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Abstract: The high-temperature compression characteristics of a Ti-55511 alloy are explored through
adopting two-stage high-temperature compressed experiments with step-like strain rates. The
evolving features of dislocation substructures over hot, compressed parameters are revealed by trans-
mission electron microscopy (TEM). The experiment results suggest that the dislocations annihilation
through the rearrangement/interaction of dislocations is aggravated with the increase in forming
temperature. Notwithstanding, the generation/interlacing of dislocations exhibit an enhanced trend
with the increase in strain in the first stage of forming, or in strain rates at first/second stages of a high-
temperature compressed process. According to the testing data, an Informer deep learning model is
proposed for reconstructing the stress–strain behavior of the researched Ti-55511 alloy. The input
series of the established Informer deep learning model are compression parameters (compressed
temperature, strain, as well as strain rate), and the output series are true stresses. The optimal input
batch size and sequence length are 64 and 2, respectively. Eventually, the predicted results of the
proposed Informer deep learning model are more accordant with the tested true stresses compared
to those of the previously established physical mechanism model, demonstrating that the Informer
deep learning model enjoys an outstanding forecasted capability for precisely reconstructing the
high-temperature compressed features of the Ti-55511 alloy.

Keywords: hot deformation; informer deep learning model; microstructural evolution; titanium alloy

1. Introduction

Due to its outstanding properties consisting of mechanical properties, anticorrosive
performance, and thermal treatability, near-β titanium alloy is comprehensively applied in
the crucial manufacture of load-bearing aircraft components [1,2]. Usually, hot deformation
is necessarily utilized to improve the microstructures and further optimize the practical
performance of titanium alloys [3–5]. The coupling effects of multiple forming parameters
induce intricate evolving characteristics of microstructures and high-temperature flow be-
havior of titanium alloys [6–10]. Hence, investigations on the microstructural evolution and
accurately modeling the true stress–strain characteristics of titanium alloys are significant.

To this day, numerous investigations have been devoted to exploring the microstruc-
tural evolution mechanisms of titanium alloys [11–15]. Some reports [16,17] revealed the
substructural evolving features for multiple titanium alloys in thermal forming and de-
tected that the substructural nucleated/migration mechanisms were substantially affected
by processing parameters. Meanwhile, it was found that the evolution of substructures
could exert a prominent effect on the nucleated/coarsening of dynamic recrystallization
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(DRX) [18–21]. Additionally, the transformation mechanisms of phases (i.e., α phase glob-
ularization [22,23], α phase conversion into β phase [24,25]) were intensively analyzed.
As mentioned in previous investigations, intricate microstructural variation/interaction
characteristics frequently emerge and notably affect the thermal forming features of tita-
nium alloys.

Describing high-temperature flow characteristics of alloys is a current research subject
and obtained tremendous achievements with various constitutive models [26–33]. First,
multiple phenomenological models were constructed/improved for reproducing the ther-
mal flow features of alloys [34–38]. Moreover, according to microstructural variations
over processing parameters, multitudinous physical mechanism correlation models were
constructed for reproducing the thermal flow characteristics of alloys [39–42]. Usually,
the above two types of models can score decent prediction results, but it is challenging to
formulate appropriate expressions and determine accurate material constants. Therefore,
numerous machine learning models were established to simplify the conducting process
and had overall superior forecasted results. For instance, the e-insensitive support vec-
tor regression (e-SVR) obtained decent results for forecasting flow characteristics [43,44].
Furthermore, complex artificial neural network (ANN) models were leveraged to predict
the flow stress of titanium alloys, such as Ti600, Ti60, Ti40, and Ti-2Al-9.2Mo-2Fe β al-
loys [45–47]. Specifically, Ge et al. [48] leveraged the artificial neural network to propose
the accurate constitutive model for the β-γ TiAl alloy. In recent years, various ANN-based
deep learning models (DLMs) were developed to be applied in forecasting tasks, e.g., the
recurrent neural network (RNN) [49,50] and long short-term memory (LSTM) [51–53].
However, the overfitting issue and long-term predicting performance degradation make
them difficult to apply in practical usage. To tackle the problems, the Transformer-based
Informer [54] deep learning model was proposed and showed an excellent capability in
lithium-ion battery estimation [55]. Therefore, in this study, the two-stage high-temperature
forming with variant strain rates in the β region of a Ti-55511 alloy is investigated. The
Informer deep learning model was established for characterizing the microstructures and
flow features of the Ti-55511 alloy.

Despite the comprehensive investigation of evolving characteristics of flow behaviors
and microstructures for titanium alloys in thermal deformation at constant strain rates,
systematic investigations of thermally compressed features of titanium alloys under variant
strain rates remain lacking. Owing to the influences of sophisticated die structure as well as
friction conditions between the die and component, the component commonly undergoes
thermal forming with varying strain rates in the actual manufacturing process. Thereby,
the stress–strain features for a Ti-55511 alloy in thermal compression with step-like strain
rates were investigated. Furthermore, the evolving features of substructures are earnestly
analyzed. Additionally, an Informer deep learning model is proposed for reconstructing
the thermally compressed features of the Ti-55511 alloy.

2. Experimental Material and Procedure

The commercial near-β titanium alloy was employed in the present investigation. The
chemical composition (wt.%) for the researched titanium alloy was 5.16Al-4.92Mo-4.96V-
1.10Cr-0.98Fe-(bal.) Ti. Cylindrical specimens (Φ8 mm × 12 mm) for thermal compression
were manufactured. The Gleeble-3500 device was employed for constructing the two-stage
thermally compressed experiments. Figure 1 reveals the explicit experimental procedures.
Distinctly, all forming processes contain two compressed stages (I as well as II). The
compressed temperature (T) and the total strain (εtotal) were consistent in two stages. Here,
three compressed temperatures (890 ◦C, 920 ◦C as well as 950 ◦C) and the constant value of
εtotal (1.2) were adopted. Still, discrepant strain rates were exploited in each compressed
stage. The representative complete compressed experimental step is that the specimen
was thermally compressed under the strain rate of the first compression stage (

.
εI) until the

strain of stage I (εI) was finished, and then thermal compression was executed under the
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strain rate of the second compression stage (
.
εII). Correspondingly, three values of εI (0.3,

0.6, as well as 0.9) were adopted.
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Figure 1. Tested steps of the received titanium alloy: (a) type A: the strain rates altered from the
relative low values (

.
εI) to high values (

.
εII); (b) type B: the strain rates altered from the relative high

values (
.
εI) to low values (

.
εII).

Before thermal compression, each sample was heated to the compressed tempera-
tures under 10 ◦C/s and remained at 300 s. When the thermal compressed process was
finished, the compressed blocks were directly cooled utilizing water (about 25 ◦C). To dis-
sect the evolving features of substructures in thermal compression, transmission electron
microscopy (TEM) was adopted. To dissect the original microstructure, electron backscatter
microscopy (EBSD) was chosen. For analyzing using TEM as well as EBSD, the thermally
compressed samples were axially machined for acquiring cross-sections. Afterwards, these
sections were ground, polished, and etched in a solution (10 mL HClO4 + 70 mL C4H10O +
120 mL CH3OH). Figure 2 displays the original grain structures, and most of the initial β
grains are equiaxed grains.
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3. High-Temperature Compression Features and Substructural Evolution

The prime hot flow features of the researched titanium alloy in double-stage hot com-
pression with stepped-strain rates are displayed in Figure 3. Clearly, the high-temperature
compression behaviors are markedly affected by compression parameters. As revealed
in Figure 3a, the true stresses at the first and second stages of hot compression exhibit a
diminishing tendency with rising compression temperature. One principal reason for this
experimental result is that the DRX behavior dramatically proceeds as the compressed
temperature (T) ascends [6]. Moreover, the visible evolution of substructures occurs with
the elevated compression temperature, as depicted in Figure 4a,b. For the compressed
temperature of 920 ◦C and strain rate of 0.01 s−1, the formation of high-density dislocation
clusters can be detected (Figure 4a). Then, the prominent work-hardening (WH) effect
is inspired owing to the acute interaction of adjacent substructures, and the rise in true
stress occurs quickly [6,16]. When the compressed temperature is elevated from 920 ◦C
to 950 ◦C, the intensive migration/interaction of dislocations and grain boundary occurs,
and the substructures are apparently consumed (Figure 4b). Then, the reinforced dynamic
softening feature emerges with a rising incompression temperature, and a decrease in true
stress appears. Furthermore, the true stress at the second stage of high-temperature com-
pression exhibits a relative increasing trend along with the rise in the strain of the first-stage
compression (εI), as displayed in Figure 3b. This tested result is primarily ascribed to the
weakened DRX development occurring at large values of εI, as the strain rate is transferred
from a high value (

.
εI = 0.1 s−1) to a low value (

.
εII = 0.001 s−1) [6]. Meanwhile, the vari-

ations of εI exerting a significant influence on the substructural evolution are depicted
in Figure 4c. From Figure 4a,c, it can be detected that the generation/accumulation of
substructures (subgrain, dislocation network, etc.) is promoted with increasing εI. Owing
to the formation of high-density dislocation networks, the resistance of dislocation slippage,
and grain boundary motion is raised, inducing the rise in true stress at the second stage of
high-temperature compression.
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Figure 3. Representative flow characteristic at variation of: (a) T , (b) I  [6]. 
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4. The Informer Deep Learning Model for Forecasting Hot Flow Features of a
Ti-55511 Alloy

In contrast to existing models with lengthy process limitations, the Transformer model
demonstrates the operational potential for long sequence prediction, owing to its innovative
architecture and self-attention mechanism [56]. Although the canonical self-attention
mechanism is capable of processing large-scale data with impressive performance, the high
computational complexity and significant memory consumption in stacking layers of the
model impede its practical application. To address such a deficiency, optimized models
such as the LogSparse Transformer model [57] and similar models [58] were proposed
to reduce the original self-attention mechanism complexity, but their efficiency remained
limited. Moreover, the Reformer model was embedded with locally sensitive hashing
updated self-attention to reduce the complexity in the exceptionally long-term series for
each layer [59]. In certain situations, the complexity growth rate of the Informer model was
optimized to be linear, but the model could potentially experience degradation in practical
long-term prediction [60]. More recently, a continuous-space attention mechanism was
deployed in the Infinite Memory Transformer model to free the complexity from input
length, but the prediction accuracy was decreased [61].

In summary, previous Transformer models focused on optimizing the complexity of
the attention mechanism for each layer and obtained important findings. However, simul-
taneously cutting down the complexity and breaking the scalability bottleneck of stacking
layers is rarely addressed. Therefore, the Informer deep learning model is proposed to
address these limitations and accelerate its computing speed [54]. In the present research,
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the Informer deep learning model is applied as a practical method for forecasting the
flow characteristics of the studied titanium alloy. Specifically, the Informer deep learning
model leverages the proposed ProbSparse self-attention mechanism and distilling oper-
ation to reduce the memory usage and time complexity of the dependency alignment to
O(L log L) and the space complexity to O((2− ε)L log L). During the inference phase, the
model utilizes a generative decoder form to avoid cumulative error spreading and optimize
long-series output. The Informer deep learning model architecture is shown in Figure 5.
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4.1. ProbSparse Self-Attention Mechanism

With inputs as query, key and value, the original self-attention mechanism is defined
as [56],
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Derived by [62], the i-th query’s attention can be defined with kernel smoothing as,

A(qi, K, V) = ∑
j

k
(
qi, k j

)
∑l k(qi, kl)

vj = Ep(kj |qi)

[
vj
]

(2)

where qi, ki, vi stand for the i-th row in Q, K, V, respectively, and k
(
qi, k j

)
= exp

(
qik>j /

√
d
)

.

The part p
(
k j|qi

)
= k

(
qi, k j

)
/ ∑l k(qi, kl) is conducted to obtain the probability, which

entails a large O
(

LQLK
)

memory usage. Therefore, the Informer deep learning model
proposed the query sparsity measurement to tackle this major defect of self-attention.

The similarity between p and q can be used to distinguish the importance, which can
be conducted through Kullback–Leibler divergence as,

KL(q‖p ) = ln ∑LK
l=1 eqik>l /

√
d − 1

LK
∑LK

j=1 qik>j /
√

d− ln LK (3)

The measurement of the i-th query is defined by dropping the constant as,

M(qi, K) = ln
LK

∑
j=1

e
qik>j√

d − 1
LK

LK

∑
j=1

qik>j√
d

(4)

where the formula calculates the Log-Sum-Exp (LSE) and the arithmetic mean of all
keys [63]. If M(qi, K) grows larger, the probability p becomes more principal factor al-
terable, thus having a superior differentiating capability.

According to the above measurement, the ProbSparse self-attention mechanism can
be further conducted by distributing keys to Top-u queries as

A(Q, K, V) = Softmax

(
QK>√

d

)
V (5)
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where Q is the q-size sparse matrix. When u = c · ln LQ, the layer memory usage is reduced
to O

(
LK ln LQ

)
due to the lessened calculation for each key.

Nevertheless, the query sparsity measurement needs quadratic O
(

LQLK
)

calcula-
tion, and the LSE implement is not constantly numerically stable. Hence, an empirical
approximation is conducted.

For each qi, the discrete keys can be converted to continuous ones as vector k j. In
addition, the first term of the M(qi, K) becomes the LSE of the inner product of a fixed
query qi and all the keys, and define

fi(K) = ln ∑LK
j=1 eqik>j /

√
d (6)

From the Log-Sum-Exp network and relative studies [63,64], the convex function
fi(K) combines linear k j for qi, making M(qi, K) convex. Hence, the measurement can be
conducted to a derivation form with each vector k j as follows,

∂M(qi, K)
∂k j

=
eqik>j /

√
d

∑LK
j=1 eqik>j /

√
d
· qi√

d
− 1

LK
· qi√

d
(7)

Let
→
∇M(qi) =

→
0 to reach the minimum value; the condition can be listed as,

qik>1 + ln LK = · · · = qik>j + ln LK = · · · = ln ∑LK
j=1 eqik>j (8)

The minimum value ln LK can be obtained when k1 = k2 = · · · = kLK . Therefore, the
measurement can be written as

M(qi, K) ≥ ln LK (9)

Hence, by picking the largest inner-product maxj

{
qik>j /

√
d
}

, the inequation can be
derived as 

M(qi, K) = ln
LK
∑

j=1
e

qik>j√
d − 1

LK

LK
∑

j=1

(
qik>j√

d

)
≤ ln

(
LK ·max

j

{
qik>j√

d

})
− 1

LK

LK
∑

j=1

(
qik>j√

d

)
= ln LK + max

j

{
qik>j√

d

}
− 1

LK

LK
∑

j=1

(
qik>j√

d

) (10)

Eventually, by combining the above equations, the bound can be denoted as

ln LK ≤ M(qi, K) ≤ maxj

{
qik>j /

√
d
}
− 1

LK
∑LK

j=1

{
qik>j /

√
d
}
+ ln LK (11)

where qi ∈ Rd and k j ∈ Rd are in the keys set K.
From the above deductions, the max–mean measurement can be defined as

M(qi, K) = max
j

{
qik>j√

d

}
− 1

LK

LK

∑
j=1

qik>j√
d

(12)

Specifically, a long-tail distribution pattern of the self-attention mechanism was ob-
served by performing a qualitative assessment [54]. In this case, only a few dot product
pairs contribute to the major attention. Hence, M(qi, K) only requires U = LK ln LQ dot
product pairs of random sampling, and the remaining pairs are filled with zero values.
Therefore, the operation has a weaker sensitivity and remains numerically stable. Even-
tually, in practical application, the relatively equivalent input length LQ = LK = L in
self-attention computation can reduce the complexity to O(L ln L).
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4.2. Encoder

The Informer deep learning model utilizes the encoder architecture to extract the
long-term dependency of input series, where the t-th input Xt is reshaped as matrix
Xt

en ∈ RLX×dmodel [56]. The encoder is composed of multiple identical layers stacked
on top of each other. Specifically, the architecture of a single stack in the encoder of the
Informer deep learning model is given in Figure 6.
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Due to the processing of the ProbSparse self-attention mechanism, the encoder is
loaded with redundant value V combinations. Hence, self-attention distilling is proposed
to concentrate self-attention mechanisms for the next layer.

Based on the dilated convolution [65], the distilling operation feeds forwards the
(j + 1)-th layer as,

Xt
j+1 = MaxPool

(
ELU

(
Conv1d

([
Xt

j

]
AB

)))
(13)

where [·]AB denotes the attention block, and Conv1d(·) generates a 1D convolutional filter
with ELU(·) activation function [66].

The max-pooling layer is added to reduce the total memory usage toO((2− ε)L log L).
Furthermore, a pyramid-like processing structure (shown in Figure 6) is established where
inputs are halved to serve as the replication of the main stack and the distilling layers drop
gradually. In this case, the operation has a better robustness, and the resulting dimensions
of different layers are consistent.

4.3. Decoder

The canonical decoder structure is optimized with generative inference to mitigate the
long-term speed descent. The decoder mechanism is defined as

Xt
de = Concat

(
Xt

token, Xt
0
)
∈ R(Ltoken+Ly)×dmodel (14)

where Xt
token ∈ RLtoken×dmodel is the start token, and Xt

0 ∈ RLy×dmodel is the placeholder for
target sequences.

Extended from dynamic decoding [67], the procedure is innovated to sample a Ltoken
series in the input sequence as a start token then feed it to the decoder as Xde = {XL, X0}.
Afterwards, the decoder obtains outputs through a single forward procedure, and thus it
can process with less time consumption than a normal encoder-decoder architecture.
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4.4. Identification for the Parameters of the Informer Deep Learning Model

The inputs of the Informer deep learning model are temperature T = {890, 920, 950} ◦C,
true strain ε = {0~1}, and strain rate

.
ε = {0.001, 0.01, 0.1, 1} s−1. The input sequences were

preprocessed by concatenating experimental data of true stress values under different
temperatures, true strains, and strain rates. The corresponding temperature, true strain,
and strain rate values were also concatenated in the sequences. Then, these sequences
were applied as training inputs. The experimental data are shuffled using 7/10 of the total
amount for training and the rest for testing and validating the model.

As discussed above regarding the architecture of the Informer deep learning model
in Sections 4.1–4.3 and the features of general deep neural networks, the Informer deep
learning model should first be established by tuning hyper-parameters such as learning rate,
input batch size, dropout, etc. To obtain the optimal parameters, the correction coefficient
R, average absolute relative error AARE, mean squared error MSE, and root-mean squared
error RMSE assessment criteria are employed for evaluating the results.

R =
∑N

i=1

(
Mi −

•
M
)(

Pi −
•
P
)

√
∑N

i=1

(
Mi −

•
M
)2

∑N
i=1

(
Pi −

•
P
)2

(15)

AARE(%) =
1
N ∑N

i=1

∣∣∣∣Mi − Pi
Mi

∣∣∣∣× 100% (16)

MSE = ∑N
i=1

(Mi − Pi)
2

N
(17)

RMSE =

√
∑N

i=1
(Mi − Pi)

2

N
(18)

where N notes the total amount of result data, and Mi and Pi stand for the measured and

predicted results when
•

M and
•
P are the mean values, respectively.

Generally, the accuracy and generalization ability of deep learning models are affected
by various hyper-parameters. In the case of forecasting, the batch size of input sequences
and the initial learning rate of the model play crucial roles. On the one hand, a larger batch
size allows faster training but may result in worse model accuracy and an unstable training
process [68]. On the other hand, a smaller batch size is beneficial for generalization but
can lead to a longer computation time [69]. Additionally, both theoretical and empirical
evidence have proven that the batch size and learning rate significantly impact the gener-
alization ability and accuracy of the deep learning model [70–72]. To further explore the
relationship between the two parameters and the results, experimental curves are displayed
in Figure 7. The five curves represent the effect of the learning rate on validation loss under
different batch sizes. Specifically, the learning rate is tested in a uniformly spaced range
from 10−1 to 10−6 with batch sizes of 8, 16, 32, 64, and 128, respectively. The model accuracy
is evaluated by the validation loss.

It is clear that the validation loss of the Informer deep learning model drops to a
minimum value and then starts to fluctuate when the learning rate increases from 10−4 to
2 × 10−3. As the learning rate further ascends, the fluctuation of validation loss becomes
intense, and thus the optimal learning rate can be chosen as 1.2929 × 10−3. Specifically, the
curve fluctuations in Figure 7 demonstrate an appropriate balance of model accuracy and
training stability under the batch size of 64. Hence, the batch size is determined as 64.
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In addition, it is important to note that the parameters of sequence length and label
length also have a significant impact on accuracy. Based on experimental results, the
optimal sequence length and label length are identified as two and one, respectively.

Eventually, the values of R, AARE, and RMRE can be computed as 0.9986, 4.191%, and
2.2016, respectively. According to the results, the performance of the Informer deep learning
model is shown in Figure 8. It illustrates good consistency between the experimental
data and the modeled results, demonstrating the great capability of the Informer deep
learning model to describe the high-temperature deformation features of the researched
titanium alloy.
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4.5. Comparisons and Discussion

As shown in the above sections, the Informer deep learning model exhibits a strong
forecasting ability for the true stress of the researched titanium alloy. According to the
author’s previous investigation [6], a physical mechanism (PM) model was constructed for
forecasting the true stress of the researched titanium alloy, i.e.,

σ = σy + σρ

σy = 1.589(
.
ε exp( 205,800

RT ))
0.2052

σρ = 4.38× 10−10(21.8847− 0.0153T)
√

ρi
.
ρi =

.
ρi

+ − .
ρi

DRV − .
ρi

DRX

.
ρi

+ = 1
2.86×10−10Λ

.
ε

1
Λ = 1

s +
1
di

s = Fs√
ρi

Fs = 4.1797 (
.
ε exp(−6.4278

RT ))
−0.2843

.
dg = 2.3866d 0.4468
.
dx = −0.7803d0.0072

.
X

0.9906

.
di =

.
dx +

.
dg

.
ρi

DRV = 47.0321(
.
ε exp( 0.04718

RT ))
−0.1259

ρ
.
ρi

DRX =
0.7313(

.
ε exp(−9.1687

RT ))
0.0137 .

Xρi

(1−X)2.0210

.
X = 6.0877MbP[X(1−X)]−1.4294 .

ε
−2.6513

d0.5733

Mb = 1.54×10−26

kT [
.
ε exp(−0.1418

RT )]
0.0045

P = 8.18×10−20ρi(21.8847−0.0153T)
2

(19)

where σ is the flow stress, σy is the short-range component, and σρ is the dislocation
interaction stress.

.
ε is the strain rate, R is the gas constant, T is the absolute temperature,

ρi is the dislocation density,
.
ρi

+ is the dislocation density emergence rate under WH, and
.
ρi

DRV and
.
ρi

DRX are dislocation density variation rate of DRV and DRX, respectively. Λ is
the mean-free path of dislocation, and di is the average grain size. X is the DRX fraction
and the rate

.
X. Mb is the grain boundary movement rate. P is the driving force. Dob is the

factor of self-diffusion, and δ is the grain boundary thickness.
Figure 9 unveils the comparative analysis of forecasting performances between the

PM and Informer deep learning model. Compared to that of the PM model, the Informer
deep learning model enjoys a smaller forecasting error of true stresses, particularly for
the researched titanium alloy at lower compressed temperature (890 ◦C) or higher

.
εI/

.
εII.

To validate the forecasting capability, the correlation results of forecasted true stresses
and tested ones are plotted in Figure 10. Clearly, the scatters of the PM constitutive
model are more dispersed, while those of the Informer deep learning model are more
centralized. Meanwhile, the values of R, AARE, and RMSE are determined, as noted in
Table 1. Distinctly, the relative larger R as well as the smaller AARE and RMSE values
imply that the established Informer deep learning model can accurately depict the hot
compressed features of the Ti-55511 alloy.
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5. Conclusions

The evolving characteristics of microstructures as well as flow behavior for a Ti-
55511 alloy in two-stage thermal compression experiments with step-like strain rates are
researched. The decisive conclusions are drawn as:

(1) In high-temperature compression, the influences of forming parameters on the flow
behaviors of the researched Ti-55511 alloy are significant. Flow stresses are reduced
with the increase in compressed temperature. Notwithstanding, flow stresses at stage
II of thermal compression display an increase trend with the descent of εI or increase
in

.
εI/

.
εII;

(2) The formation of high-density networks/clusters through dislocation concentra-
tion/interaction is suppressed with the increase in compressed temperature. Nev-
ertheless, the dislocation nucleation/concentration is enhanced with the increase
in εI;

(3) The Informer deep learning model is developed to reconstruct the thermal compressed
characteristics of the researched Ti-55511 alloy. The considerable agreement between
the predicted true stresses and experimental results demonstrates the high prediction
accuracy of the Informer deep learning model.
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