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Jamroz, E.; Medyńska-Juraszek, A.;

Bednik, M.; Kosyk, B.; Polláková, N.

Deashed Wheat-Straw Biochar as a

Potential Superabsorbent for

Pesticides. Materials 2023, 16, 2185.

https://doi.org/10.3390/

ma16062185

Academic Editors: Katarzyna

Szewczuk-Karpisz and Agnieszka

Tomczyk

Received: 17 February 2023

Revised: 6 March 2023

Accepted: 7 March 2023

Published: 9 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Deashed Wheat-Straw Biochar as a Potential Superabsorbent
for Pesticides
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Abstract: Biochar activation methods have attracted extensive attention due to their great role in
improving sorptive properties of carbon-based materials. As a result, chemically modified biochars
gained application potential in the purification of soil and water from xenobiotics. This paper
describes changes in selected physicochemical properties of high-temperature wheat-straw biochar
(BC) upon its deashing. On the pristine and chemically activated biochar (BCd) retention of five
pesticides of endocrine disrupting activity (carbaryl, carbofuran, 2,4-D, MCPA and metolachlor) was
studied. Deashing resulted in increased sorbent aromaticity and abundance in surface hydroxyl
groups. BCd exhibited more developed meso- and microporosity and nearly triple the surface area
of BC. Hydrophobic pesticides (metolachlor and carbamates) displayed comparably high (88–98%)
and irreversible adsorption on both BCs, due to the pore filling, whereas the hydrophilic and ionic
phenoxyacetic acids were weakly and reversibly sorbed on BC (7.3 and 39% of 2,4-D and MCPA dose
introduced). Their removal from solution and hence retention on the deashed biochar was nearly
total, due to the increased sorbent surface area and interactions of the agrochemicals with unclogged
OH groups. The modified biochar has the potential to serve as a superabsorbent, immobilizing
organic pollutant of diverse hydrophobicity from water and soil solution.

Keywords: biochar modification; deashing; pesticides; 2,4-D; MCPA; carbaryl; carbofuran;
metolachlor; sorption

1. Introduction

In recent years, biochar has been widely investigated as a nutrient carrier with slow-
release capacity, an additive reducing soil water loss, or sorbent of various xenobiotics [1–3].
The most important properties of biochar determining its high adsorptive potential are:
large surface area, porous structure, abundance in surface functional groups, and high
cation exchange capacity [4]. These features may induce chemical immobilization of con-
taminant molecules on biochar and as a result mitigate their leaching and bioavailability.
Hence, a vast majority of biochar studies have been devoted to contaminated water treat-
ment and soil remediation [5,6]. Many attempts have also been made to modulate the
basic pyrolysis process parameters (input material, temperature, time) to obtain modified
biochar [7,8]. The aim of that was to design a material with properties allowing for the
retention of particular groups of pollutants, such as heavy metals [9], polycyclic aromatic
hydrocarbons [10], pesticides [11], pharmaceuticals, or personal care products [12]. In
subsequent studies, many chemical and physical activation methods of biomaterials (both
on the pre-pyrolyzed biomass or pristine biochar produced) have been implemented to
produce the biosorbent of the desired properties [13–15].

Among the chemical activation methods of biochar, deashing has recently been gain-
ing more attention in terms of retention of hydrophobic contaminants on high temperature
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biochars. Generally, ash content in biochar obtained from plant residue is lower (up to
20–30%) than in animal-derived biosorbents (up to even 90%) [16–18], and its share in-
creases significantly with pyrolysis temperature [19]. This inorganic BC fraction comprises
high concentrations of various mineral constituents such as Ca, K, Mg, Si and Na, etc. in the
form of oxides, phosphates, carbonates and silicates [18]. Such properties facilitate its use
in agriculture as a liming agent and an amendment abundant in some macro- and micronu-
trients, especially in the case of sludge and animal-derived biochars [20–23]. In contrast,
high-temperature (>500 ◦C) plant-derived biochars are more commonly used to mitigate
soil contamination via immobilization of heavy metals and organic pollutants [24–26]. In
this case, a high level of ash in the sorbent biomass can obstruct pores of biochar and
consequently decrease its surface area and sorption capacity [27]. Zhang et al. [28] found
that ash in biochars can bind neonicotinoids by specific interactions, but had an adverse
effect on sorption magnitude, due to the covering of the inner sorption sites of organic
moieties and blocking the micropores. Deashing may significantly increase core carbon
moieties, bulk oxygen, aromaticity and O-containing functional groups, decreasing all
surface element contents at the same time [28]. Removal of inorganic compounds, which
block some organic adsorption sites in the pristine biochar, has been proven a successful
strategy to increase sorption of several organic compounds in soils e.g., phenantrene [29],
naphthalene or 1-naphthol [30], pyrazysulfuron-ethyl herbicide [31], neonicotinoid insec-
ticides [28], bispyribac sodium and clomazone herbicides [32]. Nevertheless, there has
been no universal sorbent designed so far that could be dedicated to a wide spectrum of
chemical classes of pollutants.

Essentially, biochar can sorb organic molecules in two ways based on sorbate–sorbent
interaction strength. Usually, at the beginning, partitioning or pore filling is performed
jointly with other physisorption interactions such as hydrophobic interactions, π–π bonds,
van der Waals forces or hydrogen bonding. These mechanisms are mostly reversible, weak
intermolecular physical interactions [33]. At the consecutive stage, chemisorption may play
a role through covalent bonding or complex formation, which are irreversible monolayer
chemical interactions [11]. Therefore, pesticide sorption on biochar matrix is often the result
of synergistic mechanisms, depending on physicochemical attributes of the sorbent and
agrochemical properties.

Endocrine disrupting compounds (EDCs) are defined as chemicals that can mimic
endogenous hormones or interfere with endocrine processes [34]. Adverse effects of EDCs
(particularly xenoestrogens) include a number of developmental anomalies in wildlife and
humans. They belong to the group of contaminants of emerging concern (CECs) that en-
compass a broad category of pollutants, including also pharmaceuticals and personal care
products (PPCPs), flame retardants (FRs), pesticides, and artificial sweeteners (ASWs) [35].
They have all been detected in aquatic environments and may cause ecological or human
health impacts. Pesticides chosen for this study—2,4-D, MCPA, carbofuran, carbaryl and
metolachlor—can all be classified as endocrine disruptors [36–39], and soil is an impor-
tant environmental sink for these substances [40–43]. They have distinct physiochemical
properties, which is why finding a relatively recalcitrant biosorbent (as a filtering material
or soil amendment) that will effectively immobilize both polar and hydrophobic organic
xenobiotics is a challenge.

The aim of this study was to evaluate the process of chemical activation of a wheat-
straw biochar on selected properties of the biosorbent. Subsequently, retention of inves-
tigated endocrine-active pesticides on the pristine and modified biochars was estimated.
Changes in sorbent surface properties with deashing were correlated with its potential to
immobilize studied agrochemicals of various hydrophobicity.

2. Materials and Methods
2.1. Chemicals Used in the Studies

Five pesticides, belonging to three chemical classes, of various hydrophobicity and
water solubility were chosen for the studies: nonionic carbamates (carbaryl (1-naphthyl-
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N-methylcarbamate, 97%) and carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranol N-
methylcarbamate, 98%)) and aniline derivatives (metolachlor solution in acetonitrile 100µg/mL
and (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(−2-methoxy-1-methylethyl)acetamide, 98%),
as well as ionic herbicides belonging to the phenoxyacetic acids (2,4-dichlorophenoxyacetic
acid (2,4-D, 98%) and 4-chloro-2-methylphenoxyacetic acid (MCPA, 99%)). The DPPH
(2,2-diphenyl-1-picrylhydrazyl) radical, Folin–Ciocâlteu reagent, gallic acid, and active
substances of agrochemicals were of analytical grade and purchased from Merck (Schnell-
dorf, Germany). Their basic chemical and physical properties can be found in our previous
study [24]. Additionally, CaCl2, NaOH, HCl and 96% ethanol (all of analytical purity)
were supplied by Avantor Performance Materials (Gliwice, Poland). Ultrapure water,
used to prepare all the solutions, was generated in a Merck Millipore Direct Q3 system
(Warsaw, Poland).

2.2. Deashing Procedure of a Wheat Straw Biochar

The biochar used in the research was produced from wheat straw, which was subjected
to pyrolysis at 550 ◦C for 30 s in conditions of limited oxygen availability. The material was
then ground and passed through a sieve with a mesh diameter of 2 mm, thus obtaining a
fine powder consistency. The material was kept in a glass bottle, marked BC, and stored at
room temperature until use.

In the next step, the biochar was chemically activated in the ash removal process
according to the procedure described by Sun et al. [29] with some modifications. The
deashing of biochar was based on its demineralization with 1 M HCL and 10% (v/v) HF
at a ratio of 1:20 (solid/liquid). Then, the mixture was shaken at 25 ◦C and 140 rpm for
5 days. After that, the supernatant (obtained after centrifugation of the tested mixture
at 4500 rpm for 30 min) was removed. The entire procedure was repeated six times to
obtain deashed BC samples with a sufficiently low ash content, which was monitored
throughout the experiment. Then, the samples were neutralized with demineralized water
and freeze-dried to obtain a powdered, deashed biochar marked as BCd.

2.3. Properties of the Studied Sorbents

Selected basic properties of pristine (BC) and deashed (BCd) biochars were examined
according to the methodology described below. They were then compared to observe the
changes in particular properties of the sorbents caused by the biochar demineralization process.

The pH was measured potentiometrically in 10 mM CaCl2 at a ratio of 1:20
(m/v, 24 h with stirring) [44]. The elemental composition was determined on a CE EA
1110 CHNS instrument. Oxygen content was calculated from the weight difference
(O% = 100 − (CHNS + ash)). Based on these results, molar ratios of H/C and O/C were
calculated (Table 1). By burning the sorbent samples at 550 ◦C for 6 h [45], their ash content
was estimated. All measurements were performed in triplicate.

Table 1. Basic properties of pristine wheat-straw biochar (BC) and its deashed counterpart (BCd).
Shares of the C, H, N, S and O elements are expressed in % weight per dry mass weight.

Sample pH
(CaCl2)

Ash
Content

(% m/dm)
C

(% m/dm)
H

(% m/dm)
N

(% m/dm)
S

(% m/dm)
O

(% m/dm)
H/C

(Molar Ratio)
O/C

(Molar Ratio)

BC 8.97 28.08 59.72 1.78 0.31 0.30 9.81 0.355 0.123

BCd 2.16 4.30 78.18 1.96 0.71 0.17 14.68 0.298 0.141

The infrared spectra (FTIR) of the pristine and modified biochar samples were recorded
on KBr pellets using a Vertex 70 FT-IR spectrometer (Bruker, Billerica, MA, USA) over the
wavenumber range 4000–400 cm−1.

The specific surface area and the parameters of the porous structure were determined
using the nitrogen sorption method in 77 K (N2-BET method). Measurements were made
on an Autosorb IQ apparatus (Quantachrome, Boynton Beach, FL, USA). The calculations
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included SBET—the specific surface area determined from the Brunauer–Emmett–Teller
equation [m2 g−1], VT—total pore volume determined using Gurvitch’s law from the
amount of adsorbed gas at relative pressure p/p0 = 0.96 [cm3 g−1], Vmicro—volume of
micropores calculated from the Dubinin–Raduszkiewicz equation [cm3 g−1] and Vmeso—
mesopore volume calculated from the VT-Vmicro difference [cm3 g−1] [46].

The surface morphology of the studied biochars was investigated using scanning
electron microscopy (SEM; EVO LS 15, Carl Zeiss) and EHT of 20 kV. Energy-dispersive X-
ray (EDX) spectroscopy was used to determine the elemental composition of both biochars.
Elemental analyses and the distributions of elements were performed at magnifications of
1000× using a Bruker Quantax 200 system with a Bruker X Flash detector 5010.

Spectrophotometric UV-vis methods were applied to study the antioxidant potential
of the tested biosorbents using DPPH radical scavenging and Folin–Ciocâlteu assay [47,48].
Analyses were conducted on BC and BCd extracts. In the first step, biochars were subjected
to a 6 h microwave-assisted extraction procedure in 0.1 M NaOH and ethanol at 40 ◦C.
Then, the alkaline extracts of BC and BCd were neutralized with 1 M HCl solution and—in
parallel with alcoholic extracts—filtered through 0.45 µm membrane filters.

The DPPH free radical scavenging activity of pristine and deashed biochar extracts
(NaOH-neutralized and ethanolic) was estimated by mixing aliquots of 1.5 mL of obtained
extracts of BC and BCd samples with 1.5 mL ethanol solution of 0.1 mM DPPH. The mixture
was allowed to stand for 30 min in the dark. The absorbance was measured at 523 nm
using a UV-vis spectrophotometer (Cary 60, Varian, Wroclaw, Poland). An equal amount of
DPPH and ethanol were used as a control and blank, respectively. The measurements were
done in triplicate. The scavenging activity was calculated using the following equation [49]:

Scavenging (%) = (Ac − As)/Ac·100 (1)

where As is the absorbance of the tested extracts and Ac is the absorbance of the DPPH
control solution.

Folin–Ciocâlteu assay was performed for both types of extracts of BC and BCd. Tripli-
cate samples of 1 mL of neutralized alkaline and ethanolic extracts, both diluted with 4 mL
of deionized water, were mixed with 1 mL of FC reagent and—after 3 min—with 3 mL of
20% Na2CO3. They were left to stand in the dark for 60 min, followed by measurement
of the absorbance at 765 nm (Cary 60, Varian, Wroclaw, Poland). To quantify the measure-
ments, a calibration curve was prepared, where total phenolic content was expressed as
gallic acid equivalent (mg of GA L−1 of extract; Supporting Materials, Figure S1).

2.4. Sorption–Desorption Experiment

Sorption of the investigated pesticides on the wheat-straw biochar and its deashed
counterpart was determined using a simplified batch equilibrium method [24,50]. To
compare the effectiveness of the two sorbents in selected agrochemical retention, a single
concentration of the pesticides was applied (approx. 10 mg L−1 for carbofuran, metolachlor
and MCPA and 12.5 mg L−1 and 17.1 mg L−1 for 2,4-D and carbaryl, respectively).

In the sorption experiment, BC and BCd biochars (50 mg aliquots) were shaken
with 10 mL of pesticide solutions for 24 h, and then centrifuged at 10,000 rpm. The
supernatant was then taken up, additionally passed through a 0.45 µm membrane filter
and analyzed for the particular pesticide content using liquid chromatography coupled
with tandem mass spectrometry (LC-MS/MS). Conditions of the measurements are given
elsewhere [24]. At this stage, the pH of the supernatant solution after 24 h of sorption was
measured in both variants with BC and BCd as sorbents. After removal of the supernatant,
samples were treated with an equivalent amount of 10 mM CaCl2, shaken for another
24 h, centrifuged, and the solution with the desorbed amount of pesticide subjected to
LC-MS/MS measurements. The desorption was defined as the percentage of the test
substance released back to the solution, related to the quantity of substance previously
adsorbed, under the test conditions [50]. One desorption step was performed for each
sample. Additionally, control samples containing pesticide solutions without the tested
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sorbents, with pH adjusted to that experimentally measured, were prepared. This was
done to exclude chemical hydrolysis as a competitive mechanism to adsorption. All the
measurements were done in triplicate.

The amounts of pesticides adsorbed by each biochar were determined from the differ-
ence between the initial and final concentrations of the sorbates in the solutions, using the
following equation [24,51]:

Q = [(C0 − Ceq)·V]·m−1 [mg g−1] (2)

where Q is the adsorption capacity, expressed as mg of pesticide per g of biochar, C0 is the
initial pesticide concentration (mg L−1), Ceq is the pesticide concentration at equilibrium,
measured after 24 h of contact with the adsorbent (mg L−1), V is the volume of the solution
used in the experiment (L), and m is the weight of biochar used (g).

The sorption magnitude of each of the particular agrochemical is equivalent to per-
centage of removal of the pesticides from the investigated solutions. It was calculated as
the difference between C0 (initial concentration of the pesticide) and Ceq (concentration
after the contact with the adsorbent) related to C0. Sorption magnitude was expressed in
percentages and estimated with the following equation:

Sorption = [(C0 − Ceq)·C0
−1]·100 [%] (3)

2.5. Statistical Analysis

Data are expressed as the mean values of three replicates ± standard deviation (SD).
Dixon’s Q-test [52,53] was applied to identify potential outliers among the obtained results
at a confidence level of 95%. Mean values of the pesticides’ sorption and desorption magni-
tude on pristine and deashed biochars, adsorption capacity, as well as DPPH and Folin–
Ciocâlteu assay results, were statistically compared using the Student’s t-test (at p < 0.05).
Data were compiled using Microsoft Excel 2019 and GraphPad Prism 9.5.1.733 software.

3. Results and Discussion
3.1. Basic Material Properties

The basic properties of a wheat-straw biochar before (BC) and after demineralization
in HF (BCd) are presented in Table 1.

The pristine biochar (BC) was highly alkaline, and its pH value was 8.97. It was
influenced by the separation of alkali salts from the organic matrix in the input material
during the pyrolysis process. The ash of the high-temperature biochars consists mostly of
CaCO3, NaCl, and KCl as well as silicates [54]. Its relatively high share (28.08% m/d.m.)
in BC can be attributed to the initial inorganic component content in the input material,
as well as combustion of cellulose and hemicellulose, which in wheat straw constitute up
to 34–40% and 20–25% of a dry mass, respectively [55]. After the HF/HCl treatment, the
pH value of biochar dropped significantly to 2.16 (BCd), which confirms the removal of
alkaline elements from the pristine BC. The most pronounced demineralization effect was
a decrease in ash content by nearly 24% to 4.3% (m/d.m., Table 1). This corroborates the
utility of the method in removing inorganic constituents. Moreover, the share of carbon
with deashing significantly increased, from 59.72% to 78.18%, as well as the hydrogen (from
1.78% to 1.96% m/d.m.) and oxygen content (from 9.81% to 14.68% m/d.m.). This was the
effect of BCd mass contraction (by approx. 24%) with mineral removal.

H/C and O/C molar ratios of both biosorbents studied were smaller than 0.7 and 0.4,
respectively, which is in agreement with the IBI (International Biochar Initiative) definition
of biochar [56]. The IBI is a civil society organization established in 2007 in the US that
promotes systems to produce and utilize biochar as well as coproduction of clean energy
(https://www.unccd.int/cso/international-biochar-initiative, accessed on 1 March 2023).
Similarly, EBC (European Biochar Certificate, https://www.carbon-standards.com/en/
home, accessed on 1 March 2023) guidelines for sustainable biochar production [45] assume
that 0.7 is the maximum value of H/C ratio for BC. According to them, values exceeding 0.7

https://www.unccd.int/cso/international-biochar-initiative
https://www.carbon-standards.com/en/home
https://www.carbon-standards.com/en/home
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are an indication of non-pyrolytic chars or pyrolysis deficiencies. Generally, it is presumed
that biochars that are formed above 400 ◦C should have an H/C ratio lower than 0.5. Its
drop below 0.3 (after demineralization) suggests a relative increase in material aromaticity
and hence a greater share of the fused aromatic ring structures [24,57]. The molar O/C
ratio of the BCd slightly increased, which indicates the higher polarity of the material in
comparison to pristine biochar (BC) [58]. The observed trend of the (O/C) ratio suggests
that the surface of the studied BCd biochar may became more hydrophilic with deashing.
What is more, according to Spokas et al. [59], the O/C ratio is not only a function of
production temperature but also accounts for other impacts such as parent material and
postproduction oxidation. This in turn determines material stability and reflects its carbon
sequestration potential. Thus, biochars with O/C ratios < 0.2 are believed to be highly
stable with half-life exceeding 1000 years [60], which was the case for both tested sorbents.

3.2. FTIR Analysis

The FTIR spectra of the biochars (Figure 1) showed a broad band at 3200–3400 cm−1, at-
tributed to the O–H stretching vibration of hydroxyl functional phenolic groups, including
hydrogen bonding due to adsorbed water. Increase in relative intensity in the BCd sample
may be related to uncovering of the surface functional OH groups due to the removal of
the mineral components from BC, which facilitates the chemical binding of ionic molecules.
For both biochars, absorption in the region between 2925 and 2848 cm−1 was assigned to
C–H stretching vibration from the methyl and methylene groups [61]. An intense band
at 1617 cm−1 is related to the vibrations of aromatic C=C and C=O groups of conjugated
ketones and quinones [31]. Bands at 1430 and 1377 cm−1 can be assigned to aliphatic C-H
folding. Its depletion in BCd sample may be the result of removal of original organic matter,
such as polymeric CH2 and fatty acid, lignin and some cellulose with demineralization,
which was also supported by the decrease in the H/C ratio [62]. The weak bands between
885 and 750 cm−1 can be attributed to =CH out-of-plane vibrations of the aromatic ring. The
Si-O-Si bending vibrations present in BC sample at 463 cm−1 diminish after demineraliza-
tion (BCd) due to the nearly total removal of silicates (Supplementary Materials, Table S1).
According to the literature, these vibrations, providing the information mainly on the
quartz part of the inorganic matrix, tend to appear in the range of ~470–430 cm−1 [63,64].
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3.3. Porosity and Surface Area Studies

Demineralization resulted in an increase in total surface area of wheat-straw biochar by
a factor of 2.7 (Table 2), achieving a final value of 250 m2 g−1 in BCd. The total pore volume
(VT) parameter became triple that of before the chemical modification of the biosorbent,
reaching 0.24 cm3 g−1. This was due to the removal of mineral components from the
biomass surface, which unclogged pores in the resulting biochar (BCd) structure. Therefore,
the access to available active sites remarkably increased. An interesting example of biochar
modification also leading to the increase of the surface area of the sorbent was the work
of Qu et al. (2022, [9]). Therein, functional PSB bacteria were immobilized on chemically
modified bone char, which generated more active sites on its surface. Increased pore volume
along with the higher surface area of the BCd might induce good mechanical interlocking
between the solute and the biosorbent matrix [62]. However, when discussing the sorption
mechanism of organic molecules, the type and relative share of the pore types, particularly
the meso- and micropores, is also significant. Recently, a modified β-cyclodextrin sorbent
with greatly enhanced sorptive properties due to the formation of microspheres on the
sorbent surface was designed (2023, [65]). In the modified biosorbent (BCd), the content of
the micropores and mesopores with deashing increased 2.5 and 3.5 times, respectively. The
sorbent became slightly more mesoporous as their percentage share increased from 50%
to 58.3% (Table 2). The deashed BC, due to the high total surface area and abundance of
micro- and mesopores, gained the potential to immobilize tested chemicals via the physical
diffusion mechanism, as they may be physically entrapped within the pores on its surface.

Table 2. The specific surface area and the porous structure characteristics of BC and BCd samples.

Sample SBET VT Vmicro Vmeso Micro a Meso a

[m2 g−1] [cm3 g−1] [cm3 g−1] [cm3 g−1] Porosity (%) Porosity (%)

BC 92 0.08 0.04 0.04 50.0 50.0
BCd 250 0.24 0.10 0.14 41.7 58.3

SBET—the specific surface area m2 g−1; VT—total pore volume; Vmicro—volume of micropores, Vmeso—mesopore
volume. a Microporosity (%) = (Vmicro/VT) 100%; a mesoporosity (%) = (Vmeso/VT) 100%.

3.4. SEM Analysis Results

SEM images of the prepared biochar samples are presented in Figure 2. The SEM
images show that BC samples (Figure 2a,c) have randomly shaped structures with sharp-
edged particles (ash particles highlighted in red). It can be observed that the HF/HCl
treatment did not significantly change the particle size of biochar, but visibly reduced the
ash content (Figure 2a,b). Additionally, high-magnification images (Figure 2c,d) clearly
display the more porous structure in the deashed biochar (Figure 2d). Here also, the
appearance of unclogged pores became more prominent. The porous structure in biochar is
of vital importance in terms of effective mechanical interlocking and formation of stronger
BC–organic molecule interfaces [62,66].

Energy-dispersive X-ray (EDX) spectroscopy, used to determine the elemental compo-
sition of both biochars, confirmed the removal of silicates and decrease in elemental oxygen
(Supporting Materials, Table S1). As has been reported in the literature, in high-temperature
biochars, besides O-containing mineral compounds (originating from the source biomass),
a particular share of the oxygen atoms is of existing functional groups [27]. As the mineral
constituents exhibit high susceptibility to HCl/HF treatment, which corroborates the signif-
icant decline in BC’s inorganic fraction, the remaining elemental oxygen share in BCd can
be attributed mostly to the O-containing organic functional groups. This is in accordance
with the FTIR results (Figure 1), which confirmed the relative increase in abundance of -OH
groups and absence of silicates in the BCd sample.
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3.5. Antioxidant Properties of the Biosorbents

The DPPH radical is commonly used to determine the antioxidant activity of different
extracts of plant origin [67,68]. It was used in this study due to its advantage over the other
analytical methods: it reacts slowly with the whole sample, even with weak antioxidants,
and can be used to examine both hydrophilic and lipophilic antioxidants [47]. To the best
of our knowledge, it has never been used in assessing biochar’s antioxidant properties.
Alkaline extracts of the investigated biochars (after neutralization) exhibited higher antioxi-
dant activities than their ethanolic counterparts (Table 3). General extracts obtained from
deashed biochar revealed smaller antioxidant potential (2.78% and 7.53% for ethanolic and
NaOH extracts, respectively) than the biosorbent before demineralization. This might be
due to the higher content of residual organic matter and inorganic components in pristine
biochar capable of donating H atoms and thus reducing the DPPH radical concentration.
As such, biochar deashing slightly decreased the initial, already limited antioxidant activity
of the investigated pristine wheat-straw biochar. What should be emphasized is that the
scavenging activity of both biochar samples is scarce in comparison to those found for plant
extracts [69,70].

Table 3. Calculated scavenging activity of pristine and deashed biochar extracts (ethanolic and
alkaline after neutralization). Results are expressed as mean values ± standard deviation (n = 3).

Test Performed BCEtOH BCdEtOH BCNaOH BCdNaOH

Scavenging activity [%] 5.57 ± 0.15 a 2.78 ± 0.2 b 11.89 ± 0.35 a 7.53 ± 0.65 b

TPC [µg mL−1 of gallic acid] 2.45 ± 0.65 a 0.82 ± 0.55 b 4.85 ± 0.93 a 2.31 ± 0.33 b

Superscript letters (a and b) indicate significant differences between tested properties on pristine and deashed
biochars (p < 0.05).
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Folin–Ciocâlteu assay supplementary to DPPH test confirmed low antioxidant poten-
tial of both investigated biochars. Usually, the method is utilized to assess the total phenolic
content (TPC) of the extract and its antioxidant properties [71,72], expressed in equivalents
of the standard substances. Although pristine and deashed biochar extracts gave quanti-
tively measurable results, estimated TPC content did not exceed 5 µg mL−1 of the gallic
acid equivalents (Table 3). This may suggest that after deashing, the biochar contained
fewer compounds of reductive ability capable of reacting with the Folin–Ciocâlteu reagent.

3.6. Results of the Sorption Experiment

Structural parameters related to porosity and ash content of both biochars as well as
hydrophobicity of pesticides were found to significantly influence the adsorption efficiency.
In the sorption experiment, the measured pH of the equilibrated mixtures was maintained
below 7 (6.98 and 3.28 for BC and BCd in 10 mM CaCl2, respectively). Such conditions
prevented carbamate hydrolysis and ensured that the pesticide concentration decline was
due to their sorption on biochar. Before the ash removal, biochar was characterized by
a particularly low sorption of ionic pesticides of 7.3% and 39.3% for 2,4-D and MCPA,
respectively (Table 4). At the same time, their desorption magnitude (expressed as per the
amount of pesticide initially sorbed) exceeded 75%, which according to the OECD guideline
for testing of chemicals (Adsorption–Desorption Using a Batch Equilibrium Method, [50])
suggests that the adsorption should be considered reversible. After demineralization,
removal potential of biochar increased significantly—to 94.4% and 97.5% of the initial
2,4-D and MCPA dose, respectively (Table 4). Particularly pronounced advancement in
phenoxyacetic acid retention by BCd becomes evident when their adsorption capacities (Q)
are compared (Table 5). Deashing increased the amount of 2,4-D sorbed by a factor of 14.5
and MCPA by 2.5 per 1 g of sorbent. At the same time, desorption of the agrochemicals
was significantly reduced (5–13.2%), which indicates that the forces holding the retained
pesticide molecules to the solid surface were relatively strong.

Table 4. Sorption and desorption magnitude of 2,4-D, MCPA, metolachlor, carbaryl and carbofuran
on pristine (BC) and deashed biochar (BCd). Results are expressed as mean values ± standard
deviation (n = 3).

Pesticide
Sorption Desorption

BC BCd BC BCd

2,4-D 7.3 ± 2.8 a 94.4 ± 7.2 b 77.8 ± 5.6 a 13.2 ± 1.2 b

MCPA 39.3 ± 8.0 a 97.5 ± 3.0 b 76.4 ± 5.1 a 5.1 ± 0.2 b

Metolachlor 93.4 ± 1.2 a 96.4 ± 2.4 a 1.5 ± 0.04 a 0.5 ± 0.01 b

Carbaryl 98.1 ± 0.1 a 96.3 ± 0.1 b 0.9 ± 0.2 a 3.1 ± 0.1 b

Carbofuran 88.0 ± 2.9 a 92.7 ± 2.6 a 5.4 ± 0.2 a 5.9 ± 0.2 b

Superscript letters (a and b) indicate significant differences between sorption and separately desorption magnitude
of each agrochemical on pristine and deashed biochar (p < 0.05).

Table 5. Adsorption capacity (Q) of pristine (BC) and deashed biochar (BCd) towards the studied
2,4-D, MCPA, metolachlor, carbaryl and carbofuran pesticides. Results are expressed as mean
values ± standard deviation (n = 3).

Q
[mg g−1] 2,4-D MCPA Metolachlor Carbaryl Carbofuran

BC 0.16 ± 0.07 a 0.82 ± 0.37 a 1.96 ± 0.02 a 3.35 ± 0.004 a 1.75 ± 0.06 a

BCd 2.32 ± 0.18 b 2.03 ± 0.06 b 2.02 ± 0.01 b 3.30 ± 0.004 b 1.84 ± 0.05 a

Superscript letters (a and b) indicate significant differences between sorption and separately desorption magnitude
of each agrochemical on pristine and deashed biochar (p < 0.05).

In general, pore filling induced by the large surface area of the biochar is postulated
as the dominant adsorption mechanism for carbonaceous materials of H/C values below
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0.5 [73]. Previously discussed changes in the atomic ratios of H/C and O/C resulting from
the demineralization of the BC sample indicate an increase in biochar aromaticity, and at
the same time may suggest a slight increase in the share of chemisorption in the binding of
the tested phenoxyacetic acids in relation to physical sorption (van der Waals interactions,
London forces) [11]. Increased SSA of BCd and pore unclogging may have compensated
previously reduced ability of surface OH functional groups to form chemical bonds. This is
in accordance with the FTIR results (Figure 1), where the enhanced abundance of OH band
was observed after biochar deashing. These joint changes may explain the increase in the
chemisorption potential of BCd in relation to the ionic and polar compounds studied.

The investigated carbofuran and metolachlor were characterized by the slightly in-
creased degree of adsorption on biochar after the demineralization process (92.7% and
96.4%, respectively). Nevertheless, the differences in their sorption magnitude on pristine
and deashed biochar were not statistically significant (Table 4), hence the HF/HCl treatment
did not influence initially high biochar affinity for these substances. However, in carbaryl,
a small and significant decline in pesticide sorption with biochar deashing can be observed.
In general, investigated carbamate desorption from deashed BC reached slightly higher
values (3.1% and 5.9% for carbaryl and carbofuran, respectively) than on pristine sorbent.
Increased BCd polarity may be the reason for the weakening of the forces holding this group
of agrochemicals. Due to metolachlor and carbamates being more hydrophobic with fewer
polar characteristics than phenoxyacetic acids, it is presumed that they were preferentially
bound by both sorbents via combined physisorption mechanisms such as pore-filling and
hydrophobic interactions. In metolachlor, the additional H-bonding between the agrochem-
ical and unclogged oxygen-containing functional groups present on the surface of biochar
may have occurred. Adsorption capacities of the carbamates and metolachlor (Table 5) did
not exhibit a relatively high increase or decline after sorbent deashing, and thus the high
biochar removal ability towards these pesticides was maintained.

For a better visualization of the results, they are also summarized in Figure 3, which
shows a comparison of the sorption magnitude of the tested pesticides on biochars before
(bars on the graph marked as BC) and after ash removal (bars marked with BCd).
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Figure 3. Comparison of the sorption magnitude of the tested pesticides on biochars before (BC)
and after ash removal (BCd). Error bars represent ± values of the standard deviations of triplicate
samples. Letters a and b indicate significant differences between sorption magnitude of each pesticide
on pristine and deashed biochar (p < 0.05).
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Comparing both sorbents (BC and BCd) in terms of the type of groups of organic
compounds effectively retained by them, it can be noticed that the pristine biochar prefer-
ably sorbs the hydrophobic nonionic pesticides (carbaryl, carbofuran, metolachlor). Its
modified counterpart became superabsorbent, irreversibly retaining all three classes of
organic compounds to the extent of over 90%.

Improved physicochemical properties of the activated wheat-straw biochar make it a
promiscuous sorbent for hydrophobic and hydrophilic xenobiotics in water and soil envi-
ronments. Nevertheless, further studies performed on the BCd-amended soils should be
conducted to verify its applicable character. The presented results may serve as preliminary
guidance for selecting suitable biochars (pristine or deashed) according to their applications
in the environment.

4. Conclusions

Wheat-straw biochar deashing is an effective method of its chemical activation, result-
ing in a higher degree of BCd carbonization in comparison to BC. Ash removal caused an
increase in biochar specific surface area due to unclogging of the inner pores. The resulting
sorbent was more aromatic, rich in micro- and mesopores, and more abundant in surface
hydroxyl groups than the pristine one. BCd revealed weaker antioxidant properties than
BC, as with deashing the residual organic matter was removed.

Due to the unclogging of the inner pores with HF/HCl treatment, the potential
sorption sites were more available for the tested agrochemicals. As a result, the previously
obstructed functional groups of biochar were activated and able to chemically bind the
investigated phenoxyacetic acids. We postulate that after deashing, this form of sorption
had a significant share of ionic polar pesticide retention jointly with physical sorption
mechanisms. Hydrophobic interactions and pore filling were crucial in carbamates and
metolachlor retention on both biochars. The conducted studies allowed us to select BCd
as the most effective among the tested sorbents for removing both ionic and nonionic
pesticides of different water solubility and octanol–water partition coefficient.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma16062185/s1. Table S1. Elemental composition of pristine (BC) and deashed (BCd) biochars
determined with energy-dispersive X-ray spectroscopy (EDX); Figure S1. Calibration curve for the
assessment of total phenolic content by Folin–Ciocâlteau method, expressed as gallic acid equivalent
(mg of GA L−1 of extract).
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