiffness of the mechanical joint surfaces. The analysis methods of contact stiffness
mainly include the statistical analysis method and the fractal analysis method. The study of
contact stiffness based on the statistical analysis method was first initiated by the GW model
proposed by Greenwood and Williamson [6] in 1966. They combined statistical theory
and Hertz’s contact theory to study the contact problem of rough surfaces. They assumed
that all rough-surface asperities are isotropic elastic hemispheres with the same radius of
curvature in contact with a smooth rigid plane. These spherical asperities are independent
of each other and highly obey Gaussian distribution. Chang [7] proposed an elastoplastic
convex contact model for rough surfaces, namely the CEB model, based on the control of
volume conservation of asperities in the process of plastic deformation. The numerical
results of this model are compared with existing pure elastic and plastic models. Some of
the results have an obvious deviation from previous analysis as they do not consider the
conservation of rough volume. Kogut and Etsion [8] established a frictionless elastic–plastic
finite element model (KE model) of a plastic sphere under compression by a rigid plane.
The model analyzes the evolution of the elastoplastic contact interface when interference
increases and reveals three different stages from fully elastic to elastoplastic and then to a
fully plastic contact interface. The dimensionless expressions of contact force, contact area,
and average contact pressure are provided, covering a wide range of interference values
from initial yield to a completely plastic spherical contact region. Compared with previous
elastoplastic models based on arbitrary assumptions, the results show great differences.
Based on the GW model, related scholars have carried out much research on spherical
asperity, elliptical asperity, two-dimensional sinusoidal curve asperity, three-dimensional
sinusoidal curve asperity, and other different shapes. Majumdar and Bhushan [9] used the
fractal function (WM function) to characterize surface topography and proposed a contact
model based on fractal geometry theory for the first time, namely the MB model. Yuqin
Wen [10] used the watershed algorithm to segment and determine the concave–convex
surface of rough surfaces and carried out ellipsoid fitting of a flange according to the
principle of minimum mean-square error. Based on the elastic–plastic contact model of
a single ellipsoidal asperity, a stable and efficient 3D contact analysis method for rough
surfaces was proposed. Fengwei Sun [11] adopted the discrete dislocation plastic simulation
method to model a rough surface as a group of equidistant convex surface arrays with
sinusoidal profiles. The influence of the interaction between adjacent flanges on the contact
pressure of rigid platens on rough surfaces was studied using the discrete dislocation
plastic simulation method. Rostami and Jackson [12] used the finite element method to
characterize the mean surface separation between a sinusoidal surface and a planar rigid
surface as the mean contact pressure or force function. The finite element results also
agree well with a limit ball base solution at low-contact pressure and another asymptotic
solution at high-contact pressure. This fitting method can approximately predict the mean
surface separation of elastic and elastoplastic sinusoidal contacts in a wide range of material
properties and can predict the contact stiffness of joint surfaces. Wang [13] analyzed the
loading and unloading process of a friction cylindrical surface and established a contact
fractal model of spherical asperity, and deduced a nonlinear relationship between actual
contact area and contact force at different deformation stages in a loading–unloading cycle.

Wang [14] established a fractal prediction model for unloading between rough contact
surfaces by considering the friction coefficient between surfaces, the three-dimensional
fractal characteristics of rough surfaces, and the elastic–plastic deformation mechanism of
convex surfaces. The friction coefficient and the fractal dimension of the contact surface
affect the unloading model. The unloading process between rough surfaces depends on
the final loading state of the rough surface. The energy dissipation in the contact cycle
causes the loading and unloading curves to form a hysteretic loop. Wang [15] adopted the
Weierstrass–Mandelbrot function in fractal theory to represent a contact-parameter analysis
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method of rough contact surfaces and established a fretting damage model based on fractal
theory. It is proved that the fitting accuracy of the fractal parameters based on the neural
network algorithm is better than that of the traditional method. Yuan [16] established an
elastic–plastic contact model for the loading and unloading of three-dimensional fractal
rough surfaces. The total contact area and total contact load during loading and unload-
ing were obtained. When the rough surface is under elastic deformation, the load–area
relationship is the same during loading and unloading. When the rough surface is under
inelastic deformation, the real contact area during unloading is larger than that during
loading. Yu [17] believed that when the topography parameters of two rough surfaces are
similar, shoulder–shoulder contact should be adopted instead of top–top contact. Based on
shoulder contact and fractal characteristics, a convex geometric model and rough-surface
contact mechanics model were established. Zhou [18] used the maximum valley–peak
ratio (VPR) to establish a three-dimensional concave–convex model for rough surfaces.
The convex function of a paraboloid was derived by the least-squares method. A con-
vex projection plane was determined by the VPR method, and the rough convex surface
was reconstructed. Zhang [19] used the finite element method to conduct a deterministic
contact analysis of two three-dimensional rough surfaces based on artificially generated
rough surfaces. The calculation results show that when the surface spacing decreases,
the results obtained by the classical-model-based method are quite different from those
obtained in the paper, which is more obvious when considering roughness distribution and
texture. Wen [20] considered the interaction of concave–convex surfaces and elastic–plastic
deformation characteristics, and further proposed an analytical calculation method for
rough-surface contact considering the interaction of concave–convex surfaces. Based on
the watershed algorithm, a rough surface was segmented, and an ellipsoid model was es-
tablished. Yu [21] converted an elastic contact problem between gear-meshing surfaces into
a contact problem between elastic surfaces with arbitrary curvature radius, and proposed a
contact-area distribution function for the convex surface of a curved point-contact ellipse.
On this basis, a fractal contact mechanics model of elliptic-bevel-gear rough surfaces was
established. The influence of tooth-surface topography on contact load and contact stiffness
under different fractal parameters was studied. The results show that contact stiffness and
actual contact load increase with an increase in contact coefficient and fractal dimension.
Normal contact stiffness and actual contact load decrease with an increase in eccentricity
and fractal roughness. Zhang and Ren [22] proposed a method for calculating the actual
contact area and load under progressive indentation depths of general rough surfaces.
A three-dimensional finite element model of elliptic asperity for analyzing mechanical
contact problems was established, and the results of an electromechanical coupling sim-
ulation were compared with the new calculation method. The high aspect ratio of this
method is beneficial to accurately calculate contact area under micro-contact conditions.
Li [23] used the Fourier series to separate surface roughness and corrugability, established
a rough-surface contact model, and obtained the displacement caused by the interaction of
rough surfaces. In this paper a joint surface was regarded as the contact between a rough
surface and a smooth corrugated surface, and a new model considering the interaction of
rough surfaces and surface corrugations was obtained. Wang and Schipper [24] improved
the accuracy of the semi-analytical method (SAM) to calculate actual contact area using
an analytically generated sine-wave surface to simulate a real rough surface on a rigid
plane. Wang [25] extracted shape-measurement points through harmonic interpolation to
construct a three-dimensional deterministic model of a rough surface.

Research on mechanical joint surfaces should be based on actual topography; oth-
erwise, the normal contact stiffness will be separated from the actual working condition.
There is a certain gap between the hypothetical surface and the actual surface, or, to some
extent, it can only be close to a certain type of rough surface. There is a great difference
between actual topography under different machining methods and spherical or elliptic
asperity assumptions, such as turning, milling, and grinding. As a result, there is still
no universal model for a wide range of applications. In this paper, based on surface-
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topography data of various machining methods, a hypothetical surface that can more
accurately represent the topography characteristics of an actual cutting surface was es-
tablished. Therefore, a hypothetical surface of asperities with a cross-sectional profile of
parabola Y = CX2 + GX + H is established. Based on this hypothetical surface, the relation-
ship between the contact parameters and contact force in the contact area is deduced by
the theory of statistics and contact mechanics. Then, a type of contact model that is more
suitable for cutting rough surfaces is established. The innovation point of this paper is to
establish a parabolic cylindrical asperity model with a cross-sectional contour by analyzing
the combined surfaces obtained by various machining methods. Compared with other
models, this new model is closer to real contact conditions, and the comparison between
experimental results and simulation results shows that the accuracy of this model is very
high. The new model is obtained by summarizing all types of binding surface and has a
wider application.

2. Establishment of the Hypothetical Surface

From a microscopic perspective, contact of mechanical joint surfaces is the contact of
the asperities on rough surfaces. Therefore, a contact model should be studied from the
perspective of asperity contact. In this section, data for rough surfaces will be collected
using a white-light interferometer, and the contour parameters of a single asperity will be
fitted by combining the topography data measured. Then, according to the above fitting
data, a new hypothetical surface will be established.

To obtain actual topography data of rough surfaces, a 3D white-light interferometer
(ZYGONexView, ZYGO Connecticut, Middlefield, CT, USA) was used to measure the
surface topography of workpieces. The device adopts the principle of non-contact white-
light interference, closed-loop feedback piezoelectric ceramic, and a high linear capacitance
sensor, which can ensure the full range of a 0–150 µm 0.1 nm high-precision test, to
ensure the real validity of the test results. Figure 1 shows the topography of surface
roughness obtained by boring, turning, smooth grinding, and grinding methods, which are
Sa 3.031 µm, Sa 2.418 µm, Sa 0.076 µm, and Sa 0.037 µm, respectively.

As shown in Figure 1, surface grooves of workpieces obtained by different processing
methods have a clear texture: an obvious corrugated undulation shape and a uniform
distribution of concave and convex surfaces. In general, the surface topography obtained
by the above processing method is more similar to a well-aligned cylindrical body with a
similar cross-sectional curvature radius, rather than a spherical or parabolic rotator asperity.
The 3D and 2D topographies are analyzed in combination with the micro-topographies of
the boring surface. Figure 2 shows the 3D and 2D reconstructed topographies in the boring
machining mode based on measured data.
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Figure 1. The surface topography under different machining methods: (a) boring; (b) real image of 
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As shown in Figure 1, surface grooves of workpieces obtained by different processing 
methods have a clear texture: an obvious corrugated undulation shape and a uniform dis-
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Figure 1. The surface topography under different machining methods: (a) boring; (b) real image of
boring; (c) turning; (d) real image of turning; (e) smooth grinding; (f) real image of smooth grinding;
(g) grinding; (h) real image of grinding.
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Figure 2. Reconstructed topographies in boring machining method: (a) 3D reconstructed topography;
(b) 2D reconstructed topography.

Figure 2a shows the 3D reconstructed topography of boring machining based on
measured data. It can be seen that the 3D reconstruction is consistent with the actual topog-
raphy. Moreover, asperities in the Y direction show a consistent feature. Characteristics
of periodic distribution are seen in the X direction, but asperity height is not consistent.
Therefore, the study of three-dimensional surface topography can be simplified to that of
a two-dimensional surface. Figure 2b shows the two-dimensional topography analysis
diagram of an XOZ section. The peak–valley labeling method [26] was used for statisti-
cal analysis of asperity height, and the results showed that the height distribution of the
asperities presented a Gaussian distribution.

The following is a discussion of the shape of a single asperity. A data-fitting method
is adopted to process randomly selected single-asperity-measured data points. Figure 3
shows the fitting results of a single asperity shape-profile data point. The fitted surface
retains the real texture structure and height features of the original surface and accurately
reflects the real state of the original surface. To reveal the overall characteristics of the actual
profile of the asperity, the parabolic function Y = CX2 +GX + H was used to fit the data
points of a single asperity profile, and the fitting root-means-square error was 0.0002667.
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Figure 3. The fitting result of a single asperity.

It can be seen from the fitting results that the parabolic curve can be completely
consistent with the measured profile data of the asperity. Therefore, based on the more
accurate fitting of the rough-surface topography, the parabolic cylinder is used to represent
the shape of the single asperity. The height distribution of asperities is represented by a
Gaussian distribution.

In summary, based on the analysis of the micro-topography of machined surfaces,
a hypothetical surface based on parabolic cylindrical asperity was proposed for the me-
chanical joint surface in this paper. A single surface asperity is represented by a parabolic
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column shape, and the height distribution of the asperities is Gaussian. The established
hypothetical surface is shown in Figure 4.
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3. The Analytical Model of Normal Contact Stiffness
3.1. Contact Model Hypothesis

In Section 2, a hypothetical surface based on parabolic cylindrical asperity is proposed
by analyzing the measured surface topography. In this section, a new theoretical analytical
model of normal contact stiffness is established based on the hypothetical surface. Before
establishing the analytical model, the following assumptions were made in this paper
for the theoretical contact model of asperities on rough surfaces: (1) plane contact takes
two cross-sectional profile curves as parabolic Y = CX2 + GX + H cylinder contact, and the
cross angle of the main axis of the cylinder is 45◦ on average; (2) the curvature radius of
all asperity surfaces on the contact surface is the same, and the height of asperity surfaces
follows a Gaussian distribution; (3) the deformation of asperities is independent of each
other, and the interaction between asperities is ignored in the contact process; (4) only the
asperities deform, while the matrix does not participate in deformation; (5) the asperities
are uniformly distributed on the matrix. Figure 5 shows a schematic diagram of the model
hypothesis surface.
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Based on the contact model established above, this section first analyzes the stress and
deformation of two separate asperities in contact with each other. The theoretical formula
between the contact force and deformation is solved, and the theoretical normal contact
stiffness is obtained. Combined with statistical theory, contact force and deformation
formulae for the whole mechanical joint surface were derived, and then a theoretical
analytical model of the normal contact stiffness of the whole joint surface was obtained.

3.2. Contact Stiffness Analysis of a Single Asperity

The contact process of an asperity will undergo three stages: elastic deformation,
elastoplastic deformation, and complete plastic deformation. The following will be a
separate analysis of the different deformation stages.

1. Elastic deformation
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According to the Hertz contact theory, the contact surface of two parabolic cylinders
Y = CX2 +GX + H is an elliptic region, and the short diameter a and long diameter b of the
ellipse are calculated by Equations (1) and (2) [27].

a = α

[
3
4

F
A + B

(
1− ν2

1
E1

+
1− ν2

2
E2

)] 1
3

(1)

b = β

[
3
4

F
A + B

(
1− ν2

1
E1

+
1− ν2

2
E2

)] 1
3

(2)

where F is the concentrated force; ν1 and ν2 are the Poisson’s ratios of materials, respectively;
and E1 and E2 are the elastic moduli of materials, respectively. The influence coefficients A
and B of the principal curvature can be obtained by Equations (3) and (4) [27].

B + A =
1
2

(
1

R1
+

1
R1′

+
1

R2
+

1
R2′

)
(3)

B− A =
1
2

[(
1

R1
− 1

R1′

)2
+

(
1

R2
− 1

R2′

)2
+ 2
(

1
R1
− 1

R1′

)(
1

R2
− 1

R2′

)
cos 2ϕ

] 1
2

(4)

where R1 and R1
′ are object 1 at the contact points of the two main curvature radii, re-

spectively; R2 and R2
′ are object 2 at the contact points of the two main curvature radii,

respectively; ϕ is the angle between the planes where the two main curvature radii R1
and R2 are located. It is assumed that the contact of two rough surfaces is the contact of
two parabolic cylindrical asperities with the same radius of curvature. The mean value of
the intersection angle ϕ of the axes of two asperities is ϕ = 45◦. The radius of curvature
at a point on the curve is reciprocal to the curvature of the curve at that point. The radial
radii R1 and R2 of the main curvatures of the asperity are equal to the curvature radius R
of the parabola, and their curvatures 1/R1 and 1/R2 are also equal: that is, 1/R1 = 1/R2 =
1/R. The axial main radii of curvatures R1

′ and R2
′ to infinity obtain curvatures 1/R1

′ and
1/R2

′ that are equal to zero; that is, 1/R1
′ = 1/R2

′ = 0. By combining Equations (3) and (4),
we can obtain A = 1/2R− 1/2

√
2R and B= 1/2R + 1/2

√
2R. We calculate the curvature

of the parabolic curve Y = CX2 +GX + H according to the curvature formula, as shown in
Equation (5).

D =
|Y′′|

(1 + Y′2)
3
2
=

|2C|

(4C2X2 + 4CGX + G2 + 1)
3
2

(5)

Meanwhile, the radius of the main curvature can be determined according to Equation (5).

R =
1
D

=

(
4C2X2 + 4CGX + G2 + 1

) 3
2

|2C| (6)

It is assumed that only elastic deformation occurs when two asperities are first in
contact. According to the Hertz contact theory, the relationship between proximity distance
ω and force F of the center of two asperities can be obtained.

ω = λ

 9
128

F2(A + B)

(
1− ν2

1
E1

+
1− ν2

2
E2

)2
 1

3

(7)

Equation (7) [27] is the elastic-contact Hertz formula of two parabolic column surfaces
with the same radius of principal curvature. In the equation, the coefficients α, β, and λ can
be obtained from setting θo = 45◦ and then consulting the elastic force manually to obtain
α = 1.926, β = 0.604, and λ = 1.709.
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ω = λ

 9
128

F2

R

(
1− ν2

1
E1

+
1− ν2

2
E2

)2
 1

3

(8)

The relationship between connection displacementω and force F at the stage of pure
elastic deformation is derived from Equation (8):

F(ω) =
8
√

2Rω3

3λ
3
2

(
1−ν2

1
E1

+
1−ν2

2
E2

) (9)

Contact stiffness is the derivative of the contact force concerning displacement. Thus,
contact stiffness in the pure-elastic-contact stage can be expressed as:

K =
dF(ω)

dω
=

4
√

2Rω

λ
3
2

(
1−ν2

1
E1

+
1−ν2

2
E2

) (10)

2. Elastoplastic deformation

According to the contact mechanics theory of Tabor [28], when the average contact
pressure of two rough surfaces reaches Pa = 0.4 H, an asperity on the joint surface begins to
yield and deform, thus:

Pe =
F1

πab
= 0.4H (11)

where H is material hardness. By substituting Equations (1) and (2) into Equation (11),
we obtain:

F1

πα

[
3
4

F1
A+B

(
1−ν2

1
E1

+
1−ν2

2
E2

)] 1
3

β

[
3
4

F1
A+B

(
1−ν2

1
E1

+
1−ν2

2
E2

)] 1
3
= 0.4H (12)

The force at the onset of plastic deformation of the asperity is obtained after the end
of displacement:

F1 = 0.036(Hπαβ)3R2

(
1− ν2

1
E1

+
1− ν2

2
E2

)2

(13)

Then displacement ω1 at the onset of plastic deformation of the asperity is derived:

ω1 = 1.709

 9
128R

F1
2

(
1− ν2

1
E1

+
1− ν2

2
E2

)2
 1

3

(14)

According to the literature [29], the contact area at the elastoplastic deformation
stage is:

Sep = παβ

[
3
4

Fep

A + B

(
1− ν2

1
E1

+
1− ν2

2
E2

)] 2
3
[

1− 2
(

ω−ω1

ω2 −ω1

)3
+ 3
(

ω−ω1

ω2 −ω1

)2
]

(15)

Average contact pressure during elastoplastic deformation is:

Pep = H − 0.6H
ln ω2 − ln ω

ln ω2 − ln ω1
(16)

Thus, the contact force at the elastoplastic deformation stage is obtained:
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Fep = PepSep =
(

H − 0.6H ln ω2−ln ω
ln ω2−ln ω1

)
× παβ

[
3
4

Fep
A+B

(
1−ν2

1
E1

+
1−ν2

2
E2

)] 2
3
[

1− 2
(

ω−ω1
ω2−ω1

)3
+ 3
(

ω−ω1
ω2−ω1

)2
]

(17)

So,

Fep =
9

16
(παβ)3

[
R

(
1− ν2

1
E1

+
1− ν2

2
E2

)]2(
H − 0.6H

ln ω2 − ln ω

ln ω2 − ln ω1

)3
[

1− 2
(

ω−ω1

ω2 −ω1

)3
+ 3
(

ω−ω1

ω2 −ω1

)2
]3

(18)

Contact stiffness is the derivative of contact force with respect to displacement. Thus,
the expression of contact stiffness in the elastic–plastic contact stage can be obtained
as follows:

Kep = 27
16 (παβ)3

[
R
(

1−ν2
1

E1
+

1−ν2
2

E2

)]2(
0.6H

ω(ln ω2−ln ω1)

)(
H − 0.6H ln ω2−ln ω

ln ω2−ln ω1

)2
[

1− 2
(

ω−ω1
ω2−ω1

)3

+3
(

ω−ω1
ω2−ω1

)2
]3

+ 27
16 (παβ)3

[
R
(

1−ν2
1

E1
+

1−ν2
2

E2

)]2(
H − 0.6H ln ω2−ln ω

ln ω2−ln ω1

)3
[

1− 2
(

ω−ω1
ω2−ω1

)3

+3
(

ω−ω1
ω2−ω1

)2
]2[

6(ω−ω1)

(ω2−ω1)
2 −

6(ω−ω1)
2

(ω2−ω1)
3

] (19)

According to the literature [8], when deformation at the microscopic contact point
reaches 110 times the initial yield deformation, the asperity enters a stage of complete
plastic deformation; that is, the critical deformation from elastoplastic to complete plastic
deformation isω2 = 110ω1.

3. Complete plastic deformation

According to the viewpoints of Abbott and Firestone [30], the relationship between
contact area and displacement at the stage of complete plastic deformation can be expressed
as:

Sp = 2πRω = 2πab (20)

According to the contact mechanics theory of Tabor [28], when the average contact
pressure reaches Pa = H, the asperity begins to yield completely.

Fp = SpPa = 2πRωH = 2παβ

[
3
4

Fp

A + B

(
1− ν2

1
E1

+
1− ν2

2
E2

)] 2
3

H (21)

Fp =
9
2
(παβ)3

[
R

(
1− ν2

1
E1

+
1− ν2

2
E2

)]2

H3 (22)

Contact stiffness is the derivative of the contact force concerning displacement. Thus,
the expression of contact stiffness at the stage of complete plastic deformation is:

Kp =
dFp(ω)

dω
= 2πRH (23)

3.3. Contact Stiffness of Mechanical Joint Surfaces

Based on the analysis in Section 3.2, the contact stiffness of a single asperity in different
deformation intervals during contact is obtained. In this section, the contact stiffness of the
whole joint surface will be solved by combining statistical theory. According to the analysis
in Section 2, the heights of the parabolic cylindrical asperities on a rough surface follow a
Gaussian distribution. The contact stiffness of an asperity in the whole contact region can
be obtained by integrating it with the distribution function.

When upper and lower rough surfaces contact, assume that the distance between
the average height line of asperities on the two rough surfaces is l, and take the average
height line of asperities on the lower rough surface as the origin of the z-axis. All asperities
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with height z > l/2 = d participate in the contact deformation. The pressing depth of an
asperity with height z is h = z − d. Therefore, the probability of contact at any given height
of a rough surface can be obtained from the equation below.

Prob = (z > d) =
∫ ∞

d

1√
2πσ

e−
(z)2

2σ2 dz (24)

If the total number of asperities on the entire contact surface is N, then the number of
asperities participating in the contact is:

n = N
∫ ∞

d

1√
2πσ

e−
(z)2

2σ2 dz (25)

Meanwhile, since ω = 2 h = 2(z − d), the total force F can be derived.

F = N
∫ ∞

d
F(2z− 2d)

1√
2πσ

e−
(z−d)2

2σ2 dz (26)

Meanwhile, the total contact stiffness can be obtained by the following equation.

K = N
∫ ∞

d
K(2z− 2d)

1√
2πσ

e−
(z−d)2

2σ2 dz (27)

The following derivation is made based on the contact stiffness of the joint surface at
different deformation stages.

1. Elastic deformation

The expression of the force at the elastic deformation stage is:

Fe(z) = N
∫ d+ ω1

2

d

32
√

R(z− d)3

3λ
3
2

(
1−ν2

1
E1

+
1−ν2

2
E2

) 1√
2πσ

e−
(z−d)2

2σ2 dz (28)

The expression of contact stiffness at the elastic deformation stage is:

Ke(z) =
dF(z)

dz
= N

∫ d+ ω1
2

d

8
√

R(z− d)

λ
3
2

(
1−V2

1
E1

+
1−V2

2
E2

) 1√
2πσ

e−
(z−d)2

2σ2 dz (29)

2. Elastoplastic deformation

The expression of the contact force at the elastoplastic deformation stage is:

Fep(z) = N
∫ d+ ω2

2
d+ ω1

2

9
16 (παβ)3

[
R
(

1−ν2
1

E1
+

1−ν2
2

E2

)]2(
H − 0.6H ln ω2−ln 2(z−d)

ln ω2−ln ω1

)3
·[

1− 2
(

2z−2d−ω1
ω2−ω1

)3
+ 3

(
2z−2d−ω1

ω2−ω1

)2
]3

1√
2πσ

e−
(z−d)2

2σ2 dz
(30)

The expression of contact stiffness at the elastoplastic deformation stage is



Materials 2023, 16, 1883 13 of 22

Kep = 27
16 N

∫ d+ ω2
2

d+ ω1
2

(παβ)3
[

R
(

1−ν2
1

E1
+

1−ν2
2

E2

)]2[
0.6H

2(z−d)(ln ω2−ln ω1)

]
·[

H − 0.6H ln ω2−ln 2(z−d)
ln ω2−ln ω1

]2
[

1− 2
(

2z−2d−ω1
ω2−ω1

)3
+3
(

2z−2d−ω1
ω2−ω1

)2
]3

+(παβ)3
[

R
(

1−ν2
1

E1
+

1−ν2
2

E2

)]2[
H − 0.6H ln ω2−ln 2(z−d)

ln ω2−ln ω1

]3
[

1− 2
(

2z−2d−ω1
ω2−ω1

)3

+3
(

2z−2d−ω1
ω2−ω1

)2
]2[

6(2z−2d−ω1)

(ω2−ω1)
2 −

6(2z−2d−ω1)
2

(ω2−ω1)
3

]
1√
2πσ

e−
(z−d)2

2σ2 dz

(31)

3. Complete plastic deformation

The expression of the force at the stage of complete plastic deformation is:

Fp(z) = 4πNRH
∫ ∞

d+ ω2
2

(z− d)
1√
2πσ

e−
(z−d)2

2σ2 dz (32)

The contact stiffness at the stage of complete plastic deformation can be expressed as:

Kp(z) = 2πNRH
∫ ∞

d+ ω2
2

1√
2πσ

e−
(z−d)2

2σ2 dz (33)

where Φ(z) = 1√
2πσ

e−
(z−d)2

2σ2 is a Gaussian distribution function.

4. Experimental Assessment
4.1. The Experimental Specimen

The experimental specimen is made of 45 steel (Carbon (C) content is 0.42~0.50%;
Si content is 0.17–0.37%; Mn content is 0.50~0.80%; Cr content is ≤0.25%; Ni content
is ≤ 0.30%; Cu content is ≤ 0.25%), and the parameters of 45 steel (Young’s modulus
E1 = E2 = 209 GPa, Poisson’s ratio ν1 = ν2 = 0.269, hardness H = 1970 MPa) are obtained by
conventional mechanical experiments. As shown in Figure 6 below, the joint surface of the
normal contact stiffness-test specimen was obtained by an end-turning process, and the
height of the convex platform was 1 mm. The convex platform roughness of the specimen
joint surface can be divided into four values: Sa 1.6µm, Sa 3.2 µm, Sa 4.5 µm, Sa 5.8 µm;
and each roughness has four diameters of 10 mm, 20 mm, 30 mm, and 40 mm. The lower
specimen has a diameter of 40 mm. So that the upper and lower roughness specimens are
consistent, the lathe and turning tool for each type of roughness specimen are consistent,
and the machine tool’s spindle speed, turning angle, feed speed, and turning amount are all
consistent. To ensure consistent roughness on the upper and lower specimens, the lathe and
turning tools are consistent for each roughness specimen, and the spindle speed, turning
angle, feed speed, and turning amount of the machine tool are all consistent.
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Figure 6. Surface to be tested: (a) Sa 1.6 µm; (b) Sa 3.2 µm; (c) Sa 4.5 µm; (d) Sa 5.8 µm.

4.2. The Experimental Device

To verify the accuracy of the model proposed in this paper, a test platform for normal
contact stiffness was built. As shown in Figure 7a, the test platform is composed of
four parts: a universal testing machine, a measuring shaft system, a data-acquisition system,
and a control system. The universal experimental machine is a WDW-series microcomputer-
controlled electronic universal-testing machine (Shimadzu kyoto, Japan) (5–20 KN), and
the relative error of the test force is less than ±0.5%. The measuring shaft system is shown
in Figure 7b. The measuring shaft system consists of seven parts: loading push rod, upper
test specimen, eddy-current sensor, lower test specimen, fixed disk, thrust roller bearing,
and base. The eddy-current sensor is a KAMAN high-precision eddy-current displacement
sensor(KAMAN Bloomfield, CT, USA), model KD2306-2U, with a measuring accuracy
of ± 0.1 µm, output voltage 0–10 V, and measuring range 0–1 mm. The data-acquisition
system uses an Altai data collector, model PCIe5653.
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Figure 7. The experimental device: (a) the whole set of devices; (b) the measuring shaft system.

Figure 7 shows the normal contact stiffness test device for mechanical joint surfaces.
The upper test specimen was fixed at the lower end of the push rod, and three eddy-current
sensors were installed in three holes uniformly distributed on the upper specimen. The
average displacement values of the three eddy-current sensors were taken as the test results,
which effectively ensured measurement accuracy. The lower test specimen was attached
to the fixed disc, and there was a thrust roller bearing under the fixed disc to adjust the
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installation error, ensure normal contact between the upper and lower test specimens,
and offset the installation deviation. First, the loading parameters of the universal testing
machine (load range, loading time, number of cycles, etc.) were set. The universal testing
machine with the push rod used in the vertical direction will produce a normal thrust,
and this thrust is applied to the upper test specimen through the push rod. Through the
upper test specimen, a uniform action is applied to the lower test specimen. At the same
time, the joint surface was subjected to a uniform distribution of static normal forces, and
corresponding deformation was generated. The deformation was obtained by three eddy-
current displacement sensors uniformly installed on the upper test specimen. After that,
the data collector transmitted the obtained data to the computer for storage, and finally
realized the collection of the static force and deformation data of the joint surface. Using
the voltage data obtained by the eddy-current sensor (unit, V) converted to displacement
(unit, Micron), combined with the load data (unit, N) obtained by the universal testing
machine, the normal contact experimental stiffness of the joint surface could be obtained.
Three tests were performed for each roughness and diameter, and the results were almost
identical each time. This shows that the experimental method and test results are reliable
and repeatable.

5. Comparative Results and Discussion

The roughness obtained by cutting is closely related to the equipment, tool, and cutting
conditions. The machining process is very complicated, and the surface roughness varies
greatly. Therefore, roughness is an important parameter for measuring machining accuracy
and is the most important material uncertainty factor of machining surfaces. The national
general roughness standards are Ra1.6, R3.2, Ra6.3, etc. Therefore, roughness values of Sa
1.6 µm, Sa 3.2 µm, Sa 4.5 µm, and Sa 5.8 µm, close to the national standard, were selected in
this paper. The validity of the model is verified by comparative experiments. Experimental
results of normal contact stiffness of mechanical bonding surfaces with different roughness
could be obtained by the test bench built in Section 4. The variation curve of normal
contact stiffness with contact pressure under different roughness is shown in Figure 8a. At
the same time, to verify the correctness of the proposed model, the proposed model and
experimental results with different roughness were compared and analyzed, as shown in
Figure 8b.
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results and the proposed model.

Figure 8a shows the experimental curves of normal contact stiffness of specimens with
roughness of Sa 1.6 µm, Sa 3.2 µm, Sa 4.5 µm, and Sa 5.8 µm. As shown in the figure, by
comparing the normal contact stiffness curves under four different roughness conditions,
it can be seen that the stiffness of the joint surface with low roughness is always greater
than that of the joint surface with high roughness as the pressure increases, and normal
contact stiffness also increases with an increase in normal contact pressure. Therefore,
contact stiffness of the joint surface with low roughness is greater than that of the joint
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surface with high roughness. When the normal pressure is increased up to 6.3 MPa, the
normal contact stiffnesses for roughness values of Sa 1.6 µm, Sa 3.2 µm, Sa 4.5 µm, and
Sa 5.8 µm are 8.8 MPa/µm, 6.3 MPa/µm, 4.5 MPa/µm, and 3.5 MPa/µm, respectively.
The reasons for this are analyzed from the perspective of mechanical principles. At the
onset of loading, the pressure is relatively small, the deformation of the asperities is within
the elastic range, the contact deformation of the joint surface is mainly elastic, and the
relationship between the normal pressure and normal contact stiffness is approximately
linear. However, with an increase in applied pressure, the asperities deform elastoplastically.
The contact deformation of the joint surface is mainly elastoplastic, and the relationship
between normal pressure and normal stiffness shows a nonlinear trend. When the normal
contact pressure is high, the asperities begin to undergo plastic deformation, the contact
deformation of the joint surface is mainly plastic, and even the substrate material of the
joint surface begins to undergo deformation. The asperity deformation gradually enters
a stage of complete plastic deformation. The relationship between normal pressure and
normal contact stiffness appears nonlinear, the normal contact stiffness gradually tends
towards a fixed value, and the slope of the curve is close to horizontal. From the perspective
of surface-topography characteristics, the reasons are as follows: under the same pressure,
the joint surface of the specimen with low roughness has a large density of asperities, a
large number of contact asperities, and the relative deformation is smaller than that of
the joint surface with high roughness, resulting in a relatively high contact stiffness value.
Moreover, surface corrugability, basic asperity parameters, and average specimen height
are also different, resulting in a large gap in contact stiffness. The above analysis shows
that roughness has a great impact on the performance of mechanical parts. Improving
machining accuracy and reducing roughness can improve the normal contact stiffness of
parts and improve the stability of mechanical equipment.

Figure 8b shows the comparison between the experimental curve and the model curve
of the normal contact stiffness of a joint surface at different values of roughness: Sa 1.6 µm,
Sa 3.2 µm, Sa 4.5 µm, and Sa 5.8 µm. As shown in the figure, by comparing the stiffness
curves under four different roughness conditions, it can be seen that in the test with a
specimen roughness of Sa 1.6 µm, when normal pressure reaches 2.98 MPa, experimental
stiffness reaches 5.62 MPa/µm. The stiffness curve of this model intersects the experimental
stiffness curve. When normal pressure is less than 2.98 MPa, experimental stiffness is
slightly less than the numerical simulation value of this model. When normal pressure
is greater than 2.98 MPa, experimental stiffness is slightly greater than the numerical
simulation value of this model. When the normal pressure is 5.09 MPa, the numerical
simulation value of the stiffness of this model is 7.58 MPa/µm, and the experimental
stiffness is 7.78 MPa/µm. The curve has slightly deviated, and the maximum relative
error is 2.56%. The roughness is Sa 3.2 µm. When normal pressure reaches 3.43 MPa,
experimental stiffness reaches 4.37 MPa N/µm, and the stiffness curve of this model
intersects the experimental stiffness curve. When normal pressure is less than 3.43 MPa,
experimental stiffness is slightly less than the numerical simulation value of this model.
When normal pressure is greater than 3.43 MPa, experimental stiffness is slightly greater
than the numerical simulation value of this model. When normal pressure is 1.91 MPa,
the numerical simulation stiffness of the model is 3.05 MPa/µm and the experimental
stiffness is 2.96 MPa/µm. The curve has slightly deviated, and the maximum relative
error is 2.92%. The roughness is Sa 4.5 µm. When normal pressure reaches 3.82 MPa,
experimental stiffness reaches 3.53 MPa/µm, and the stiffness curve of this model intersects
the experimental stiffness curve. When normal pressure is less than 3.82 MPa, experimental
stiffness is slightly greater than the numerical simulation value of this model, and when
normal pressure is greater than 3.82 MPa, experimental stiffness is slightly lower than the
numerical simulation value of this model. When normal pressure is 1.91 MPa, the numerical
simulation value of the stiffness of this model is 2.43 MPa/µm and the experimental stiffness
is 2.51 MPa/µm. The curve has slightly deviated, and the maximum relative error is 2.89%.
The roughness is Sa 5.8 µm. When normal pressure reaches 2.29 MPa, experimental stiffness
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reaches 2.11 MPa/µm. The stiffness curve of this model intersects the experimental stiffness
curve. When normal pressure is less than 2.29 MPa, experimental stiffness is slightly greater
than the numerical simulation value of this model, and when normal pressure is greater
than 2.29 MPa, experimental stiffness is slightly lower than the numerical simulation value
of this model. When normal pressure is 5.09 MPa, the numerical simulation value of the
stiffness of this model is 3.17 MPa/µm and the experimental stiffness is 3.08 MPa/µm. The
curve has slightly deviated, and the relative error is up to 2.89%.

The above analysis shows that the stiffness curve value of this model is highly consis-
tent with the experimental stiffness curve value, and the model has a certain application
value. There is high agreement between the experimental stiffness values and the simulated
model stiffness values under the four typical roughness conditions. Firstly, the new model
in this paper assumes the asperities to be parabolic cylindrical asperities, which is more
consistent with the actual contact situation. Secondly, according to the elastoplastic contact
theory, the contact deformation of asperities is divided into the elastic deformation stage,
elastoplastic deformation stage, and plastic deformation stage, which is closer to their real
contact deformation state. Finally, the test device designed in this experiment is more
reasonable and effective, and the test instrument is of high precision and has a higher
reference value. The high coincidence between experimental stiffness values and simulated
model stiffness values under four typical roughness conditions indicates that the model is
not affected by various roughness conditions, which proves that the calculation method of
the model is real and reliable.

The above experimental stiffness data are the average values of stiffness obtained
through ten experiments. Figure 9 shows a bar chart of relative error of the experimental
stiffness results of four roughness samples compared with the stiffness of the new model
in ten experiments, with a pressure of 6.3 MPa. The relative error of ten experiments is
less than 4.3%, which proves that the experimental results are reliable and stable with
high repeatability.
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To verify the superiority and application of the presented model, the presented model,
the GW model, the KE model, the CEB model, and experimental results were compared and
analyzed. The comparison results of contact stiffness under different roughness conditions
are shown in Figure 10.
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Figure 10 shows the comparison between the experimental curves of normal contact
stiffness of surfaces with different roughness and the stiffness curves of this model, the GW
model, the CEB model, and the KE model. Figure 10 shows the relative errors between
the experimental values of normal contact stiffness of surfaces with different roughness
and the stiffness values of the presented model, the GW model, the CEB model, and the
KE model.

As can be seen from Figure 10a, when roughness is Sa 1.6 µm, with an increase in
normal contact pressure, the curve of this model and the experimental curve have the same
trend, and the simulation value of normal contact stiffness is close to the experimental
value. However, the stiffness curves of the GW model, the CEB model, and the KE model
gradually deviate from the experimental stiffness curve, and the difference becomes greater
and greater. As can be seen from Figure 11a, when roughness is Sa 1.6µm, the relative error
of the normal contact stiffness value of the new model is between 0.303% and 2.56%, with
a small difference. The relative error of the GW model is the greatest, reaching 157.9%,
and the relative error remains unchanged during the whole loading process. When the
pressure is 0.64 MPa, the relative error of the CEB model is 134%, and gradually decreases
to 67.5% with an increase in normal contact pressure. When the pressure is 0.64 MPa, the
relative error of the KE model is 90.3%, and gradually decreases to 24.2% with an increase
in normal contact pressure. The relative errors of CEB and KE models gradually decrease
because the two models considered elastoplastic deformation. With an increase in pressure,
the asperities began to experience elastoplastic deformation, which made the two models
closer to the experimental stiffness value compared with the GW model.
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Figure 10b also shows the same curve trend as Figure 10a. When roughness is Sa
3.2 µm, with an increase in normal contact pressure, the model curve and the experimental
curve have the same trend, and the simulation value of the normal contact stiffness is
close to the experimental value. However, the stiffness curves of the GW model, the CEB
model, and the KE model gradually deviate from the experimental stiffness curve, and the
difference becomes greater and greater. As can be seen from Figure 11b, when roughness
is Sa 3.2 µm, the relative error of the normal contact stiffness value of the new model is
between 0.46% and 2.92%, with a small difference. The relative error of the GW model
is the greatest, reaching 152.4%, and the relative error varies between 123.3% and 152.4%
during the whole loading process. With an increase in normal contact pressure, the relative
error value of the CEB model increases from low to high, and then gradually decreases.
When the pressure is 1.91 MPa, the relative error reaches the greatest value of 108.4%. With
an increase in normal contact pressure, the relative error of the KE model increases from
low to high, and then decreases gradually. When the pressure is 1.91 MPa, the relative error
reaches the greatest value of 75.1%.

Figure 10c also shows the same curve trend as Figure 10b. When roughness is Sa
4.5 µm, with an increase in normal contact pressure, the stiffness curve of this model and
the experimental stiffness curve have the same trend, and the simulation value of normal
contact stiffness is close to the experimental value. However, the stiffness curves of the GW
model, the CEB model, and the KE model gradually deviate from the experimental stiffness
curve, and the difference becomes greater and greater. As can be seen from Figure 11c,
when roughness is Sa 4.5 µm, the relative error of the normal contact stiffness value of the
new model is between 0 and 2.89%, with a small difference. The relative error of the GW
model is the greatest, reaching 158.07%, and the relative error varies between 127.86% and
158.07% during the whole loading process. With an increase in normal contact pressure,
the relative error of the CEB model gradually decreases from 68.4% to 43.78%, and that of
the KE model gradually decreases from 46.13% to 17.56%.
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As shown in Figure 10d, when roughness is Sa 5.8 µm, with an increase in normal
contact pressure, the curve of this model and the experimental curve have the same
trend, and the simulation value of normal contact stiffness is close to the experimental
value. However, the stiffness curves of the GW model, the CEB model, and the KE model
gradually deviate from the experimental stiffness curve, and the difference becomes greater
and greater. As can be seen from Figure 11d, when roughness is Sa 5.8 µm, the relative error
of the normal contact stiffness value of the new model is between 1.68% and 2.89%, with
a small difference. The relative error of the GW model is the greatest: the highest value
is 201.57%, and it varies between 126.8% and 201.57% during the whole loading process.
With an increase in normal contact pressure, the relative error of the CEB model varies
between 98.47% and 110.26%, and that of the KE model varies between 56.9% and 73.18%.

Through the comparison of the above models, it is found that the stiffness curve of
the GW model has a high degree of deviation. The maximum error occurs because the
GW model simplifies the combination of the rough surfaces to contact between a spherical
asperity and the rigid plane. this is not the case for the actual asperities between the two
rough surfaces.the contact process only considers the elastic deformation of the asperity
and does not consider their elastic–plastic deformation. There is a single model calculation
process, and the model is relatively simple. As the pressure increases, the deviation of
the simulation stiffness value from the experimental stiffness value becomes greater. The
error caused by ignoring plastic deformation is prominent, and the stiffness value deviates
sharply from the experimental stiffness value. The KE model is a frictionless contact
elastoplastic model between a deformable sphere and a rigid plate. The model considers
the evolution of elastoplastic contact with an increase in pressure and reveals three different
stages from completely elastic to elastoplastic and then to a completely plastic contact
interface. It covers a wide range of normal contact stiffness values from the initial yield to a
full plastic state in the spherical contact region. The model fully considers the influencing
factors of plastic deformation, so the numerical simulation stiffness curve is smooth for the
whole loading fitting process, and it rises with the trend of the experimental stiffness curve.
Compared with the GW model curve, it is closer to the experimental stiffness value, and
the error is relatively small. However, the KE model assumes that the asperity shape is a
spherical convex body, and the contact between the two rough surfaces is equivalent to the
contact between the smooth rigid plane and the equivalent rough surface, which does not
accord with the actual contact of the rough surface. As a result, there is a certain error in
the comparison between the simulated normal-contact stiffness curve and the experimental
stiffness curve. The CEB model is an elastoplastic model for analyzing the contact of rough
surfaces. The CEB model not only considers the elastic–plastic deformation characteristics
of asperities, but also adds the volume conservation factor of asperities into the plastic
deformation process. During the whole loading experiment, compared with the GW model
curve, the stiffness value curve of the numerical simulation was smooth and increased
with the experimental stiffness value curve. However, the CEB model assumed that the
asperities were spherical and in contact with the rigid surface. The model topography
assumption was inconsistent with the actual situation and deviated from the real contact
law, which interfered with the simulation data results. It caused error in the numerical
simulation stiffness value and the experimental stiffness value, so the accuracy of the
model is poor. The model proposed in this paper first fits the contour parameters and
topography characteristics of a single asperity by collecting the surface data of the rough
body. Then, the simulation surface of the rough body is reconstructed according to the
fitting data, and the parabolic Y = CX2 +GX + H cylinder cross normal contact stiffness
model is established. Then the pressure and normal displacement of the asperity in the
elastic deformation stage, elastoplastic deformation stage, and complete plastic deformation
stage were analyzed. Finally, the normal contact stiffness of the whole joint surface was
obtained based on statistical theory. Therefore, the numerical simulation stiffness curve
of this model is consistent with the experimental stiffness value. According to the above
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comparison results, the new model proposed in this paper is more accurate than the GW,
the KE, and the CEB models.

6. Conclusions

A novel analytical model of normal contact stiffness for mechanical joint surfaces was
proposed in this paper. The main conclusions can be summarized as follows:

1. A hypothetical surface with a higher degree of agreement with the actual surface
is established. Based on the fitting of actual machined surface-topography data, a
hypothetical surface with parabolic cylindrical asperity and Gaussian distribution
is proposed. In this hypothetical surface, a parabolic column is used to simulate
the shape of a single asperity surface, and the height distribution of the asperity is
characterized by Gaussian distribution.

2. A new normal contact stiffness model is established. Based on the hypothetical
surface and combined with contact mechanics analysis of the rough surface, a general
normal contact stiffness model for plane-cutting surfaces was established. This model
recalculates the relationship between indentation depth and contact force in the elastic,
elastoplastic, and completely plastic deformation regions of asperities, and finally
obtains an analytical model of normal contact stiffness.

3. The accuracy of this model is verified by experimental method. To verify the accuracy
of the proposed method, a contact stiffness test bed was built, and the model in this
paper was compared with the experimental results. The comparison results show that
the model in this paper is consistent with the experimental results, which verifies the
rationality and correctness of the proposed method. In addition, the proposed model
is compared with the GW model, the CEB model, and the KE model in terms of the
fitting data of normal contact stiffness. The results show that when roughness is Sa
1.6µm, the maximum relative errors are 2.56%, 157.9%, 134%, and 90.3%, respectively.
When roughness is Sa 3.2 µm, the maximum relative errors are 2.92%, 152.4%, 108.4%,
and 75.1%, respectively. When roughness is Sa 4.5 µm, the maximum relative errors
are 2.89%, 158.07%, 68.4%, and 46.13%, respectively. When roughness is Sa 5.8 µm,
the maximum relative errors are 2.89%, 201.57%, 110.26%, and 73.18%, respectively.
The results show that the model in this paper is closer to the experimental results
than other models, thus verifying the accuracy of the model in this paper. The
normal contact stiffness of mechanical joint surfaces is of great significance to the
research and analysis of mechanical contact characteristics. Attention should be paid
to calculations for contact of engineering surfaces. This paper mainly considers the
influence of normal contact stiffness on contact calculations. In fact, tangential contact
stiffness, lubrication, vibration damping, dynamic characteristics, and other factors
should also be considered in the study of the contact characteristics of mechanical
joints. The influence of these factors will be examined in future studies.
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