
Citation: Suescum-Morales, D.;

Fernández-Ledesma, E.;

González-Caro, Á.;

Merino-Lechuga, A.M.;

Fernández-Rodríguez, J.M.;

Jiménez, J.R. Carbon Emission

Evaluation of CO2 Curing in

Vibro-Compacted Precast Concrete

Made with Recycled Aggregates.

Materials 2023, 16, 2436. https://

doi.org/10.3390/ma16062436

Academic Editors: Jose A. Sainz-Aja

and Blas Cantero

Received: 17 February 2023

Revised: 12 March 2023

Accepted: 15 March 2023

Published: 18 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Carbon Emission Evaluation of CO2 Curing in
Vibro-Compacted Precast Concrete Made with
Recycled Aggregates
David Suescum-Morales 1 , Enrique Fernández-Ledesma 1 , Ágata González-Caro 2 ,
Antonio Manuel Merino-Lechuga 1 , José María Fernández-Rodríguez 2,* and José Ramón Jiménez 1,*

1 Área de Ingeniería de la Construcción, Escuela Politécnica Superior de Belmez, Universidad de Córdoba,
14240 Córdoba, Spain; p02sumod@uco.es (D.S.-M.); efledesma@uco.es (E.F.-L.);
ammlechuga@uco.es (A.M.M.-L.)

2 Área de Química Inorgánica, Escuela Politécnica Superior de Belmez, Universidad de Córdoba,
14240 Córdoba, Spain; q32gocaa@uco.es

* Correspondence: um1feroj@uco.es (J.M.F.-R.); jrjimenez@uco.es (J.R.J.)

Abstract: The objective of the present study was to explore three types of vibro-compacted precast
concrete mixtures replacing fine and coarse gravel with a recycled/mixed concrete aggregate (RCA
or MCA). The portlandite phase found in RCA and MCA by XRD is a “potential” CO2 sink. CO2

curing improved the compressive strength in all the mixtures studied. One tonne of the mixtures
studied could be decarbonised after only 7 days of curing 13,604, 36,077 and 24,635 m3 of air using
natural aggregates, RCA or MCA, respectively. The compressive strength obtained, XRD, TGA/DTA
and carbon emission evaluation showed that curing longer than 7 days in CO2 was pointless. The
total CO2 emissions by a mixture using CO2 curing at 7 days were 221.26, 204.38 and 210.05 kg CO2

eq/m3 air using natural aggregates, RCA or MCA, respectively. The findings of this study provide
a valuable contribution to carbon emission evaluation of CO2 curing in vibro-compacted precast
concrete with recycled/mixed concrete aggregates (RCA or MCA). The technology proposed in this
research facilitates carbon capture and use and guarantees enhanced compressive strength of the
concrete samples.

Keywords: carbon emission evaluation; CO2 curing; waste recycling; CO2 sequestration; construction
and demolition waste

1. Introduction

Ordinary Portland cement (OPC) is the most widely used material in construction
worldwide, with a global consumption between 1930 and 2013 of 76.2 billion tonnes [1,2].
The manufacture of OPC produces a large amount of CO2 (1 tonne of cement emits approxi-
mately 1 tonne of CO2), which means that 8% of the world’s total CO2 emissions are related
to the cement industry [3–5]. Scientists must therefore work together to reduce/reuse the
CO2 emissions produced by OPC manufacturing.

Global warming and climate change are growing problems. According to the In-
tergovernmental Panel on Climate Change (IPCC) [6], the increase in the earth’s surface
temperature will lead to dire consequences, and CO2 emissions are the main cause of global
warming [7,8]. Carbon capture storage (CCS) and carbon capture utilisation technologies
(CCU) are among the many ways to reduce CO2 emissions [9]. The cost of emitting CO2
in the European Union is approximately 80 €/t CO2, although this will increase due to
current policies [10]. With the implementation of CCU, instead of costing money, CO2
would become a source of income.

It has been demonstrated recently that CO2 curing of cement-based materials con-
verts gaseous CO2 into solid calcium carbonate [11–13], also called mineral carbonation
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technology (MCT), and is considered to be a cost-effective and environmentally-friendly
method of capturing and storing CO2 [14]. CO2 sequestration by mineral carbonation and
its subsequent conversion into a product for the construction industry is one of the most rep-
resentative examples of MCT [15]. Several studies have applied the CO2 curing concept to
produce commercial building material: Several authors [16–18] carbonated different types
of slag into building material; Zhen et al. [19] directly used the CO2 generated by a cement
factory (flue gas carbonation) to cure cement products; Suescum-Morales et al. [5,12,20]
studied the application of carbonation in different forms of mortars intended for use as
unreinforced construction products up to 7 days of curing. There has been no application of
carbonation for longer curing ages, for example, up to 28 days, and studies along these lines
would fill many gaps in our current knowledge. Carbonation mainly involves a reaction
between CO2 and calcium silicate phases [21]. Equations (1) and (2) are usually related to
accelerated carbonation at early ages. Equations (3)–(5) are normally related to the durable
carbonation of concrete, although they also occur when there is forced carbonation [22,23].
The main equations are presented in Equations (1)–(5):

3(3CaO·SiO2) + (3− x)CO2 + yH2O→ xCaO·SiO2·yH2O + (3− x)CaCO3 (1)

2(2CaO·SiO2) + (2− x)CO2 + yH2O→ xCaO·SiO2·yH2O + (2− x)CaCO3 (2)

Ca(OH)2 + CO2 → CaCO3 + H2O (3)

CxSHy + zCO2 → C(x−z)SHy + zCaCO3 (4)

C− S−H + CO2 → CaCO3 + SiO2 + H2O (5)

The rapid development and constant growth of the construction sector generate a large
number of recycled aggregates from construction and demolition waste (RAC&D) [24,25],
which is around 30 billion tonnes per year. The reuse of masonry waste, such as recy-
cled aggregate, was a highly relevant topic to the scientific community from the early
1970s [26,27]. The main reasons for this interest include the avoidance of depositing such
waste and the overexploitation of natural aggregates (NA) [28,29]. Within RAC&D, there
are different types of aggregates, depending on their origin (in very short form) [12,20]:
recycled ceramic aggregates (ceramic waste); recycled concrete aggregates (concrete waste)
and mixed recycled aggregate (a mixture of the two above. RAC&D is usually of poorer
quality than NA, which results in poorer properties of the resulting mixtures. This is due
to RAC&D having adhered to the old mortar with lower density, higher porosity, lower
crush resistance, higher water absorption value and weaker interfacial transition zones
(ITZs) [5,12,30,31]. Therefore, the development of new techniques to improve the quality
of RAC&D is on the rise [27,32–37], among which are those that improve the quality of
RAC&D by using CO2 (accelerated carbonation), which seems to be a very promising
technology [38–41].

To apply CO2 curing at mixtures using RAC&D at a commercial scale, the environ-
mental impact of accelerated carbonation treatment must be considered, since the energy
consumption required is usually significant [41,42]. A life cycle assessment (LCA) can
be carried out to quantify this impact [43–45], or a somewhat simpler form of CO2 foot-
print assessment can be carried out [46–48]. There have been several studies conducting
the comparative LCA analysis between NA and RAC&D [49], and, although the ISO
14040 standard regulates the definition and selection criteria of functional units, the units
chosen for investigating concrete products are insufficient to reflect concrete in terms of its
environmental impact [50]. Most of the studies found only calculate the CO2 sequestration
capacity of CO2 cured samples, without taking into account the carbon footprint of the
curing process itself [5,12,25,51]. However, CO2 sequestration of cement-based waste mate-
rials is a multi-process activity with consumption of energy: demolition sector, recycling
sector and carbon capture sector, among others [52]. There are no studies that calculate
CO2 sequestration in mixtures made with RAC&D through thermogravimetric analysis,
nor are there studies that perform a carbon footprint assessment considering both the
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materials used and the curing conditions and time. Studies along these lines can also fill
this knowledge gap.

The objective of the present study was to explore three types of vibro-compacted
precast concrete mixtures replacing fine and coarse gravel with two types of RAC&D. CO2
curing for 1, 3, 7, 14 and 28 days was employed to improve the compressive strength and
CO2 sequestration. X-ray diffraction (XRD) of the hardened samples was measured to
analyse the effect of CO2 curing for the duration of 28 days of curing. The carbon emission
evaluation was performed using thermogravimetric analysis for the CO2 sequestration and,
and a CO2 footprint assessment for the different mixtures and time/curing conditions.

2. Materials and Methods
2.1. Raw Materials

In this study, two types of natural coarse aggregates and natural fine aggregates were
used: coarse gravel (CG), fine gravel (FG), sand-1 (S1) and sand-2 (S2). Two types of
recycled aggregate were also used: recycled concrete aggregate (RCA) and mixed concrete
aggregate (MCA). Figure 1 shows the aspect of the aggregates used. These aggregates
were taken from a quarry in Cordoba (Spain). The difference between RCA and MCA
was that MCA included pieces of ceramic bricks. Figure 2 shows the original particle size
distribution of all the aggregates used in this study [53]. The skeletal density and water
absorption were measured according to UNE-EN-1097-6:2013 [54]. Table 1 shows the basic
physical parameter indicators of the aggregates and a CEM II/A-V 42.5 R was used [55].
The mixing water was tap water with polycarboxylate-based product from BASF (Glenium
3030 NS) as a plasticizer (1210 kg/m3).
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Figure 1. Images of the aggregates used (A) CG, (B) FG, (C) S1, (D) S2, (E) RCA and (F) MCA.

2.2. Aggregate Preparation and Mix Design

The aim was to replace coarse aggregates (CG and FG) with RCA and MCA. However,
according to Figure 2, the particle sizes appear to be very different. Therefore, after an
experimental and iterative process, it was decided to make a mixture of 22.22% CG and
77.78% FG (with respect to the sum of CG and FG). RCA had very large particle sizes (larger
than 12.5 mm) and a very large proportion of finer particles (smaller than 2 mm). Therefore,
in order to make the size of MCA and RCA similar, sieving was carried out. RCA material
was sieved by 12.5 and 2 mm, rejecting the upper and lower parts, respectively. For MCA,
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no sieving was required. With this combination, the particle sizes were very similar for the
composition of GC + FG, RCA and MCA, as shown in Figure 3.
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Table 1. Basic physical parameters of the aggregates used.

Type of Aggregates Skeletal Density
γ (g/cm3)

Water Absorption
(%)

Coarse gravel (CG) 2.47 3.13
Fine gravel (FG) 2.43 2.64

Sand 1 (S1) 2.65 2.40
Sand 2 (S2) 2.62 1.78

Recycled concrete aggregate (RCA) 2.21 7.42
Mixed concrete aggregate (MCA) 2.17 9.02
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The proportions of concrete mixtures are given in Table 2. The aim of the mixtures
was that they should be demoulded immediately. Therefore, a low w/c ratio was used
(w/c = 0.4). For the reference mixture (named CONTROL), the water saturation was
calculated according to the values of water absorption shown in Table 1. It can be observed
that the composition of CG and FG represented 22.22 and 77.78%, respectively (with respect
to the sum of CG and FG).
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Table 2. Mixture proportion of concrete mixtures.

Notation

Mixture Proportions (kg/m3)

Effective
Water

Additional
Water/Saturati-on

water
Cem

Coarse
Gravel
(CG)

Fine
Gravel

(FG)

Sand 1
(S1)

Sand 2
(S2)

Recycled
Aggregate
Concrete

(RAC)

Mixed
Aggregate
Concrete
(MAC)

Sp W/C

CONTROL 84 50 210 200 700 200 1200 - - 0.5 0.4
M-100-
RCA 84 86.70 210 - - 200 1200 815.60 - 0.5 0.4

M-100-
MCA 84 98.22 210 - - 200 1200 - 798.95 0.5 0.4

For the mixture substituting 100% GC + FG by RCA (named M-100-RCA), the amount
was calculated as shown in Equation (6). The volumes of both CG and FG (volumetric
substitution) were taken into account. The same procedure was followed for the mixture
substituting 100% GC + FG by MCA (named M-100-MCA), as shown in Equation (7).
To calculate these quantities and the water absorption, the data shown in Table 1 was
again used.

Amount of RCA =
(γRCA·AmountCG)

(γCG)
+

(γRCA·AmountFG)

(γFG)
(6)

Amount of MCA =
(γMCA·AmountCG)

(γCG)
+

(γMCA·AmountFG)

(γFG)
(7)

2.3. Concrete Mixing Procedure and Casting

The procedure for the mixing was as follows: the coarse aggregates (CG and FG or
RCA or MAC) were added and mixed for 1 min, and then the fine aggregates (S1 and S2)
were added and mixed for another minute. The saturation water and all aggregates were
mixed for 10 min, the effective water together with the plasticizer was added and then
the cement was added. A mixing time of 5 min was carried out. The mixer used was a
professional electric mixer (Inhersa X155, Inhersa company, Castellón, Spain). For all the
mixes, the results of the slump test were 0 mm [56], which indicated a dry consistency or
S1 class, according to Eurocode 2 [57,58]. Cube samples of 100 mm were cast.

Due to the very dry consistency of the concretes obtained, vibro-compaction with a
Kango vibration hammer (Milwaukee Kango 900 S) was applied. The 100 × 100 mm cubic
moulds were filled in 2 batches, with a vibro-compaction of 10 s in each of these batches.
The hammer used as well as the 3-D modelling of the specially fabricated steel part for this
procedure by the authors is shown in Figure 4. The aim was to follow a procedure similar
to that used in an unreinforced precast plant [59].

2.4. Curing Conditions and Test Methods

Once the samples were demoulded, they were subjected to:

• Conventional climatic chamber (CCC): 20 ◦C and 65% relative humidity. The CO2
level under this environment was equivalent to atmospheric conditions (≈0.04%);

• CO2 climatic chamber (CO2CC): For this environment a Climacell 707-Evo (MMM
Group, Planegg, München, Germany) with a CO2 level of 5% (99.995% purity, supplied
by Linde) and 20 ◦C with 65% relative humidity. The pressure was ambient.

According to the manufacturer, the maximum power of both pieces of equipment was
300 W, but with these conditions, a consumption of about 0.15 kW/h can be considered.
This value will be used for the carbon footprint assessment.
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The raw materials were subjected to X-ray Fluorescence (XRF) in order to determine
their chemical composition. For this purpose, ZSX PPRIMUS IV (Rigaku) equipment with a
power of 4 kW was used, as well as X-ray diffraction (XRD) for all raw materials and for the
samples hardened at the age of 7, 14 and 28 days in the different hardening environments.
For XRD, a Bruker D8 Discover A25 instrument with Cukα (λ = 1.54050 A, 40 kV and
30 mA) was used. A speed of 0.018 2θ·s−1 was used from 10◦ to 70◦ (2θ). The library used
to compare the crystalline peaks was the JCPDS library [60]. Thermogravimetric analysis
and differential thermal analysis (TGA/DTA) were applied for all raw materials and for the
hardened samples at the same ages for XRD. TGA/DTA was carried out with Setaram Setys
Evolution 16/18 apparatus. Before XRF, XRD and TGA/DTA, all samples were properly
powdered. The heating rate of the TGA/DTA test was 5◦ min−1, and the temperature range
was approximately 20–1000 ◦C. At the indicated ages and for XRD and TGA/DTA, the
samples were immersed in pure absolute ethanol (PanReac.AppliChem) for 48 h to “stop”
the setting reactions. The same recommendations and procedures indicated by RILEM
TC-238 SCM were followed, except for the immersion time (in this case 48 h) [61].

“All raw materials and hardened concretes were prepared by crushing them in advance
to obtain a representative sample of each material (for XRD and TGA/DTA). The powder
was quartered and all measurements were carried out in triplicate. A similar procedure was
carried out in other investigations [4,62–64]. The compressive strength [65] was determined
at 1, 3, 7, 14 and 28 days of curing in the two hardening environments presented. Dry bulk
density and accessible porosity for water were determined at 28 days of age, according to
UNE 83980 [66], for both environments.

2.5. Carbon Footprint Assessment

The calculation of the carbon footprint was made for each mixture: CONTROL, M-
100-RCA and M-100-MCA. As can be seen in Table 2, the main difference was the use of
CG, FG, RAC or MAC. The CO2 emission system for the production of the different blends
is presented in Figure 5.
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The CO2 emissions: “CO2 emitted materials” from the materials shown in Figure 5 for
1 m3 of the mixture can be calculated according to Equation (8) [46].

CO2 emitted materials =
n

∑
i=1

Ni·Ii (8)

where n represents the number of raw materials used (see Figure 5); Ni is the weight of
material used to make 1 m3 of concrete (kg); and Ii is the CO2 emission of material i per
kilogram (kg CO2 eq/kg).

The CO2 emissions produced by the curing of the samples “CO2 emitted by curing”,
both in the CCC and CO2CC environment can be calculated according to Equation (9) to
make 1 m3 of concrete [52].

CO2 emitted by curing = (Eele·t) + (E CO2−cur·t
)
∗ 1 m3 (9)

where Eele is the CO2 emission of electricity (kg CO2 eq/h) for conventional climatic
chamber (CCC); ECO2-cur is the CO2 emission of electricity for CO2 climatic chamber
(CO2CC) and t hours for curing (h). If the sample was cured in CCC, only the first term
of Equation (9) was taken into account. If it was cured in CO2CC, only the second term
was considered. The emission factor for the Spanish electricity grid was considered to be
200 g CO2/KWh [67]. The difference between Eele and ECO2-cur is that the CO2 emission
factor of ECO2-cur is, albeit insignificant, slightly higher because it also considers the CO2
emission necessary to capture the CO2 used in the curing process. Normally, this capture
is carried out in industries that generate CO2, usually using monoethanolamine (MEA)
as a capture device, because of its many advantages [68,69]. Therefore, for this rough
estimate, both Eele and ECO2-cur would be considered equal, although we want to clarify
their differences. Finally, the total CO2 emissions would be the sum of Equations (8) and (9),
as shown in Equation (10). These emission factors may differ for other investigations, as
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the efficiency of the equipment used may be different. However, they are usually very close
to each other.

Total CO2 emissions = CO2 emitted materials + CO2 emitted by curing (10)

Table 3 shows the carbon emission coefficient for the different materials (Ii) and for
both curing chambers (Eele and ECO2-cur) [41,46,47,49,70–72]. Emissions from the mixing
process were not taken into account. The Ii factor depends, among other factors, on the
fineness of the material (if it is obtained by crushing) and whether it comes from the natural
or recycled aggregate.

Table 3. Carbon emission coefficient for materials and curing used.

Materials Factor Ii Unit References

Cement 1.002 Kg CO2 eq/kg [47,49,70]
Superplasticizer 1.150 Kg CO2 eq/kg [49]

Water 3.47 × 10−4 Kg CO2 eq/kg [70]
Coarse gravel 4.10 × 10−3 Kg CO2 eq/kg [47]

Fine gravel 9.87 × 10−3 Kg CO2 eq/kg [49]
Sand 1 2.79 × 10−3 Kg CO2 eq/kg [71]
Sand 2 3.21 × 10−3 Kg CO2 eq/kg [49]

Recycled concrete aggregate 1.50 × 10−3 Kg CO2 eq/kg [46,49]
Mixed concrete aggregate 1.30 × 10−3 Kg CO2 eq/kg [46,49]

Curing Factor Eele/ECO2-cur Unit

Conventional Chamber
(0.15 kW/h) 0.03 kg CO2 eq/h curing [52,67–69]

CO2 Chamber
(0.15 kW/h) 0.03 kg CO2 eq/h curing [52,67–69]

3. Results and Discussion
3.1. Raw Materials

Table 4 presents the chemical composition. Figures 6 and 7 show the mineralogical
composition of all the raw materials used in this research. The fundamental oxide of
both gravels (CG and FG) was CaO. The main phase for CG and FG was calcite (CaCO3)
(05-0586) [60]. A very small intensity of dolomite (CaMg(CO3)2) (36-0426) [60] was also
found in both gravels. For S1, the amount of CaO decreased while MgO increased, which
was reflected in XRD (Figure 6), where the dolomite phase had a higher intensity than that
of CG and FG. For S2, again, the major oxide was CaO and, in this case, only the calcite
phase was found in XRD.

For RCA and MCA, the chemical composition was very similar. Slightly higher
SiO2 and Al2O3 contents were found in MCA, which might be related to the content
of ceramic brick pieces in MCA [73] and could improve the pozzolanic reactions in the
resulting concrete [74]. The main phases for RCA and MCA were quartz (SiO2) (05-
0490) [60] and calcite (CaCO3) (05-0586) [60]. Other minority phases were also found:
albite (Na(Si3Al)O8 (10-0393) [60]; illite ((Na,K)Al2(Si3AlO10)(OH)2) (02-0042) [60]; larnite
(Ca2SiO4) (09-0351) [60], gypsum (CaSO4·H2O) (21-0816) [60] and portlandite (Ca(OH)2)
(44-1481) [60]. The portlandite phase found in RCA and MCA using X-ray diffraction is
a “potential” CO2 sink according to Equation (3), which may be due to the fact that both
RCA and MCA had been in storage for a very short time and were “fresh”. The feldspar
phase (NaSiAl3O8) [60] was found in MCA and not in RCA, which may have come from
the pieces of ceramic brick that present MCA [75].
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Table 4. Chemical components of raw materials.

Components
(Mass% as

Oxide)

Coarse
Gravel
(CG)

Fine Gravel
(FG)

Sand 1
(S1)

Sand 2
(S2)

Recycled
Concrete

Aggregate
(RCA)

Mixed
Concrete

Aggregate
(MCA)

Cement

Na2O - - - - 0.82 0.82 0.24
MgO 0.88 0.96 37.98 0.78 2.77 3.11 1.33
Al2O3 0.20 0.73 0.06 0.96 7.78 10.49 3.73
SiO2 0.39 2.12 0.91 2.16 51.40 52.08 15.58
P2O5 - - - - 0.11 0.12 0.09
SO3 0.07 0.10 0.11 0.11 1.14 1.35 4.79

Cl2O3 - 0.05 0.21 - 0.06 0.10 0.18
K2O 0.03 0.09 0.05 0.18 1.80 2.38 1.21
CaO 98.31 95.75 60.44 90.32 30.62 25.15 70.03
TiO2 - - - - 0.43 0.55 0.23

MnO2 - - - - 0.09 0.08 0.06
Fe2O3 0.10 0.18 0.23 5.50 2.76 3.59 2.44
CuO - - - - - - -
ZnO - - - - - - 0.02
SrO 0.03 - - - 0.03 0.04 0.08

Rb2O - - - - - 0.01 -
Cr2O3 - - - - 0.21 0.15 -
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TGA and DTA for the natural aggregates used in this study are presented in Figure 8.
For CG and FG, the main mass loss started at approximately 700 ◦C. From this range,
the decomposition of calcite started, according to Equation (11), which was the main
phase found in XRD. The low dolomite intensity found in the gravels was not detected by
TGA/DTA. Similar results were obtained in other research studies [12,30,76].

CaCO3 → CO2 + CaO (11)
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However, for S1, a change in DTA was observed, although it did not start to lose mass
noticeably until 700 ◦C, because dolomite was the main phase found in S1. The thermal
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decomposition of dolomite includes two stages [77,78]. The first stage (from 700 to 780 ◦C)
is shown in Equation (12) and the second stage (from 780 to 1000 ◦C) in Equation (11).

CaMg(CO 3)2 → CaCO3 + MgO + CO2 (12)

A very similar result was found for S2 as for FG and CG. This confirms the purity of
calcite found for S2.

TGA and DTA for RCA, MCA and cement used in this study are presented in Figure 9.
For RCA and MCA, the TGA/DTA result was very similar: (i) up to 105 ◦C of the physically
absorbed water was lost [30]; (ii) from 105 to 380 ◦C, the loss of hydrated calcium silicates
and aluminates occurred (CSH and CASH, respectively) [79,80]; (iii) from 380 to 480 ◦C,
an endothermic peak (in DTA) related to the loss of portlandite was found which was
identified in XRD (Figure 7) [23,81] and (iv) from 640 to 1000 ◦C, decomposition of calcium
carbonate occurs, according to Equation (11) [4,82]. For cement, a typical result was found,
with ranges of weight loss already extensively described in other research studies [5,12,30].
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3.2. Compressive Strength

Figure 10 shows the compressive strength of all the mixes studied, under both curing
environments for 1, 3, 7, 14 and 28 days of age. The substitution of CG and FG for RCA using
CCC (i.e., CONTROL vs. M-100-RCA) improved the compressive strength at all curing ages.
Similarly, the substitution of CG and FG by MCA using CCC (i.e., CONTROL vs. M-100-
MCA) also improved the compressive strength at all curing ages. These increases compared
to CONTROL for the age of 28 days were 29.81 and 5.22% for M-100-RCA and M-100-MCA,
respectively. While this is a very good result, it is unusual. The compressive strength of
recycled aggregate was lower than conventional concrete [28,83]. There are many factors
that influence the relationship between compressive strength and the use of recycled
aggregates [84]: (a) recycled aggregate replacement level; (b) recycled aggregate size;
(c) quality of recycled aggregate; (d) influence of the mixing procedure; (e) environmental
conditions; (f) chemical admixtures and (g) additions incorporation. In this case, the use of
very similar sizes between the FG and CG. Both recycled aggregates were very important
factors (see Figure 3, factor (b)) [85], as well as the use of saturated aggregate before mixing
(see Table 2, factor (d)) [86]. The quality of the recycled aggregate is also very important
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(factor (c)), as the portlandite and larnite phases found (see Figures 7 and 9) can lead to
improvements in compressive strength [87]. This indicates the feasibility of replacing CG
and FG with RCA and MCA, which maximises the circular economy concept and minimises
the use of non-renewable natural resources.
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Curing with a CO2 climatic chamber (CO2CC) improved compressive strength at all
ages, compared to the conventional climatic chamber (CCC). This result, which is very
common, is recognised in most research [25,39,88] and is caused by a “densification” of the
sample due to carbonation according to Equations (1)–(5) [21,89]. For the control mixture,
7 days of curing in CO2CC was similar to 28 days of curing in CCC. For the M-100-RCA
mixture, 14 days of curing in CO2CC was similar to 28 days of curing in CCC. For the
M-100-MCA mixture 7 days of curing in CO2CC improved by 13.53% the compressive
strength obtained for 28 days of curing in CCC. These results highlight the difficulty of
making comparisons between CO2CC and CCC curing for compressive strength purposes,
as it depends on the nature of each mix. Several authors have already indicated that the
mechanisms of natural and accelerated carbonation are different [23,90]. It indicates that the
effect of curing in CO2 after 14 days was insignificant, it being possible that from this age
the samples were fully carbonated (perhaps it could be indicated for 7 days, especially for
the control and M-100-MCA mixture). With the mixtures studied, it is not necessary to cure
for up to 28 days in CO2CC. Rather, 7 or 14 days are sufficient. The results obtained also
indicated that CO2CC can be used in a non-reinforced precast plant, increasing productivity
and decreasing the curing time.

3.3. Dry Bulk Density and Accessible Porosity for Water

Figure 11 shows dry bulk density and accessible porosity for water at 28 days of curing
for CCC and CO2CC. The substitution of CG and FG for RCA and MCA decreased dry
bulk density and increased accessible porosity for water for all the mixtures and under both
curing environments. This was due to the lower dry bulk density and higher water absorp-
tion of RCA and MCA versus CG and FG (Table 1), mainly due to the cementitious mortar
adhered to RCA and MCA surface having greater porosity than natural aggregates [91,92].
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under CCC and CO2CC at 28 days.

Curing in CO2 (CO2CC) increased the dry bulk density and decreased accessible
porosity for water, which is in accordance with the improvement in compressive strength
found (Figure 10) and was due to the pore-filling effect produced by the carbonation, in
accordance with other studies [12,38,93,94].

3.4. X-ray Diffraction Analysis

Figure 12 shows the XRD results for the CONTROL mixture under the two curing envi-
ronments (CCC and CO2CC) at ages 7, 14 and 28 days. For the mixture, the control mixture
at 7 days under CCC for the main phases was calcite (CaCO3) (05-0586) [60] and dolomite
(CaMg(CO3)2) (36-0426) [60]. These phases came from the aggregates used (CG, FG, S1
and S2). The portlandite (Ca(OH)2) (44-1481) [60], ettringite (Ca6Al2(SO4)3(OH)12·26 H2O)
(00-0059) [60] and calcium silicate hydrate (2CaSiO3·3H2O) (03-0556), also named C-S-H [60]
phases, were the main hydration reactions [95–97]. The same phases were found at 14
and 28 days with no significant changes. Note that at 7 days, neither the alite phase (also
sometimes called hatrurite) nor the belite phase were not found. In other investigations
with similar mixtures [5,12,30], they were found, especially at 1 and 3 days of curing. This
was the result of the alite having reacted almost completely at 7 days, together with gypsum,
which was also not found, to form ettringite, as shown in Equation (13). It is also the result
of the hydration of Portland cement, according to Equations (14) and (15) [98].

3CaO·Al2O3 + 3CaSO4 + 32H2O→ 3CaO·Al2O3·3CaSO4·32H2O (13)

2(3CaO·SiO2) + 6H2O→ 3CaO·2SiO2·3H2O + 3Ca(OH)2 (14)

2(2CaO·SiO2) + 4H2O→ 3CaO·2SiO2·3H2O + Ca(OH)2 (15)

Following the above, this indicates that applying accelerated carbonation after 7 days
of curing to the control mix will be less “efficient”, as Equations (1)–(5) would be reduced
to Equations (3)–(5). This was in accordance with the slight improvements found after
7 days in the compressive strength for the control mix in Figure 10, under CO2CC.
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Basically, carbonation at ambient pressure primarily includes three steps: (1) diffusion
of CO2 producing CO3

2−; (2) dissolution of calcium-based phases, generating Ca2+ and
(3) nucleation and precipitation of CaCO3 according to Equations (1)–(5) [99,100]. Applied
to the phases found, carbonation applied with CO2CC should “consume” phases such
as portlandite and C-S-H Equations (3)–(5). In fact, at 7 days, under CO2CC it can be
observed in the inset labelled “Portlandite 7” that the portlandite phase has practically
disappeared (red line vs pink line). Additionally, a slight decrease in the C-S-H phase was
observed when CO2CC was used. This is indicated in the inset labelled “C-S-H-7” (red
line vs pink line). The rest of the phases found were the same as those found under CCC,
although perhaps with a little more intensity in the calcite phase, which is in accordance
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with Equations (3)–(5). At 14 and 28 days, under CO2CC, the portlandite phase was
logically still absent. As for the C-S-H phase, the decrease produced by the contact of this
phase with CO2 is fulfilled, which can be observed in the inset “C-S-H 14” and “C-S-H 28”
respectively for the age of 14 and 28 days.

Figure 13 shows the XRD results for the M-100-RCA mixture under the two curing
environments (CCC and CO2CC) at 7, 14 and 28 days. For the mixture M-100-RCA at
7 days under CCC, the main phases were calcite (CaCO3) (05-0586) [60] and dolomite
(CaMg(CO3)2) (36-0426) [60]. These phases came from S1 and S2 (Figure 6). The quartz
(SiO2) (05-0490) [60], coming from the use of RCA, also appeared as a main phase (Figure 7).
As with the control mixture, the phases of portlandite (Ca(OH)2) (44-1481) [60], ettringite
(Ca6Al2(SO4)3(OH)12·26 H2O) (00-0059) [60] and calcium silicate hydrate (2CaSiO3·3H2O)
(03-0556) [60] were found. No changes were found at 14 and 28 days cured in CCC. The
absence of alite and belite that was found in other research of similar blends [5,12,30] is
indicative that “it makes no sense” to apply carbonation at 7 days of curing.
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Under CO2CC, at 7 days, it can be observed in the inset labelled “Portlandite 7” that
this phase still exists, although with little intensity. For the control mixture, this phase did
not exist. This may be due to the portlandite already present in the RCA itself (Figure 7).
Therefore, this may be indicative that the use of RCA with the portlandite phase is a “CO2
sink” according to Equation (3). Again, a small decrease in the C-S-H phase was also
observed, indicated by the inset labelled “C-S-H 7” (red line vs. pink line). At 14 days,
the disappearance of the portlandite phase was observed, which is in accordance with the
fact that after 14 days the compressive strength remained approximately constant, and
there was no significant increase (Figure 9). Logically, the same is true at 28 days of curing.
The insets labelled “C-S-H 14” and “C-S-H 28” show the same as those obtained for the
control mix.

Figure 14 shows the XRD results for the M-100-RCA mixture under the two curing
environments (CCC and CO2CC) at 7, 14 and 28 days. For the mixture M-100-MCA at 7 days
under CCC, the main phases were calcite (CaCO3) (05-0586) [60], dolomite (CaMg(CO3)2)
(36-0426) [60] and quartz (SiO2) (05-0490) [60]. Other minority phases were also found:
portlandite (Ca(OH)2) (44-1481) [60], ettringite (Ca6Al2(SO4)3(OH)12·26 H2O) (00-0059) [60]
and calcium silicate hydrate (2CaSiO3·3H2O) (03-0556) [60]. These phases were also found
in the control and M-100-MCA mixtures. Again, belite and alite phases were not found,
which is again indicative that it is not necessary to carbonate this type of sample at over
7 days of curing.

Under CO2CC, at 7 days it can be observed in the inset labelled “Portlandite 7” that
the portlandite phase has practically disappeared (red line vs pink line). Also, a slight
decrease in the C-S-H phase was observed when CO2CC was used. This is indicated in
the inset labelled “C-S-H-7” (red line vs pink line). At 14 and 28 days, under CO2CC, the
portlandite phase is logically still absent. As for the C-S-H phase, the decrease produced by
the contact of this phase with CO2 is fulfilled, which can be observed in the inset “C-S-H
14” and “C-S-H 28” respectively at 14 and 28 days.

3.5. Thermogravimetric Analysis and Differential Thermal Analysis

Figures 15–17 show thermogravimetric analysis (TGA) and differential thermal analy-
sis (DTA) of all samples studied under CCC and CO2CC. Table 5 shows the weight losses
for the different stretches. This analysis can determine the CO2 absorption produced
through CO2 curing [101,102] by just comparing the amount of calcium carbonate in the
same mixture before and after curing in CO2, as indicated in Equation (16). This can be
done because the main product of carbonation is CaCO3, as indicated in Equations (1)–(5).

CO2 sequestrated (wt.%) = CaCO3 in CO2CC − CaCO3 in CCC (16)

Several common stretches were found in all the samples studied [5,12,30]: (i) From
room temperature to 105 ◦C, ambient humidity was lost. It was observed that this loss
was higher in the M-100 RCA and M-100-MCA mix than in the control mix, both for CCC
and CO2CC, due to the higher water absorption of both RCA and MCA compared to
CG and FG, as indicated in Table 1; (ii) From 105 to 400 ◦C, loss of ettringite and C-S-H
detected by XRD occurred [103–105]. A slight decrease in weight loss was observed when
comparing CCC versus CO2CC, which was already detected by XRD (see insets named
“CSH 7”, “CSH 14” and “CSH 28”) for all samples; (iii) From 400 to 460 ◦C, decomposition
of portlandite, if present, occurred. Its existence was identified with an endothermic peak
in DTA. Under CCC, portlandite existed in all samples, as demonstrated by XRD. However,
under CO2CC, it only appears in sample M-100-RCA at 7 days, which is in accordance
with the XRD findings. The weight loss (Table 5) was lower in CO2CC than in CCC, which
is in accordance with the above; (iv) From 460 to 650 ◦C, the initial carbonates formed in
the hardening process were lost [106] and from 650 to 1000 ◦C, the calcium carbonate was
lost [82], which is in accordance with the remarkable weight loss found. In this study, we
will consider the last two sections together.
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In order to observe the effect of CO2 curing, a comparison was made between CCC and
CO2CC for the same samples and curing ages (Table 5). Generically, it was observed that
the capture capacity increases under the CO2CC curing environment, which is indicative
that CO2 curing of these materials not only improves compressive strength, but also
absorbs CO2.

The increase for the control mix was 2.9, 3.6 and 3.6 kg/CO2 t sample under CO2CC.
Two aspects are derived from the above: Firstly, it can be seen that using CO2CC longer
than 14 days does not make sense from the point of view of increasing CO2 absorption.
Secondly, it may appear as a low CO2 uptake. However, considering that the average CO2
level in the atmosphere is 400 ppm and, considering that the density of CO2 is 1.8 mg/cm3

under normal conditions, the amount of CO2 in 1 m3 of air is only 721.6 mg [107]. To
reach the CO2 level of the pre-industrial era (280 ppm), only absorbing 120 ppm would be
sufficient, i.e., 216.48 mg per m3 of air. With 1 tonne of the control mixture, 13,604 m3 of air
could be decarbonised after only 7 days of curing.

For the M-100-RCA mixture, again it can be seen that it does not make sense to cure
in CO2CC for more than 14 days. In this case, the CO2 absorption is higher than for the
control mix, and this is due to the portlandite phase found in the RCA aggregate (Figure 7).
Therefore, with only 7 days of curing, the 1 tonne of M-100-RCA mix could decarbonise
under a CO2CC environment of about 36,077 m3 of air. It also does not make sense from a
CO2 absorption point of view to cure the M-100-MCA mix for more than 14 days. In this
case, 7 days of curing of 1 tonne of M-100-MCA mix would decarbonise 24,685 m3 of air.
Considering that a conventional cobblestone has dimensions of 20 × 10 × 6, and using the
dry densities obtained in Figure 11 as an estimate, the following was obtained: 1 single
paving stone could decarbonise 3.61, 9.59 and 6.56 m3 of air at pre-industrial levels with
the control, M-100-RCA and M-100-MCA mixtures, respectively.

Furthermore, the increase in CO2 sequestered per m3 has been calculated using the dry
densities obtained in Figure 11. This will be used to calculate the carbon emission evaluation.
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Table 5. Different weight losses for all the mixtures studied and increase in CO2 sequestrated using CO2CC.

Mixes
∆ Mass (%) ∆ Mass

(450–1000 ◦C)

CO2
Sequestrated (wt.%)

According to Equation (16)

Increase in CO2
Sequestrated (g/t)

Increase in CO2
Sequestrated (g/m3)RT-105 ◦C 105–400 ◦C 400–450 ◦C 450–650 ◦C 650–1000 ◦C

CONTROL-CCC-
7 Days −0.465 −0.585 −0.230 −0.879 −38.615 −39.494

CONTROL-CCC-
14 Days −0.414 −0.609 −0.186 −0.927 −39.351 −40.278

CONTROL-CCC-
28 Days −0.366 −0.734 −0.186 −1.028 −39.775 −40.804

CONTROL-CO2CC-
7 Days −0.412 −0.526 −0.155 −1.058 −38.730 −39.789 0.2945 2945.21 6567.83

CONTROL-CO2CC-
14 Days −0.320 −0.588 −0.096 −1.087 −39.559 −40.647 0.3693 3693.83 8237.24

CONTROL-CO2CC-
28 Days −0.326 −0.647 −0.009 −1.175 −39.995 −41.170 0.3663 3663.32 8169.12

M-100-RCA-CCC-
7 Days −0.617 −1.086 −0.261 −0.955 −29.467 −30.422

M-100-RCA-CCC-
14 Days −0.698 −1.244 −0.282 −1.083 −30.912 −31.996

M-100-RCA-CCC-
28 Days −0.639 −1.164 −0.260 −1.144 −31.416 −32.561

M-100-RCA-CO2CC-
7 Days −0.584 −1.081 −0.205 −1.665 −29.538 −31.203 0.7810 7810.94 17,340.28

M-100-RCA-CO2CC-
14 Days −0.526 −1.097 −0.198 −1.644 −31.197 −32.842 0.8457 8457.52 18,775.57

M-100-RCA-CO2CC-
28 Days −0.516 −1.051 −0.175 −1.593 −31.817 −33.410 0.8492 8492.99 18,854.44

M-100-MCA-CCC-
7 Days −0.563 −1.186 −0.289 −1.007 −28.325 −29.332

M-100-MCA-CCC-
14 Days −0.444 −1.116 −0.229 −1.388 −28.663 −30.051

M-100-MCA-CCC-
28 Days −0.611 −1.022 −0.188 −1.120 −28.306 −29.427

M-100-MCA-CO2CC-
7 Days −0.669 −0.987 −0.209 −1.317 −28.550 −29.867 0.5344 5344.98 11,491.71

M-100-MCA-CO2CC-
14 Days −0.490 −0.953 −0.160 −1.530 −29.296 −30.826 0.7705 7702.25 16,652.22

M-100-MCA-CO2CC-
28 Days −0.467 −0.945 −0.148 −1.440 −28.757 −30.197 0.7745 7745.27 16,560.97
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Based on the authors’ knowledge, no studies have been found that study the CO2 cap-
ture capacity of concrete mixes such as the one presented. They were found for very porous
mortars, using similar levels of carbonation, but only using 7 days of curing [12], using
carbonated water as curing and/or mixing water [5,20]. In other research, although CO2 is
calculated, it is only estimated qualitatively [108]. This research fills this information gap.

3.6. Carbon Emission Evaluation

According to Tables 2, 3 and 5, as well as Equations (8) and (9), the carbon emissions
of each of the mixtures with different materials and curing were assessed and are presented
in Table 6. Table 7 shows the results obtained for the incremental capture per m3 calculated
through TGA/DTA (Table 5) with the respective carbon emissions calculated in Table 6.

Table 6. CO2 emissions for materials and Curing.

Materials CO2 Emission Control
(kg CO2 eq/m3)

CO2 Emission
M-100-RCA

(kg CO2 eq/m3)

CO2 Emission
M-100-MCA

(kg CO2 eq/m3)

Cement 210.420 210.420 210.42
Superplasticizer 0.575 0.575 0.575

Water 0.046 0.059 0.063
Coarse gravel 0.820 - -

Fine gravel 6.909 - -
Sand 1 0.558 0.558 0.558
Sand 2 3.852 3.852 3.852

Recycled concrete aggregate - 1.223 -
Mixed concrete aggregate - - 1.038

CO2 emitted materials 223.180 216.687 216.506

Curing 7 Days
(kg CO2 eq/m3)

14 Days
(kg CO2 eq/m3)

28 Days
(kg CO2 eq/m3)

Conventional Chamber
(0.15 kW/h) 5.04 10.08 20.16

CO2 Chamber
(0.15 kW/h) 5.04 10.08 20.16

Table 7. Summary of total CO2 emissions by mixtures and CO2 sequestration.

Total CO2 Emissions (kg CO2 eq/m3)
Total CO2 Emissions—CO2

Sequestrated (kg CO2 eq/m3)

CONTROL-CCC- 7 Days 228.22 228.22
CONTROL-CCC- 14 Days 233.26 233.26
CONTROL-CCC- 28 Days 243.34 243.34

CONTROL-CO2CC- 7 Days 228.22 221.66
CONTROL- CO2CC- 14 Days 233.26 225.02
CONTROL- CO2CC- 28 Days 243.34 235.17

M-100-RCA-CCC- 7 Days 221.72 221.72
M-100-RCA-CCC- 14 Days 226.76 226.76
M-100-RCA-CCC- 28 Days 236.84 236.84

M-100-RCA-CO2CC- 7 Days 221.72 204.38
M-100-RCA-CO2CC- 14 Days 226.76 207.99
M-100-RCA-CO2CC- 28 Days 236.84 217.99

M-100-MCA-CCC- 7 Days 221.54 221.54
M-100-MCA-CCC- 14 Days 226.58 226.58
M-100-MCA-CCC- 28 Days 236.66 236.66

M-100-MCA-CO2CC- 7 Days 221.54 210.05
M-100-MCA-CO2CC- 14 Days 226.58 209.93
M-100-MCA-CO2CC- 28 Days 236.66 220.10



Materials 2023, 16, 2436 22 of 27

CO2 emitted materials amounted to 223.18, 216.68 and 216.50 kg CO2 eq/m3 respec-
tively for the control, M-100-RCA and M-100-MCA mixtures, respectively. This result is
slightly below the range shown by W. Xing et al. [49] (278.35–524.44 kg CO2 eq/m3) in a
review where they studied the environmental impact of 57 concrete products. These differ-
ences are caused by the effect of substituting fine or coarse aggregate [109,110], the recycling
process [111,112] and the source and quality of primary material [113], among others. Fur-
thermore, this result showed the feasibility of replacing CG and FG (natural aggregates)
with RCA and MCA (recycled aggregates from construction and demolition waste).

However, it was observed that CO2 emissions for curing for 14 and 28 days were
quite high (at least with the equipment used at the laboratory scale). In fact, for the control
mix, CO2 emissions for curing at 14 and 28 days (10.08 and 20.16 kg CO2 eq/m3 shown in
Table 6), are higher than the increase in CO2 sequestrated (8.23 and 8.16 kg CO2 sequestrated
by m3 shown in Table 5). This again shows that, for the control mix it, does not make
sense to cure more than 7 days in CO2CC. Using the same comparison, for the M-100-RCA
and M-100-MCA mixtures, the CO2 emissions for curing would allow curing in CO2CC
for up to 14 days. It is therefore not feasible to cure for 28 days in CO2CC for any of the
mixtures studied.

Therefore, a CO2CC cure of up to 7 days (or even less) was sufficient to use CO2 curing
as a tool to increase productivity, improve compressive strength and decrease CO2 emission
in an unreinforced precast plant. It is not recommended to use more than 7 days in CO2
curing, as compressive strengths were maintained and only CO2 emissions were increased.
No studies were found that relate the CO2 sequestered by similar mixtures and that also
make an assessment of CO2 emissions, relating both results.

The mixture with the lowest total CO2 emissions was “M-100-RCA-CO2CC- 7 Days”.
According to the strengths obtained in Figure 10, it could be classified as C16/20 “ordinary
concrete” only at 7 days [57]. Therefore, “M-100-RCA-CO2CC- 7 Days” presents a very
promising result to be tested on a real scale, such as paving stones, kerbs or any non-
structural precast.

4. Conclusions

CO2 curing in vibro-compacted precast concrete with recycled/mixed concrete aggre-
gates (RCA or MCA) is a promising technology. The CO2 curing enabled carbon sequestra-
tion, improved the compressive strength, increased the dry bulk density and decreased the
accessible porosity for water. The findings are detailed in the following points:

• The portlandite phase found in RCA and MCA by XRD is a “potential” CO2 sink;
• The method of replacing natural aggregate with RCA and MCA should be carried out

with very similar particle sizes. This even improves the compressive strengths obtained;
• Curing in CO2 improved the compressive strength in all samples (CONTROL, M-100-

RCA and M-100-MCA). It does not make sense to apply CO2 curing longer than 7 days
on the mixes with natural aggregate and MCA, as the strengths remained constant. A
CO2 curing of 14 days can be applied to the RCA mixes;

• XRD and TGA/DTA showed that it does not make sense to apply CO2 curing beyond
7 days, since from that age all the blends were practically carbonated (except the blend
with RCA, which did not carbonate until 14 days);

• The mixtures of 1 tonne of control, M-100-RCA and M-100-MCA using CO2 curing
could be decarbonised after only 7 days of curing 13,604, 36,077 and 24,635 m3 of
air, respectively;

• According to the carbon emission evaluation and the TGA/DTA results, curing longer
than 7 days in CO2 for the reference mix (CONTROL) had higher CO2 emissions than
the sequestered CO2. The mix with RCA and MCA would allow up to 14 days, but
according to the compressive strength obtained; XRD and TGA/DTA results, only up
to 7 days is recommended;

• The total CO2 emissions by mixture using CO2 curing at 7 days were 221.26, 204.38
and 210.05 kg CO2 eq/m3 for CONTROL, M-100-RCA and M-100-MCA, respectively.
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This was calculated with the carbon footprint assessment and the CO2 sequestrated
obtained with TGA/DTA.

In conclusion, the findings of this study provide a valuable contribution to carbon emis-
sion evaluation of CO2 curing in vibro-compacted precast concrete with recycled/mixed
concrete aggregates (RCA or MCA). The new approach facilitates carbon capture and use
and guarantees enhanced compressive strength of the concrete samples.
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