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Abstract: Dense and enhanced mechanical properties (Zr, Ti)(C, N)-based composites were fabricated
using ZrC, TiC0.5N0.5, and Si powders as the raw powders by reactive hot-pressing at 1500–1700 ◦C.
At the low sintering temperature, both (Zr, Ti)(C, N) and (Ti, Zr)(C, N) solid solutions were formed in
the composites by adjusting the ratio of ZrC to TiC0.5N0.5. During the sintering process, the Si added
at a rate of 5 mol% reacted with ZrC and TiC0.5N0.5 to generate SiC. With the increase in Si addition,
it was found that the residual β-ZrSi was formed, which greatly reduced the flexural strength of
composites but improved their toughness. The reaction and solid-solution-driven inter-diffusion
processes enhanced mass transfer and promote densification. The solid solution strengthening and
grain refinement improved the mechanical properties. The ZrC–47.5 mol% TiC0.5N0.5–5 mol% Si (raw
powder) composite possessed excellent comprehensive performance. Its flexural strength, Vickers
hardness, and fracture toughness were 508 ± 33 MPa, 24.5 ± 0.7 GPa, and 3.8 ± 0.1 MPa·m1/2,
respectively. These reached or exceeded the performance of most (Zr, Ti)(C, N) ceramics reported in
previous studies. The lattice distortion, abundant grain boundaries, and fine-grained microstructure
may make it possible for the material to be resistant to radiation.

Keywords: (Zr, Ti)(C, N)-based composites; reactive hot-pressing; solid solution; mechanical properties

1. Introduction

Zirconium carbide (ZrC) exhibits uniquely comprehensive properties such as a high
melting point (~3540 ◦C), high hardness (~20 GPa), excellent abrasion and corrosion resis-
tance, good thermal/electrical conductivities, and good irradiation damage tolerance [1–4].
Combining these characteristics makes ZrC a promising candidate that can be applied
to next-generation rocket engines as structural components [5,6]. ZrC is also considered
a potential material in the framework of the generation-IV nuclear energy system due
to its excellent resistance to corrosion by fission products and low neutron absorption
cross-section [7–9]. Introducing lattice defects, such as abundant grain boundaries and
lattice distortions, can further enhance the radiation resistance of ceramics [10].

However, the densification temperature of ZrC is very high due to its strong covalent
bond and low self-diffusion coefficient, which limits its application. Adding transition
metal carbide, nitride, and carbonitride such as TiC, TiN, and TiCN to the ZrC matrix to
form solid solutions can improve sintering performance [11–13]. The formation of a solid
solution can promote densification, and the lattice distortion caused by a solid solution
can produce a solid solution strengthening effect [14,15]. Since ZrC and TiC have the same
crystal structure and a similar covalent radius, they can form continuous solid solutions [16].
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At a TiC composition of under 20 mol%, however, the densification temperature of ZrC-TiC
ceramics is as high as 2100 ◦C [17]. For ZrC-TiN and ZrC-TiCN ceramics, the formation of
a (Zr, Ti)(C, N) solid solution causes more lattice distortion and improves the mechanical
properties of materials. However, the stability of N in TiCN is better compared to that in
TiN at high temperatures and in a vacuum [18]. Therefore, TiCN is not easily denitrified to
form N2 during sintering, which is conducive to the densification of ceramic.

Nevertheless, ZrC-TiCN ceramics have poor densification and mechanical properties
due to the high sintering temperatures. Reactive hot-pressing is considered an effective
method of preparing ceramic composites. Reactions during sintering can significantly
enhance the low-temperature densification behavior compared with non-reactive pro-
cesses [19,20]. For ZrC and TiC, silicon (Si) is commonly chosen as a reactive sintering
aid. The reaction of carbide with Si can evidently promote densification [21,22], and the
product SiC can improve mechanical properties by inhibiting grain growth [23,24]. Further-
more, nanoparticle-reinforced composites are an important method to improve material
properties [25–27].

In this study, dense (Zr, Ti)(C, N)-based composites were prepared by reactive hot-
pressing at 1500–1700 ◦C. Si was chosen as a sintering aid to reduce the sintering tem-
perature and enhance densification by using Si to generate the liquid phase during the
sintering process. At the low sintering temperature, thermodynamic calculation showed
that the molar ratio of ZrC to TiC0.5N0.5 should be 50:50 to obtain composites with Zr-rich
(Zr, Ti)(C, N) and Ti-rich (Ti, Zr)(C, N) solid solutions that improve mechanical properties.
ZrC-TiC0.5N0.5 (molar ratio 50:50) with 0, 5, 10, and 20 mol% Si additions were chosen as
the designed compositions. The effects of Si addition on the microstructure and mechanical
properties were investigated. This research will propose a new alternative for designing
and preparing nuclear materials.

2. Materials and Methods

Commercial ZrC (dav = 0.25 µm, purity > 99.7 wt%), TiC0.5N0.5 (dav = 0.23 µm,
purity > 99.4 wt%), and Si (dav = 1.29 µm, purity > 99.9 wt%) were chosen as the initial
powders. The powder mixtures with different compositions were milled with a ball-to-
powder ratio of 30:1 in weight under an argon atmosphere. The milling time was 24 h, and
the rotating speed was 250 rpm. Then, the powders were passed through an 80-mesh sieve.
Table 1 shows the designed material compositions, sintering parameters, and codes.

Table 1. Designed compositions and sintering parameters of composites.

Code
Compositions of Composites

Sintering Parameters
ZrC:TiCN ZrC (mol%) TiCN (mol%) Si (mol%)

ZrC 100:0 100 - - 2100 ◦C/30 MPa/1 h
TiCN 0:100 - 100 - 2100 ◦C/30 MPa/1 h
Z50T 50:50 50 50 - 2000 ◦C/30 MPa/1 h

Z50T5S 50:50 47.5 47.5 5 1700 ◦C/30 MPa/1 h
Z50T10S 50:50 45 45 10 1500 ◦C/30 MPa/1 h
Z50T20S 50:50 40 40 20 1500 ◦C/30 MPa/1 h

Hot pressing was performed in a vacuum hot-pressing sintering furnace (AVS, model 1540,
Ayer, MA, USA) using a 20 mm inner diameter high-density graphite die. The room
temperature was 20 ◦C, and the sintering curve of Z50T10S is shown in Figure 1. The other
samples’ sintering parameters are the same as those of Z50T10S, except for the sintering
temperatures. The powder mixture dwelled in a vacuum for 1 h at the designed sintering
temperature and pressure. The load on the mold was then removed, and the furnace cooled
at a speed of 30 ◦C/min.
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Figure 1. Sintering curve of Z50T10S.

The entire surface of the samples was ground to remove the graphite foil residual
and the reaction layer before being polished with diamond paste. An X-ray diffractometer
(Empyrean, PANalytical Corp., Almelo, The Netherlands) was used for identifying the
phase constituents. The lattice parameters were determined using Si powder as the internal
standard in the 2θ range of 20◦–90◦. The bulk densities of the specimens were measured by
Archimedes’ principle. Microstructures were observed by a scanning electron microscope
(SEM, Hitachi SU5000, Tokyo, Japan) equipped with energy-dispersive spectroscopy (EDS,
AZTEC, Oxford Instrument, High Wycombe, UK) for elemental analysis. The grain size
and content of each phase in the specimen were obtained by image analysis using the
Image-Pro Plus software (version 7.0). Transmission electron microscopy (TEM, FEI Talos
F200X, Waltham, MA, USA) was used for a more detailed analysis of the microstructure.

The flexural strength was performed utilizing three-point bending (Instron-1186) with
a 14 mm span and a crosshead speed of 0.5 mm/min (2 × 4 × 16 mm3 test bars). The
reported strength values were the average tested values on five bars where the surfaces
were polished and chamfered. Vickers hardness (Hv) was measured using the Vickers
indentation method (HVS-30) with a load of 9.8 N for 10 s. Fracture toughness (KIC)
was evaluated from the as-indented crack lengths by the Evans [28] formula with the
indentation method. The average Hv and KIC were obtained from at least 10 indentations.
The phase diagram based on thermodynamics was calculated by the software FactSage
(Version 7.1) using databases from SpMCBN 7.0.

3. Results and Discussion
3.1. Phase Constitutions

Figure 2 presents the XRD patterns of the (Zr, Ti)(C, N)-based composites. In Figure 2a,
the prepared ceramics containing Si were mainly composed of two solid solution phases,
including (Zr, Ti)(C, N) and (Ti, Zr)(C, N). For the Z50T sample, due to the high sintering
temperature (2000 ◦C), a single-phase solid solution tended to form [12], resulting in the
intensity of the diffraction peak corresponding to (Ti, Zr)(C, N) being very weak. On
the contrary, the intensity of the (Ti, Zr)(C, N) diffraction peaks of the other ceramics
containing Si was significantly enhanced but was far less than that of (Zr, Ti)(C, N). It was
revealed that the formation of the (Zr, Ti)(C, N) solid solution predominated at both low
and high temperatures. A similar situation also occurs in the ZrC-TiC and ZrC-TiC0.5N0.5
systems [12,29]. The phenomenon might be related to the difference between the diffusion
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activation energy of the Ti atom in the ZrC and that of the Zr atom in the TiC0.5N0.5 at
the same temperature. However, further investigation should be carried out to verify
this. With the increase in Si addition, the β-ZrSi was detected in the Z50T20S sample. The
expanded XRD patterns are shown in Figure 2b. The (220) diffraction peaks of (Zr, Ti)(C, N)
composites shifted to a region of higher angles than monolithic ZrC. In contrast, all (220)
diffraction peaks of (Ti, Zr)(C, N) moved to a region of lower angles compared to monolithic
TiC0.5N0.5. However, these (220) diffraction peaks mentioned above became progressively
less shifted with the decreasing sintering temperature. The full width at half maximum
of the (Zr, Ti)(C, N) and (Ti, Zr)(C, N) solid solutions (220) crystal plane diffraction peaks
gradually decreases with the addition of Si. According to Scherrer’s formula, it can be
assumed that the grain size of both solid solutions grows with the Si addition.
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Figure 2. (a) XRD patterns of bulk ZrC, TiCN, and composites; (b) the expanded patterns of (a).

The diffraction peaks’ shift indicated that the lattice parameters of their corresponding
phases also changed. The lattice parameters of composites were calculated by the XRD
patterns (Table 2). The lattice parameter of (Zr, Ti)(C, N) decreased from 0.4696 nm (ZrC)
to the minimum value of 0.4525 nm (Z50T), while the lattice parameter of (Ti, Zr)(C, N)
increased from 0.4275 nm (TiCN) to the maximum value of 0.4418 nm (Z50T). This is
because the (Zr, Ti)(C, N) solid solution is formed by the dissolution of Ti and N atoms
with small atomic radii into the ZrC lattice; the (Ti, Zr)(C, N) solid solution is formed by
dissolving the larger atomic radius Zr atoms into the TiC0.5N0.5 lattice. Compared with the
lattice parameters in the Z50T sample, those of the (Zr, Ti)(C, N) and (Ti, Zr)(C, N) rose
from 0.4525 nm to 0.4589 nm and decreased from 0.4418 nm to 0.4346 nm in the Z50T20S,
respectively. This is attributed to the solid solubility decreasing with the reduction in
sintering temperature, which also made the offset of the corresponding (220) diffraction
peaks smaller, as shown in Table 2.

β-ZrSi (CrB-type structure) exists above 1460 ◦C, and transitions to α-ZrSi (FeB-type
structure) occur below this temperature according to the Si-Zr phase diagram [30]. Nev-
ertheless, β-ZrSi was found in the Z50T20S sample at room temperature, and its (002)
diffraction peak shifted from 48.5 to 49.5 compared to the PDF card (# 04-004-7165), as
shown in Table 2. The above phenomenon, combined with our previous study [10], in-
dicates that Ti atoms dissolved into the β-ZrSi lattice to form a (Zr, Ti)Si solid solution
(CrB-type) and inhibited the transition from the β to the α.
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Table 2. Diffraction peak positions and lattice parameters of sintered ceramics.

Composition

2θ (◦) of (220)
2θ (◦) of

ZrSi (002)

Lattice Parameters (nm)

ZrC/
(Zr,Ti)(C,N)

TiCN/
(Ti,Zr)(C,N)

ZrC/
(Zr,Ti)(C,N)

TiCN/
(Ti,Zr)(C,N)

ZrC (PDF # 00-035-0784) 55.3 - - 0.4693 -
TiC0.51N0.49 (PDF # 04-006-0748) - 61.2 - - 0.4278

β-ZrSi (PDF # 04-004-7165) - - 48.5 - -
ZrC 55.3 - - 0.4696 -

TiCN - 61.2 - - 0.4275
Z50T 57.5 59.1 - 0.4525 0.4418

Z50T5S 57.0 59.9 - 0.4561 0.4356
Z50T10S 56.7 60.2 - 0.4587 0.4350
Z50T20S 56.7 60.2 49.5 0.4589 0.4346

To further investigate the reaction processes of ZrC, TiC0.5N0.5, and Si during sintering,
the equilibrium phase diagram was calculated using FactSage software (Figure 3). Samples
with different Si additions fell within a “(Zr, Ti)(C, N) + (Ti, Zr)(C, N) + SiC + Ti3SiC2 region.”
The thermodynamic calculation could reflect the reaction trend in the ZrC-TiC0.5N0.5-Si
system to some extent. It was reported that ZrC can react with Si to form ZrSi below
1300 ◦C, and then the carbon atoms in ZrC could react with the ZrSi to form SiC and
ZrC1−x [22]. Therefore, there may be two stages between the raw powders during the
sintering process. The first stage of the reaction occurs below 1300 ◦C, as follows:

ZrC (s) + Si (s)→ SiC (s) + α-ZrSi (s) (1)
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Simultaneously, interdiffusion between ZrC and TiC0.5N0.5 forms (Zr, Ti)(C, N) and
(Ti, Zr)(C, N) solid solutions. However, the first stage is still dominated by the reaction
because of the low temperature. Therefore, TiC0.5N0.5 reacts with Si at this stage based on
our previous research [10], as shown in Equation (2).

TiC0.5N0.5 (s) + Si (s)→ SiC (s) + TiSi2 (s) + TiN (s) (2)

Second, the eutectic reaction of Si and TiSi2 forms the Ti-Si liquid phase as the tem-
perature reaches 1330 ◦C [31]. Then, the non-reactive Si begins to melt at 1414 ◦C, and
α-ZrSi transforms into β-ZrSi at 1460 ◦C [30]. β-ZrSi can dissolve in Ti-Si liquid to form the



Materials 2023, 16, 2145 6 of 15

Zr–Ti–Si liquid phase. The carbon atoms in the ZrC matrix diffuse into the Zr–Ti–Si liquid
phase as the temperature increases, forming SiC, ZrC1−x, and TiC1−x [10]. In the process
of heat and pressure preservation, the TiN generated in the first stage and the ZrC1−x
and TiC1−x in the second stage gradually dissolve into the ZrC and TiC0.5N0.5 lattices and
finally form (Zr, Ti)(C, N) and(Ti, Zr)(C, N) solid solutions (ss), as shown in Equation (3).

TiN (s) + ZrC1−x (s) + TiC1-x (s) + ZrC (s) + TiC0.5N0.5 (s)→ (Zr,Ti)(C,N) (ss) + (Ti, Zr)(C, N) (ss) (3)

Compared with the other two specimens, the Si content in Z50T20S reached 20 mol%,
causing the liquid phase of Zr-Ti-Si generated in the second stage to not entirely participate
in the reaction, and the liquid phase residual transitioned to β-ZrSi during the cooling
process. Therefore, β-ZrSi was found in the Z50T20S specimen.

3.2. Relative Densities

The curves of relative densities and grain sizes versus Si content for the prepared
composites are shown in Figure 4. The relative density (RD) of pure ZrC sintered at 2100 ◦C
was 97.3%. However, the RD decreased to 95.4% after 50 mol% TiC0.5N0.5 addition. As
shown in Figure 3, the Z50T sample at the set sintering temperature was close to the
“(Zr, Ti)(C, N) + SiC + N2 region” on the ZrC-TiC0.5N0.5-Si phase diagram. Therefore,
the above phenomenon may be related to the appearance of N2. Similar phenomena
have also occurred in other studies. Liang et al. [13] prepared the ceramic of the same
composition with an RD of 96.1% by SPS at 2000 ◦C. They then measured nitrogen content
under this composition, and the result showed that the loss of the nitrogen element reached
15 wt% after sintering. This demonstrates that TiC0.5N0.5 becomes unstable at higher
temperatures and denitrifies to produce N2. Denitrification is worse when the amount of
nitrogen and temperature are both high. The generated N2 will eventually form pores in
the ceramic matrix at high sintering pressure. The minimum RD of the prepared TiC0.5N0.5
ceramics was 94.3%, consistent with the above analysis. As shown in Figure 4, despite the
sintering temperatures being 300–500 ◦C lower for single-phase ceramics, the addition of Si
significantly enhanced the RDs of (Zr, Ti)(C, N)-based composites to over 99%. According to
the analysis of the reaction process, the presence of the liquid phase containing Ti, Zr, and Si
enhanced the densification performance by promoting mass transfer. In addition, TiC0.5N0.5
is not sensitive to denitrification at 1500–1700 ◦C [12,18]. Meanwhile, the substitution of N
for C easily tends to make (Zr, Ti)(C, N) solid solutions dense at a lower temperature
(approximately 1700–1900 ◦C), and the (Ti, Zr)(C, N) solid solution formed when Zr
substituted for Ti also has the same characteristic [12]. Thus, under the effect of the
above factors, the Si-containing samples exhibited extremely high RDs, and the RD of
Z50T20S even reached 99.9% at a sintering temperature of 1500 ◦C.

3.3. Microstructure

SEM micrographs of sintered ceramics are shown in Figure 5. According to Figure 5a,b,
it can be seen that the pure-phase ZrC and TiC0.5N0.5 sintered at 2100 ◦C had more surface
porosity and poorer densification. Like pure ceramics, the Z50T sample exhibited high
porosity, as shown in Figure 5c. With the addition of Si, the pores were significantly
reduced, and the few apparent pores in these SEM images implied that these samples were
close to being fully dense, as shown in Figure 5d–f. Meanwhile, dark and gray phases
started to appear due to the introduction of TiCN and Si into the ZrC matrix. The EDS
result of the Z50T10S sample is shown in Figure 6, and the combination of XRD and EDS
analysis revealed that the bright, dark, and gray phases corresponded to (Zr, Ti)(C, N),
(Ti, Zr)(C, N), and β-SiC, respectively. Likely attributable to the influence of solid solution
factors, the contrast of (Ti, Zr)(C, N) and β-ZrSi was close (see the sequent HAADF images),
so it could not be clearly distinguished on the BSE image of the Z50T20S sample.
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Table 3 exhibits the content of phases in sintered ceramics calculated by the image
analysis method. We previously reported that only (Zr, Ti)(C, N), and SiC existed in
ceramic sintered at 1700 ◦C when the ratio of ZrC to Si was 90.25: 5 (mol%) in the ZrC-
TiC0.5N0.5-Si system [10]. Therefore, it can be inferred that β-ZrSi does not exist in the
Z50T5S ceramic, which has a phase composition of (Zr, Ti)(C, N)-31.2 vol% (Ti, Zr)(C, N)-4.2
vol% SiC. For the Z50T10S sample, the existence of β-ZrSi needs to be further analyzed
using TEM. The contents of (Zr, Ti)(C, N) and (Ti, Zr)(C, N) solid solutions gradually
decrease with increasing Si addition in (Zr, Ti)(C, N)-based composites. The average
grain size of each phase in the sintered ceramics is shown in Table 3. The grain sizes of
(Zr, Ti)(C, N), (Ti, Zr)(C, N), and SiC in Z50T5S were 0.6 ± 0.2, 0.5 ± 0.1, and 0.3 ± 0.1 µm,
respectively, which were lower than those of ZrC-based ceramics sintered by conventional
methods [32,33]. In particular, the grain sizes of (Zr, Ti)(C, N) and (Ti, Zr)(C, N) in the
Z50T sample were 0.5 and 0.3 µm, respectively. Even though they had a low RD, these
were the finest grain sizes in the sintered ceramics. The ZrC-TiCN ceramics prepared by
Liang et al. showed a significant reduction in grain size since the Ti-rich solid solution was
present [13], and the same phenomenon was found in ZrC-TiC ceramics [17,34]. Hence,
it is thought that the presence of a Ti-rich solid solution in the ceramic matrix inhibits
grain growth. According to Figure 4, the grain size of the two solid solution phases is
positively correlated with the Si content. This is reasonable because the Si-containing liquid
phase formed during the sintering process promotes mass transfer. Possibly due to the
physical pinning effect of SiC, which was also reported in other ceramics with SiC or Si
addition [35–38], the grain size of (Zr, Ti)(C, N) and (Ti, Zr)(C, N) did not grow excessively.
The maximum grain size appeared in the Z50T20S sample at no more than 1 µm.

Table 3. Grain sizes and phase contents by image analysis of ceramics.

Sample
Relative

Density (%)

Grain Size (µm) Phase Content by Image Analysis (vol%)

ZrC/
(Zr, Ti)(C, N)

TiCN/
(Ti, Zr)(C, N) SiC ZrC/

(Zr, Ti)(C, N)
TiCN/

(Ti, Zr)(C, N) SiC ZrSi

ZrC 97.3 1.3 ± 0.2 - - 100 - - -
TiCN 94.3 - 24.2 ± 5.7 - - 100 - -
Z50T 95.4 0.5 ± 0.1 0.3 ± 0.1 - 88.1 11.9 - -

Z50T5S 99.9 0.6 ± 0.2 0.5 ± 0.1 0.3 ± 0.1 64.6 31.2 4.2 -
Z50T10S 99.0 0.7 ± 0.2 0.9 ± 0.3 0.4 ± 0.1 57.1 - 9.8 trace
Z50T20S 99.9 0.9 ± 0.2 0.8 ± 0.1 0.3 ± 0.1 54.7 - 12.5 -

The Z50T10S was characterized by STEM to investigate the microstructure in de-
tail. The HAADF image with element distribution maps and EDS spectra are shown in
Figures 7 and 8, respectively. The results showed that the phase with rich Si and C elements
was SiC, which was aggregated due to the high content of Si in the system. At the grain
boundary of (Zr, Ti)(C, N) and (Ti, Zr)(C, N), the gray nanoparticle with rich Si and poor
C elements, almost embedded in the (Zr, Ti)(C, N) grain, corresponded to β-ZrSi. This
indicated the existence of traces of β-ZrSi in the Z50T10S sample. According to the analysis
of the reaction process in Section 3.1, it was formed by cooling the partially reacted liquid
phase at the grain boundaries.

From the EDS spectra in Figure 8b,c, it can be seen that the solubilities of Ti atoms in
the ZrC lattice and Zr atoms in the TiC0.5N0.5 lattice were 28.90% and 8.15%, respectively.
However, the solubility of Ti atoms in the β-ZrSi lattice is detected at 10.81%. It was revealed
that the Ti atoms present in the β-ZrSi lattice could stabilize the high-temperature phase at
room temperature. Figure 9 shows the selected area electron diffraction (SAED) patterns
of Z50T10S. By indexing the diffraction spots, the bright phase, the larger gray phase,
and the black phase were further determined as (Zr, Ti)(C, N), (Ti, Zr)(C, N), and β-SiC,
respectively. SiC and ZrSi grains were surrounded by larger (Zr, Ti)(C, N) and (Ti, Zr)(C, N)
grains, which formed a typical shape in-situ reaction. The grain sizes of (Zr, Ti)(C, N),
(Ti, Zr)(C, N), and SiC (Figure 9a) were similar to the average value determined from the
SEM image.
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3.4. Mechanical Properties

The mechanical properties of monolithic ZrC, TiCN, and ZrC-SiC, and the ZrC-TiCN
composites examined by the authors in [12,13,33,34,39–42], in addition to the results of
this work, are summarized in Table 4. Compared to ZrC and TiCN [34,42], (Zr, Ti)(C,
N) and (Ti, Zr)(C, N) ceramics [12,13] exhibited higher hardness due to the formation of
complete solid solutions when sintered at high temperatures. The hardness of (Zr, Ti)(C,
N) ceramics increases significantly with solid solubility. For the (Zr, Ti)(C, N) coatings
with different non-metal/metal ratios deposited onto Ti6Al4V alloy and Si substrates by
DC magnetron sputtering, it was reported that the hardness values of the films with
thicknesses ranging from 1.8 to 2.1 µm reached 25–29 GPa [43]. This suggested that the
hardness enhancement of the composite resulted from the intrinsically high hardness of (Zr,
Ti)(C, N), which is presumed to be related to solid-solution-induced lattice distortion. XRD
analysis showed that almost all TiC0.5N0.5 dissolved into the ZrC lattice in the Z50T, which
resulted in a significant solid solution strengthening effect, improving hardness; therefore,
a maximum hardness of 26.9 ± 0.7 GPa was attained. For the Z50T5S sintering at 1700 ◦C,
a large amount of (Ti, Zr)(C, N) solid solution appeared in the matrix compared with
the Z50T. Furthermore, the lower sintering temperature resulted in lower solid solubility.
Z50T5S has a lower hardness than Z50T, with a hardness value of 24.5 ± 0.7 GPa. As
the sintering temperature was further reduced, the hardness of Z50T10S and Z50T20S
decreased. However, since the hardness of ZrSi was approximately 10 GPa [44], the
hardness of Z50T20S decreased to 21.7 ± 0.7 GPa.
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Table 4. The mechanical properties of ceramics of this paper and previous reports [12,13,33,34,39–42].

Sample Processing Parameters Relative Density
(%)

Grain Size (µm)
Flexural Strength

(MPa)
Vickers Hardness

(GPa)
Fracture Toughness

(MPa·m1/2) Ref.ZrC/
(Zr,Ti)(C,N)

TiCN/
(Ti,Zr)(C,N) SiC

ZrC HP/2200 ◦C/1 h/30 MPa 98.2 ~40 - - 210 ± 19 16.4 ± 1.3 3.1 ± 0.7 [34]
ZrC-10 vol% SiC HP/1900 ◦C/1 h/32 MPa 98.2 1.4 ± 0.6 - 0.5 ± 0.2 ~405 19.7 ± 0.6 2.9 ± 0.1 [33]
ZrC-20 vol% SiC HP/1900 ◦C/1 h/30 MPa 95 ~10 - ~4 ~450 ~19.6 ~3.9 [39]
ZrC-20 vol% SiC HP/1900 ◦C/1 h/32 MPa 98.3 1.0 ± 0.5 - 0.5 ± 0.2 ~427 ~21.2 2.9 ± 0.1 [33]
ZrC-30 vol% SiC HP/1900 ◦C/1 h/32 MPa 99.3 1.5 ± 0.6 - 0.8 ± 0.5 - 23.0 ± 0.5 2.6 ± 0.2 [40]
ZrC-30 vol% SiC SPS/1800 ◦C/5 min/45 MPa 96.1 <1.0 - ~0.5 523 ± 20 18.8 ± 1.2 4.0 ± 0.3 [41]

TiCN SPS/1800 ◦C/5 min/75 MPa 98.6 - 3.4 ± 1.5 - - 21.8 ± 1.3 2.5 ± 0.3 [42]
ZrC-90 mol% TiCN SPS/2000 ◦C/5 min/50 MPa 98.0 - - - - 20.3 2.7 [12]ZrC-80 mol% TiCN 99.0 - - - - 22.2 2.0
ZrC-5 mol% TiCN SPS/2000 ◦C/10 min/40 MPa 97.4 1.1 ± 0.2 - - 378 ± 18 16.4 ± 2.0 2.3 ± 0.3

[13]ZrC-20 mol% TiCN 97.8 1.3 ± 0.4 - - 368 ± 43 20.0 ± 0.8 2.5 ± 0.2
ZrC-50 mol% TiCN 96.1 0.3 ± 0.1 0.3 ± 0.1 - 305 ± 41 22.5 ± 1.0 3.4 ± 0.3

ZrC HP/2100 ◦C/30 MPa/1 h 97.3 1.3 ± 0.2 - - 312 ± 35 16.7 ± 1.0 2.8 ± 0.3

This work

TiCN HP/2100 ◦C/30 MPa/1 h 94.3 - 24.2 ± 5.7 - 280 ± 31 21.0 ± 1.8 2.6 ± 0.5
Z50T HP/2000 ◦C/30 MPa/1 h 95.4 0.5 ± 0.1 0.3 ± 0.1 - 297 ± 49 26.9 ± 0.7 3.3 ± 0.1

Z50T5S HP/1700 ◦C/30 MPa/1 h 99.9 0.6 ± 0.2 0.5 ± 0.1 0.3 ± 0.1 508 ± 33 24.5 ± 0.7 3.8 ± 0.1
Z50T10S HP/1500 ◦C/30 MPa/1 h 99.0 0.7 ± 0.2 0.9 ± 0.3 0.4 ± 0.1 435 ± 28 22.4 ± 0.5 4.0 ± 0.3
Z50T20S HP/1500 ◦C/30 MPa/1 h 99.9 0.9 ± 0.2 0.8 ± 0.1 0.3 ± 0.1 330 ± 17 21.7 ± 0.7 4.4 ± 0.2
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The flexural strength of Z50T was 297 ± 49 MPa lower than that of pure ZrC and (Zr,
Ti)(C, N) [13] ceramics due to the poor RD. As Si was introduced into the ZrC-TiC0.5N0.5
system, the ceramics possessed a higher strength. The flexural strength of Z50T10S reached
a value of 435 ± 28 MPa, which was higher than that of (Zr, Ti)(C, N) ceramics, as shown
in Table 4. Besides high RD and solid solution strengthening, fracture toughness was
also a significant factor of flaw tolerance according to the Irwin relationship, as shown by
Equation (4):

σ =
KIC

Y
√

a
(4)

where σ, KIC, Y, and a are the flexural strength, fracture toughness, geometric constant, and
defect size of ceramic, respectively. Grain size is usually considered the characteristic criti-
cal defect size in almost completely dense ceramics. Thus, the higher flexural strength of
ceramics with the Si addition may be correlated with the higher fracture toughness. Z50T5S
exhibited a high RD and fine grain size, with a flexural strength of 508 ± 33 MPa, repre-
senting the maximum in prepared ceramics. Compared to ZrC-SiC ceramics [33,39–41],
Z50TS contained 4.2 vol% SiC but had a significantly improved flexural strength that was
generally higher than for other ceramics. This was not only due to the fine and dense
microstructure but also the effective pinning impact of the grain boundaries caused by SiC
generated in situ and distributed along the grain boundaries. In this study, however, the
flexural strength of the other two ceramics containing Si was lower than that of Z50T5S,
and the higher the Si content, the more severe the reduction in flexural strength. In (Zr,
Ti)(C, N)-based ceramics, the mismatch in the coefficient of thermal expansion (CTE) be-
tween each phase led to the appearance of residual stresses during the cooling process.
The CTEs of SiC, ZrC, TiC0.5N0.5, and ZrSi were 4.5 × 10−6, 6.8 × 10−6, 7.4 × 10−6, and
8.6 × 10−6 K−1, respectively [44,45]. Considering the relatively low concentration of solute
atoms in (Zr, Ti)(C, N), (Ti, Zr)(C, N), and ZrSi, their CTEs can roughly refer to those of the
above. According to Figure 8a, ZrSi was mainly distributed along the grain boundaries of
(Zr, Ti)(C, N), and the CTE difference between ZrSi and (Zr, Ti)(C, N) was more significant
than that of ZrSi and (Ti, Zr)(C, N). Therefore the residual stresses in ceramics were pre-
dominantly present at the ZrSi and (Zr, Ti)(C, N) grain boundaries. In the cooling process,
the ZrSi particle was subjected to compressive stress, and the (Zr, Ti)(C, N) matrix was
subjected to tensile stress, resulting in the interface being under tensile stress. Aggregating
residual tensile stresses at grain boundaries induces microcracks, severely reducing the
ceramic’s flexural strength. Apparently, the addition of Si is positively correlated with
residual tensile stress-induced microcracks. The flexural strength of the Z50T20S ceramic
was 330 ± 17 MPa, which was only slightly higher than that of pure ZrC.

The content of (Zr, Ti)(C, N) solid solution in Z50T ceramics is much higher than that
of (Ti, Zr)(C, N) solid solution, so (Ti, Zr)(C, N) can be regarded as the second phase, similar
to SiC and ZrSi. Compared with pure ZrC and TiCN ceramics, the fracture toughness of
Z50T was improved to 3.3 ± 0.1 MPa·m1/2. With the Si addition increased, the fracture
toughness of composites (20 mol% Si addition) increased to 4.4 ± 0.2 MPa·m1/2, caused by
a significant rise in the fraction of the dispersed second phase in the matrix [46]. As shown
in crack propagation morphologies (Figure 10), Ti-rich (Ti, Zr)(C, N) particles can cause
crack deflection and bridging, in which toughening is achieved by consuming the energy
for the primary crack propagation and reducing the stress accumulation at the crack tip.
The CTE values of ZrC and SiC indicate that the SiC in the ceramic is subjected to residual
tensile stress at room temperature, and tangential tensile stress around embedded SiC
particles is always greater than intergranular SiC [47]. Under tensile stress, SiC particles
can pull the propagating crack, resulting in particle bridging and toughening. Moreover,
microcracks induced by residual stress at the grain boundaries between (Zr, Ti)(C, N) and
ZrSi play an important role in enhancing the fracture toughness of ceramic composites. As
the matrix is subjected to tensile stress, a plastic zone is formed at the tip of the primary
crack, and the microcracks in this zone propagate to create new cracks and consume energy.
Simultaneously, in encountering larger microcracks with the main crack, the propagating
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path of the main crack is deflected and branched, resulting in a longer expansion path.
This absorbs more energy, thus causing toughening. In conclusion, crack deflection and
particle bridging are thought to be the dominant toughening mechanisms for (Zr, Ti)(C,
N)-based ceramics.
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4. Conclusions

We produced almost completely dense (Zr, Ti)(C, N)-based nanocomposites via re-
active hot pressing at 1500–1700 ◦C using ZrC, TiC0.5N0.5, and Si powders as the raw
materials. The addition of Si significantly reduced the sintering temperature due to the
liquid phase formation during sintering. At the low sintering temperature, both (Zr, Ti)(C,
N) and (Ti, Zr)(C, N) solid solutions appeared in the composites, and the mechanical
properties were enhanced by adjusting the ratio of ZrC to TiC0.5N0.5. The liquid phase
generated and the (Zr, Ti)(C, N) and (Ti, Zr)(C, N) solid solutions were conducive to fa-
cilitating the mass transfer and promoting densification. During the sintering process,
all of the Si that was added in a 5 mol% amount turned into SiC. With the increased Si
addition, the residual ZrSi phase appeared, reducing the flexural strength and hardness of
composites while improving their toughness. (Ti, Zr)(C, N) and SiC effectively inhibited the
growth of matrix grains. The (Zr, Ti)(C, N)-based composite with 47.5 mol% ZrC, 47.5 mol%
TiC0.5N0.5, and 5 mol% Si possessed excellent comprehensive mechanical properties (flexu-
ral strength of 508 ± 33 MPa, Vickers hardness of 24.5 ± 0.7 GPa, and fracture toughness of
3.8 ± 0.1 MPa·m1/2). The higher flexural strength and hardness were mainly attributed to
low porosity, refined grains, solid solution strengthening, and second-phase strengthening;
meanwhile, the crack deflection and bridging caused by the (Ti, Zr)(C, N) and SiC particles
resulted in higher toughness.
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