
Citation: Valencia, N.C.; Izadifar, M.;

Ukrainczyk, N.; Koenders, E.

Coarse-Grained Monte Carlo

Simulations with Octree Cells for

Geopolymer Nucleation at Different

pH Values. Materials 2024, 17, 95.

https://doi.org/10.3390/

ma17010095

Academic Editor: Rui M. Novais

Received: 27 November 2023

Revised: 18 December 2023

Accepted: 21 December 2023

Published: 24 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Coarse-Grained Monte Carlo Simulations with Octree Cells for
Geopolymer Nucleation at Different pH Values
Nicolas Castrillon Valencia, Mohammadreza Izadifar *, Neven Ukrainczyk * and Eduardus Koenders

Institute of Construction and Building Materials, Technical University of Darmstadt, Franziska-Braun-Str. 3,
64287 Darmstadt, Germany; castrillon@wib.tu-darmstadt.de (N.C.V.); koenders@wib.tu-darmstadt.de (E.K.)
* Correspondence: izadifar@wib.tu-darmstadt.de (M.I.); ukrainczyk@wib.tu-darmstadt.de (N.U.)

Abstract: Geopolymers offer a potential alternative to ordinary Portland cement owing to their
performance in mechanical and thermal properties, as well as environmental benefits stemming
from a reduced carbon footprint. This paper endeavors to build upon prior atomistic computational
work delving deeper into the intricate relationship between pH levels and the resulting material’s
properties, including pore size distribution, geopolymer nucleate cluster dimensions, total system
energy, and monomer poly-condensation behavior. Coarse-grained Monte Carlo (CGMC) simulation
inputs include tetrahedral geometry and binding energy parameters derived from DFT simulations
for aluminate and silicate monomers. Elevated pH values may can alter reactivity and phase stability,
or, in the structural concrete application, may passivate the embedded steel reinforcement. Thus,
we examine the effects of pH values set at 11, 12, and 13 (based on silicate speciation chemistry),
investigating their respective contributions to the nucleation of geopolymers. To simulate a larger
system to obtain representative results, we propose the numerical implementation of an Octree
cell. Finally, we further digitize the resulting expanded structure to ascertain pore size distribution,
facilitating a comparative analysis. The novelty of this study is underscored by its expansion in both
system size, more accurate monomer representation, and pH range when compared to previous
CGMC simulation approaches. The results unveil a discernible correlation between the number of
clusters and pores under specific pH levels. This links geopolymerization mechanisms under varying
pH conditions to the resulting chemical properties and final structural state.

Keywords: 3D off-lattice coarse-grained Monte Carlo; aluminosilicates; metakaolinite-based geopolymer;
alkali silicate solution; nucleation; cluster size distribution; pore-size distribution; pH

1. Introduction

The “geopolymer” or alkaline aluminate silicate geopolymer material coined by Davi-
dovits in 1978 [1] refers to materials synthesized through the combination of aluminosilicate
powder mixed with potassium silicate or sodium silicate solution precursor [2–4]. Sili-
cate solution precursors play a crucial role in initiating the alkalinization process. In
this dissolution-precipitation geopolymerization reaction, the silicate [5] and aluminum
bonds within the aluminosilicate powder solid material are first broken by hydroxyl (OH−)
groups present in the alkaline solution. This is followed by a polycondensation reaction,
ultimately leading to the formation of an aluminosilicate network [6]. The network consists
of interconnected aluminum (Al) and silicate (Si) tetrahedra linked by oxygen-bridging
bonds [3]. The utilization of gels or zeolites in the cement industry is becoming increasingly
prevalent due to their inorganic structure and mechanical properties [7]. The kinetics of
aluminosilicate-fluid interactions carry significant implications for various environmental
and engineering processes, including CO2 sequestration, soil evolution, pollutant disposal,
catalysis, adsorption, and petroleum drilling operations [8]. In addition, geopolymers are
inherently fire resistant and have demonstrated excellent thermal stability, far superior to

Materials 2024, 17, 95. https://doi.org/10.3390/ma17010095 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma17010095
https://doi.org/10.3390/ma17010095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-4122-0547
https://orcid.org/0000-0001-8664-2554
https://doi.org/10.3390/ma17010095
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma17010095?type=check_update&version=1


Materials 2024, 17, 95 2 of 19

that of traditional cements [9]. These attributes render them highly attractive for numer-
ous applications. Alkali aluminate silicate geopolymer materials demonstrate mechanical
properties like typical Portland cement but require approximately 80–90% less CO2 during
production [10]. Furthermore, they demonstrate exceptional resistance to acids compared
to Portland cement, making it one of the most notable advantages associated with geopoly-
mers [11–14]. However, questions regarding their durability and structural development
remain open and can only be addressed through advancements in experimental resources
and simulation techniques [10].

Most recently, Izadifar et al. [15] used the 3D off-lattice coarse-grained Monte Carlo
(CGMC) approach to simulate the polymerization of alkaline aluminosilicate gels, their
nanostructure particle size, and their pore size distribution. For this, the Gibbs free energy
of dimerization reactions for the four different monomer species was used as the input
table, taken from the literature computed through the DFT modeling method by White
et al. [10,16]. In this way, the polymerization reaction for the silicate monomers presented
as particles in the silicate-activated system was subjected to reach the equilibrium condi-
tion with an energy of 934 kJ/mol within 1,000,000 iterations. It has been reported that
91.80% of silicate particles presented in the cluster formation. Then, the metakaolinite [17]
sub-system was involved in the MC particle selection and movement process to reach
the equilibrium condition for seven million more iterations. At the equilibrium condition,
66.50% of particles participated in the cluster formation. In addition, Izadifar et al. [15]
recently computed the enthalpy activation energy (∆H∗) at far-from-equilibrium condi-
tions, which is based on the transition-state theory (TST) for the calculation of atomistic
reaction rates for silicate tetrahedra dissolution in MK through the DFT computational
approach [18–21]. Most published studies on geopolymer systems have focused on fly
ash/blast furnace slag composite systems, and, in most cases, the examination has been
limited to observing X-ray diffractograms and ultimate compressive strength, which are
standard techniques in cement science. Even though the information was collected using
this experimental technique, it is still difficult to fully report for the alkali activation process
quantitatively, primarily due to the multiple chemical mechanisms occurring [22]. The com-
plexity of this field stems from the multiple simultaneous processes occurring in alkaline
silicate systems and the existing limitations in applying comprehensive multiscale models.
Previous theoretical and experimental investigations of aqueous silica chemistry under
alkaline conditions have helped to elucidate the individual processes fundamental to the
holistic behavior of silica in zeolite formation. However, conventional atomistic theoretical
models fail to reproduce the mechanisms at the mesoscale level, mainly due to the large
computational demands inherent in atomistic modeling over the required range of length
scales [23]. Indeed, the precise intricacies encompassing the transformation process from an
aluminosilicate precursor in alkali environments to a geopolymeric gel remain unverified
both experimentally and theoretically, owing to the inherently intricate character of this
mechanism. Consequently, a notable gap persists within the scholarly discourse concerning
the intricate mechanistic depiction of the geopolymerization reaction [10]. The essential
chemical and structural properties of geopolymers derived from metakaolinite, fly ash, and
slag are investigated in terms of the impact of raw material selection on the properties of
the geopolymer composites [3]. The use of geopolymer is a potential alternative to ordinary
Portland cement, although the chemical and mechanical constitution of alkali activated
mixes (AAMs) have not been understood and the pore structures of these materials have
remained unexplored [10,18,19]. As a result, there is a great research opportunity to further
investigate this topic. The crucial process of geopolymerization, which has only been briefly
investigated thus far, involves the transformation of liquid precursors into a “solid” gel
and densification structure. This transformation is key to controlling the nanostructure and
porosity of geopolymers, enabling them to meet specific field requirements [21,23,24].

The main objective of this work is to implement a 3D off-lattice CGMC simulation
of a coarse-grained model for studying the nucleation of alkaline aluminosilicate gel for
three different silicate-activated systems. Based on the Gibbs free energy of dimerization
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reported by White et al. [10] for four different monomer species of Si(OH)4, Al(OH)4
−.Na+,

SiO(OH)3
−.Na+.3H2O, and SiO2(OH)2

2−.2Na+.6H2O, and considering the limitation of
the tetrahedral structure for the particle polymerization in the system, a 3D off-lattice
CGMG approach is adopted. Each monomer species is represented as a distinct coarse-
grained particle type to compute the gel structure evolution as a function of the different
number of iterations. In this manner, three different pH values (11, 12, and 13) have been
investigated, incorporating a larger simulation system to obtain more accurate results using
Octree cell expansion. The total energy of the system is calculated at various iterations,
enabling a comprehensive understanding of its behavior. Additionally, the evolution of
cluster formation and metakaolinite dissolution is studied over a total simulation period of
56 million iterations. The resulting structure is then analyzed to determine the distribution
of cluster sizes and the characteristics of the pore network.

2. Simulation Model and Method

CGMC simulations were carried out using the canonical ensemble (NVT), which
maintains a constant number of particles, volume, and temperature. The model utilized is
a simple cubic off-lattice model, where the particles can freely move in all three dimensions
(x, y, and z). It is important to note that much of the DFT/CGMC methodology has been
thoroughly discussed and validated in previous research on silicate systems [15]. Therefore,
to maintain brevity, we have not reproduced all that information here. However, there are
significant differences between our current study and our previous work, which we outline
below, along with a summary of the model implementation.

2.1. Specification of Silicate Particles in Each System

The solubility of silicate in solution is strongly affected by the pH. Previous research
on solubility in aqueous solutions has shown that there is a Si-pH region where the solu-
tions are homogeneous, but there are also other regions where the solutions exhibit more
energetic reaction equilibria (please refer to Figure 1 in [25]). The condensation (polymer-
ization) reaction was delineated through particle bonding, aiming to minimize the overall
system energy. To facilitate this objective, the input table harnessed the Gibbs free energy
pertaining to dimerization reactions across the four distinct monomer species, as derived
from the literature [10] and obtained via the density functional theory (DFT) modeling
method. The simulation can be summarized in two main parts: In the first part, silicate
monomers, acting as activators of the system, are iterated until an equilibrium condition
is reached. For the second part, the metakaolinite particle is enabled to participate in the
dissolution process. For both parts, it is necessary to determine the number of silicate
monomers that are present throughout the entire simulation for the systems with pH values
of 11, 12, and 13. The percentage distribution of these silicate monomers is determined
based on the silica diagram as a function of pH (refer to Figure 5 in [25]). In alkaline aque-
ous solutions, the equilibrium distribution of silicate species is significantly influenced by
deprotonation equilibria, with monomer deprotonation constants defined by the following
reaction equations and equilibrium constants [25]:

SiOi−1(OH)
(i−1)−
5−i

Ki
m↔ SiOi(OH)i−

4−i + H+

pK1
m = 9.84 − 1.022

I
1
2

1 + I
1
2
+ 0.11I

pK2
m = 13.43 − 2.044

I
1
2

1 + I
1
2
+ 0.20I

where ionic strength (I) is expressed in mol/L.
During the simulation, this percentage of monomer particles is controlled every

30 iterations to ensure the same protonation state throughout the process. The percentage
of water, as well as Na cation, silicate in solution, and metakaolinite, are extracted from the
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data published by White [10] based on the selected silicate-activate system, and the exact
values are listed in Table 1. To ensure the same volume in the three different systems (pH
values are equivalent to 11, 12, and 13), the volume is calculated from the total number of
particles, taking pH 11 as the reference. This ensures that the systems are the same size, even
though the concentration and diameter of the particles are different, giving an advantage
in comparing the pore size distribution between the three systems. Given the presence of
three different silicate particles in each system, characterized by variable sizes and whose
quantities depend on the pH level, the particle count within each system naturally diverges.
To maintain a uniform solid volume in the three systems, each system consistently uses
an identical percentage of silicate activator initialized at the beginning of the simulation,
while the proportion of metakaolinite particles is systematically adjusted. This ensures that
the systems have the same size, even if their concentration and particle size are different.
Table 2 shows the total number of particles in the solution for the three different silicate
monomers: Si(OH)4, SiO(OH)3

−.Na+.3H2O, and SiO2(OH)2
2−.2Na+.6H2O.

Table 1. Composition of the geopolymer-forming system based on the results reported by White et al.
and the silicate thermodynamic speciation model [10].

Percentage (%)

pH System Water + Na Silicate in Solution Metakaolinite

11
12
13

68.4% 10.6 21%

Table 2. The total number of silicate particles and metakaolinite particles presented for three different
pH (11, 12, and 13) systems at the beginning of the simulation.

Number of Particles

pH Silicate in Solution Metakaolinite

11 17,560 97,336
12 10,640 64,000
13 5824 17,576

All systems are formed by a precursor (layered metakaolinite) surrounded by activat-
ing particles (three different types of silicate). Table 3 explains, in detail, the amount of each
silicate particle for each system.

Table 3. The total number of each silicate particle present in three different pH systems at the
beginning of the simulation.

pH Systems

Silicate Monomer
Species 11 12 13

M 872 0 0
M−.Na+.3H2O 15,816 8512 1744

M2−.2Na+.6H2O 872 2128 4080

M = Si(OH)4, M− = SiO(OH)3
−, M2− = SiO2(OH)2

2−.

2.2. Monte Carlo Approach: Implementation in MATLAB Code

An additional MATLAB code [26–29] was developed to facilitate the storage and
analysis of data within individual cells, as illustrated in Figure 1a. To incorporate informa-
tion from all eight neighboring cells, a binding definition of neighbor relationships was
employed, considering two sites as neighbors only if they shared a common face; adjacency
through an edge or a corner was assumed to be insufficient for classification. This approach
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was instrumental in ensuring comprehensive interactions among all cluster groups and
monomers across cells. In Figure 1b, a detailed view is added where two subsystems are
sharing particles that participate in the geopolymerization process. The software applica-
tion provided detailed data throughout the simulation iterations, encompassing monomer
specification, cluster dynamics, system energy fluctuations, and the complex metakaolinite
dissolution process. Post-simulation analysis involved the utilization of the global scan
method for extracting the cluster size distribution. A refined pore network model was
subsequently constructed, assuming idealized spherical pores where monomers and dimers
are considered aqueous species, i.e., part of the solution phase reported by White et al. [10].
The digitization of particle structures was accomplished through the implementation of a
watershed algorithm and a city-block distance transform function (Figure 1c). Subsequently,
pore connectivity and pore size distribution were deduced utilizing these techniques [15].
Consequently, the total system energy was computed based on the Gibbs free energy of
dimerization, as reported by prior research [10]. This energy quantification is naturally
linked to the number of particles within each system, which varies among the different
pH environments. To ensure the precision and comparability of data between systems, an
energy calculation correction factor was introduced. Specifically, the system with the high-
est particle count (pH 11) served as the reference point. This reference point (pH 11) was
divided by the total number of particles for each system, and this ratio was subsequently
applied to adjust the energy values computed during the simulation for each system.
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Figure 1. (a) The total system is divided into eight partitions, each representing a subsystem,
following an Octree pattern. (b) Top view of the pH11 system, showing a detailed zoom-in of the
interface planes within the octa-three simulation cell structure. Particles positioned at the periphery
of each sub-system effectively percolate, connecting the adjacent cells, increasing the interconnectivity
behavior of the total system. (c) The final status of the simulation at pH 11. The particles, clusters,
and pore distribution are on the left side. Details are illustrated on the right side about the pore
size distribution calculation: the dark aquamarine-colored particles represent the coarse-grained
monomer particles (no distinction about the type), and the yellow particles represent the pore sizes.

2.3. Octree Cell Approach: Development of the MATLAB Program

Atomistic theoretical models are usually unable to reproduce the mechanisms taking
place at the mesoscale level in zeolites due to the significant computational demands
associated with atomistic modeling over the required length scales [2]. The primary
objective is to investigate particle behavior during a polymerization process using a simple
mechanical model. This investigation is crucial for understanding nanoparticle formation,
as larger system sizes are essential to achieve statistically significant results. Additionally,
simple models facilitate a more focused analysis of specific features of the system [30]. The
simulation methodology employed in this study was based on our previous research [15], but
with a notable improvement in system size, which was increased from 200 × 200 × 200 Å3

to 400 × 400 × 400 Å3. To accomplish this, an Octree cell with the first level of partition
was developed, enabling parallel simulation processes, which are typically available in
high-performance computing (HPC) environments. Specifically, eight identical programs
with 7,000,000 iterations were executed simultaneously, and their results were integrated at
the end of the simulation for comprehensive structural analysis (as explained in Section 2.2).
The utilization of Octree patterns significantly reduced the memory requirements of the
CGMC solver during the simulation of large-scale systems. This approach strikes a balance
between minimizing artificial effects in small lattice simulations and achieving convergence
within a reasonable timeframe.

2.4. Density Functional Theory (DFT) Calculation

To pass the geometrical parameters of the aluminate and silicate monomers (Figure 2),
the density functional theory (DFT) calculations [31] were carried out. The Vienna ab
initio simulation package (VASP) [32–36] employed the projected-augmented wave (PAW)
method [37] and pseudopotential to define electron-ion interaction. The electron exchange
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and correlation functional were chosen in the generalized gradient approximation (GGA)
with the Perdew−Burke−Ernzerhof (PBE) parametrization [38]. The Brillouin zone was
sampled using a well-converged k-sampling equivalent given by 1 × 1 × 1 Monkhorst-Pack
k-points for the total system [39]. A well-converged plane-wave cutoff energy of 400 eV
was employed for the structural relaxations. The break condition of 10−6 eV was set for the
convergence criterion for the electronic self-consistent cycles. In these calculations, the ions
were relaxed until the forces were lower than 10−3 eV/Å. A three-dimensional visualization
software (VESTA) was also utilized for the structural analysis of our models [40].
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Figure 2. Dimerization reaction based on tetrahedron formation for (A) Si-O-Si and (B) Si-O-Al
optimized by the DFT computational approach. Tables A1 and A2 in Appendix A show bond lengths
and angles between atoms. The radius of coarse-grained particles equals the averaged bond length.
The two particles touch at a single point, either the center of bonding oxygen, O4 (case (A)) or O11
(case (B)).

3. Results and Discussion

Tables A1 and A2 in the Appendix A show bond length and angles between atoms,
respectively. According to the DFT computational method, β angles of 135.12 and 138.28 de-
grees have been computed for the dimerization reaction for Si3-O11-Al1 and Si1-O4-Si2
(Figure 2) based on tetrahedron formation, respectively. The average bond lengths of 1.65
and 1.76 angstrom were considered for Si-O and Al-O in tetrahedra monomer formation,
defining the coarse-grained particle radius for each particle type, respectively. The average
angles of 107◦ and 108◦ were considered for O-Si-O and O-Al-O in tetrahedra monomer
formation, defining each particle combination, respectively. Polycondensation unites the
monomers, causing them to touch at a singular point—the center of bonding oxygen, shared
by both particles (Figure 2). The images of the evolution of the three geopolymer systems
during the entire process are shown in Figure 3. The different monomer building units
(coarse-grained particles) are depicted with the following color codes: Si(OH)4 is given in
cyan; SiO(OH)3

−.Na+.3H2O in blue; SiO2(OH)2
2−.2Na+.6H2O in green; and Al(OH)4.−Na+

in red. Figure 3a–c shows the process for systems with pH 11, 12, and 13, extracted at a
certain number of iterations of 0, 40,000, 80,000, and 56,000,000, respectively. For systems 11
and 12, between iterations 40,000 and 80,000, there is a dissolution process of the metakaoli-
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nite particle, which is no longer clearly observed because it is in the middle of the system;
this process continues until iterations 382,400 and 220,000 are reached, at which point the
precursor particle is completely dissolved for the respective systems. For the system with
pH 13, at iteration 45,600, the precursor is completely dissolved, and at iteration 80,000,
the condensation process begins. At iteration 56,000,000, the final equilibrium condition
is observed for pH systems 11, 12, and 13, with a percentage of particles involved in the
formation of the gel of 66.46, 65.79, and 33.59%, respectively. Figure 4 illustrates the equilib-
rium conditions observed during the energy computation for the silicate-activated system
in three distinct pH systems following 8 million iterations within the solution, with the
exclusion of metakaolinite. As explained in our recent study [15], this process is performed
to reach an equilibrium condition with dissolved activator silicates at the beginning of the
simulation. Taking into consideration the variation in particle concentrations across the
three systems, an equivalent energy was computed based on the number of particles (see
Section 2.2). This calculation was undertaken to analyze fluctuations in energy and enable a
meaningful comparison between the system’s behavior. Observations revealed that equilib-
rium conditions characterized by energy convergence are achieved after 8 million iterations
for the systems with pHs 11 and 12. Conversely, for the system with pH 13, a more hetero-
geneous curve unfolds throughout the process, owing to the predominant molecule types
encapsulated within this system. The discrepancies in energy profiles among these systems
are attributed to the collective involvement of particles in the polymerization process, as
determined by DFT. As depicted by the results for pH systems 11, 12, and 13, featuring
respective values of −7207 kJ/mol, −2658 kJ/mol, and 2147 kJ/mol, the situation diverges
notably in the pH 13 system due to the prevalent monomer types and their distinct Gibbs
free energy characteristics. In this context, it is noteworthy that the formation of clusters
occurs even between particles not inherently predisposed to perform polymerization. This
phenomenon appears from the inclusion of a probability calculation in the computational
code, which activates when the energy fails to decrease and instead exhibits an increase
(refer to [15] for details).
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Figure 3. The evolution of the structures and cluster formation for the three different geopolymer sys-
tems extracted at a certain number of iterations of 0, 40,000, 80,000, and 56,000,000, respectively. The
point at which the metakaolin is added to the system is denoted at iteration 0, with pre-equilibration
taking place from iteration “8,000,000” to iteration 0. (a–c) (a) Represents the system with a pH of 11,
while (b) illustrates the system at pH 12, and finally, (c) depicts the system at pH 13.
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Figure 4. Energetic evolution of silicate particles in solution obtained for pH systems of 11, 12, and
13, where metakaolinite is not yet involved.

According to Figure 5, the point at which the metakaolinite is “added” to the system
is denoted at iteration 0, with pre-equilibration taking place from iteration “8,000,000” to
iteration 0. Therefore, the energy at the beginning of the simulation is not zero, owing
to the ore-equilibrium process involving the silicate monomers present in the solution as
activators. This energy trend remains consistent across the three pH systems (11, 12, and
13) displayed in Figure 5. It signifies a rapid decline in energy, indicative of metakaoli-
nite particle dissolution and the commencement of the polymerization process, during
which aluminum monomers from the metakaolinite particle become integral to the pro-
cess. After 40 million iterations, the energy trend starts to become more stable, and by
56,000,000 million iterations, the energies for pH systems (11, 12, and 13) converge to values
of 399,147 kJ/mol, 303,276 kJ/mol, and 284,970 kJ/mol, respectively. Given that these three
systems share equivalent dimensions but differ in particle quantities, an energy correction
was applied to ensure a precise correlation among their values.
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Figure 5. The equilibrium condition for three different pH systems was obtained through energy
minimization computation of the silicate particles (starting at 0 iterations) and metakaolinite for 8 mil-
lion iterations. The point at which metakaolinite is introduced to the system is denoted at iteration 0.
Thus, pre-equilibration takes place for additional “8,000,000” iterations (shown in Figure 3).
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Figure 6 is plotted to illustrate the evolution of the percentage of silicate and alumi-
nate monomers in the three distinct pH systems over the course of the simulation. At
the beginning of the process, the presence of aluminate monomers remains zero, as all
aluminate particles are initially confined within the metakaolinite particle. Conversely, the
total silicate monomers have an initial percentage at the beginning of the simulation: 8.27,
9.78, and 21.67% in the systems with pHs 11, 12, and 13, respectively. These initial values
are indicative of the silicate monomer content within the solution. The above-mentioned
results provide insights into the polymerization dynamics, particularly highlighting the
less pronounced polymerization observed in the pH 13 system as a result of the sum of
binding energies between the different particles, which are predominantly found in the
system, being less prone to the condensation process. As the simulation advances, there is
a rapid increase in the quantities of silicate and aluminate monomers during the precursor
dissolution. The iterations at which the highest amount of aluminate (Al(OH)4

−.Na+)
and silicate monomers (Si(OH)4, SiO(OH)3

−.Na+.3H2O, and SiO2(OH)2
2−.2Na+.6H2O) are

observed in each system coincide with the iterations marking the complete dissolution of
the metakaolinite particle. These values were obtained after 382,400, 220,000, and 45,600 it-
erations concerning the pH values of 11, 12, and 13, respectively. However, at iterations of
11,333,600 (pH 11) and 5,802,400 (pH 12), the proportion of aluminate monomers exceeds
that of silicate monomers, and this relative ratio remains the same until the end of the
simulation. In contrast to these systems, in the system with pH 13, the amount of silicate
monomers remains superior compared to that of aluminate monomers throughout the
simulation, without any significant changes.
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Figure 6. The change in the number of aluminate and silicate monomers present in the system during
56 million iterations for the different pHs. Metakaolinite particles are considered monomers only
when dissolved according to the dissolution process.

For a better understanding of the behavior of silicate monomers over the number of
iterations, Figure 7 has been plotted to specify the amounts of each silicate monomer present
as a single particle in three different pH systems (11, 12, and 13) during the simulation
process. This chart enables precise control over the program’s outcomes, offering a clearer
understanding of the specific instant during the process when these particles reach their
maximum concentration. This marks the conclusion of the dissolution phase and the
commencement of the polymerization process. The three different types of monomer
species, namely Si(OH)4, SiO(OH)3

−.Na+.3H2O, and SiO2(OH)2
2−.2Na+.6H2O, contributed

0.41, 7.45, and 0.41% (total 8.27%, as illustrated in Figure 5) at the commencement of
the simulation for pH system 11, respectively. In the case of pH system 12, the same
previously monomer species contributed 0, 7.82, and 1.96% (totaling 9.78%, as depicted
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in Figure 5), respectively. For the final system with a pH of 13, the contributions of the
previously elucidated monomers are 0, 6.50, and 15,17% (total 21.67%, as illustrated in
Figure 5), correspondingly.
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Figure 8 was plotted for a better understanding of the dynamics governing the poly-
merization process across all systems during the 56 million iterations. This figure can be
approximately divided into two distinct regions: the first region (before ~103 iterations) is
primarily dominated by the dissolution of the aluminate and silicate particles, although
the second region (after ~103 iterations) is dominated by the formation of the geopolymer
gel. At the initial stage, the percentage of aluminate and silicate monomers involved in the
condensation process for systems 11, 12, and 13 is 91.73, 90.22, and 78.33%, respectively
(excluding metakaolinite monomers). It can also be noted from Figure 5 that the presence
of the remaining monomers, which did not participate in the process, is about 8.27, 9.78,
and 21.67% for the corresponding systems 11, 12, and 13. As the iteration process advances,
this percentage of cluster evolution decreases, which means that the dissolution process
of the metakaolinite particle has begun. The percentage of monomers involved in the
gel formation reaches a minimum in the iterations 382,400, 220,000, and 45,600, with a
percentage of 42.51, 30.09, and 6.60% for systems 11, 12, and 13, properly. At this point, the
polymerization process begins; moreover, at the end of the polymerization and reorganiza-
tion processes, the total percentage of particles that participated in the gel formation is 66.46,
65.79, and 33.59% for each respective system. It is interesting to note that the proportion of
monomers involved in the evolution of cluster processes towards the culmination of the
simulation within the pH 11 and pH 12 environments exhibits a near double increase when
contrasted with the pH 13 system. Remarkably comparable outcomes are also perceptible
during the concluding stages of the processes in the pH 11 and pH 12 systems. Thus,
the pH affects, via the initial monomer speciation, the process of polycondensation and
reorganization of those species within the geopolymer gel.
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Figure 9 shows a combination of monomers and clusters through the iterations. Once
the simulation is started, the silicate and aluminate particles are continuously dissolved in
the solution until the system is supersaturated. It should be noted that the dissolution region
is relatively short compared to the iterations. In Figure 9, it is possible to analyze the point at
which the monomers and the cluster reach the same percentage for the pH 11–12 systems.
With values of 50% and 2,178,400 iterations for pH 11, and the same percentage but
with more iterations (4,876,000) for the pH 12 system. For the pH 13 system, this point
is never reached as particles are not so susceptible to carry out the condensation and
reorganization processes. The model with the fewest number of iterations needed to reach
the equilibrium state between particles that participated and those that did not participate
in the polymerization process is the pH 11 system. This system has the highest number
of particles but requires fewer iterations compared to the other models. The reason is the
percentage of silicate monomers that must be maintained throughout the simulation and
their energy values, which are more favorable for the geopolymer gel formation. While it
holds true that the system requiring a smaller number of iterations to attain equilibrium
between particles engaged in cluster formation and those not involved in said process is the
pH 11 system, it is noteworthy to observe a strikingly analogous pattern in the evolution
of the cluster dynamics between the pH 11 and pH 12 systems throughout the entirety of
the simulation, with a difference of 0.67%, as depicted in the graph. At the culmination
of the simulation, the results indicate values of 66.46, 65.79, and 33.59%, representing
the percentage of particles engaged in gel formation for systems with pHs 11, 12, and 13,
respectively. Conversely, three percentages of 33.54, 33.21, and 66.41% were attributed
to particles that remain uninvolved in any polymerization processes. Figure 9 further
displays a very high percentage of SiO(OH)3

−.Na+.3H2O and SiO2(OH)2
2−.2Na+.6H2O

monomer contents for the pH 13 system after the first 8,000,000 iterations. This is due to the
incompatibility of these two particles to perform the condensation process; this has already
been discussed in other sections of this article. This results in a larger pore volume at the
end of the process. Figure 10 shows the evolution of the metakaolinite particle throughout
the process for the three different systems. The decrease in particle size is an indication of
the degree of dissolution of the precursor particle, with both silicate and aluminate species
being released back into the solution until the solution is supersaturated. The systems show
the same trend, and at iterations 382,400, 220,000, and 45,600, the precursor is completely
dissolved for pH systems of 11, 12, and 13, respectively.
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Figure 10. Dissolving process of metakaolinite during 56 million iterations.

Figure 11 illustrates the distribution of the pore sizes for all the systems. In our recent
study [10], the results of the pore analysis were compared with the results of Yang [11],
showing the closeness of our results to the results obtained by them through the exper-
imental methods. The focus on this model now is to be able to analyze this behavior at
a microporous level between the three different systems to visualize the influence of the
monomer type on the final state of the geopolymer gel. The pores in the three systems
are comprised as follows: The pH 11 system features a 1.26 nm pore diameter region with
a probability of 59.03%. Meanwhile, the pH 12 system displays a region with a 1.39 nm
pore size, comprising 49.80% of the probability density. Finally, the pH 13 system, which
is the one containing the least number of particles (see Table 2), has a higher probability
of 28.84% for a pore size of 1.67 nm. The differences in the curves allow observing the
influence that pH has on the final composition of the gel, making it clear that it is a value
that directly affects its structure. For the system with pH values of 11, and 12, a tendency for
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coarsening its final pore structure is observed. For the system shown in the green-colored
graph (pH 13), a tendency to contain pores with larger diameters is noted, attributed to its
higher percentage of monomers at the end of the simulation.
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Figure 12 depicts the cumulative pore volume observed in each system upon the con-
clusion of the simulation. The findings showcase a dry density of 2.50 g/cm3, 2.46 g/cm3,
and 2.52 g/cm3 for the systems characterized by pH levels 11, 12, and 13, respectively. There
is a noticeable trend in which pore dimensions increase with increasing concentrations of
the monomers Si(OH)4, Al(OH)4

−.Na+, and SiO(OH)3
−.Na+.3H2O, which are crucial for

pH stabilization in each system. Figure 13 illustrates the connectivity analysis among pores
within each system, revealing a closely aligned trend between the pH 11 and 12 systems.
Both demonstrate a prevalent tendency towards pores exhibiting 11 connections. Con-
versely, the pH 13 system displays a slightly left-shifted curve, indicating a prevalent
pore connection trend of 9. This distinction arises from the substantial accumulation of
monomers in the system’s final stages, as previously discussed.
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graphene-based nanomaterials [41,42], using the same system as this study did for 
geopolymer nucleation. It will leverage recent DFT-computed adsorption energies, as 

Figure 13. Pore connectivity. In this graphical representation, an analysis of the interconnections
among the pores in each system is viable.

Figure 14 provides a comprehensive analysis of cluster size formation for the three
systems. Notably, it reveals a prevailing trend wherein the conclusion of the process
demonstrates a higher count of monomers in contrast to the number of clusters. Moreover,
a consistent observation across all three systems manifests a predilection for an increased
occurrence of clusters composed of two to three particles. These numerical trends elucidate
the direct impact of pH variations on the formation and distribution of clusters and pores
within the simulated environments.

Materials 2024, 17, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 13. Pore connectivity. In this graphical representation, an analysis of the interconnections 
among the pores in each system is viable. 

Figure 14 provides a comprehensive analysis of cluster size formation for the three 
systems. Notably, it reveals a prevailing trend wherein the conclusion of the process 
demonstrates a higher count of monomers in contrast to the number of clusters. Moreover, 
a consistent observation across all three systems manifests a predilection for an increased 
occurrence of clusters composed of two to three particles. These numerical trends 
elucidate the direct impact of pH variations on the formation and distribution of clusters 
and pores within the simulated environments. 

 
Figure 14. Cluster distribution. The y-axis shows the total number of clusters, and the x-axis 
describes the number of particles in each cluster. The clusters that have a particle count of 1 are the 
monomers in the system. 

The future study aims to simulate mesoscale geopolymer composites, incorporating 
graphene-based nanomaterials [41,42], using the same system as this study did for 
geopolymer nucleation. It will leverage recent DFT-computed adsorption energies, as 

Figure 14. Cluster distribution. The y-axis shows the total number of clusters, and the x-axis describes
the number of particles in each cluster. The clusters that have a particle count of 1 are the monomers
in the system.
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The future study aims to simulate mesoscale geopolymer composites, incorporating
graphene-based nanomaterials [41,42], using the same system as this study did for geopoly-
mer nucleation. It will leverage recent DFT-computed adsorption energies, as reported by
Izadifar et al. [43], between graphene-based nanosheets and geopolymers with identical
monomer units.

4. Conclusions

This research investigated the impact of pH on aluminosilicate gel nucleation using an
enhanced off-lattice coarse-grained Monte Carlo (CGMC) computational approach. The
tetrahedral geometry of aluminate and silicate monomers, including their binding energy
parameters, is obtained from DFT simulations. Key findings include:

1. A methodology for efficient expansion of CGMC system sizes with increased particle
counts using the Octree Cell method, reduces waiting times, and harnesses the benefits
of parallel high-performance computers.

2. A CGMC methodology to computationally study the critical role of pH in governing
dissolution, polycondensation, and reorganization mechanisms in geopolymer mate-
rials. As a result, systems with pH levels of 11 and 12 exhibit notably similar behavior
regarding the smaller quantity of remaining monomers at the end of simulations,
displaying a marginal difference of merely 0.67%. Conversely, the system with pH
13 showcases a higher monomer content by the simulation’s conclusion, depicting
a 32.87% increase compared to the pH 11 system and a similar 32.20% increase in
contrast to the pH 12 system. The same values are represented for the behavior of the
monomers in the polycondensation process; nevertheless, a difference of 2,697,600
(out of total 56 millions iterations) iterations is identified between the systems with pH
11 and 12 to reach the equilibrium between particles contributing to cluster formation
and those persisting as monomers throughout the simulation. It is evident that the
pH 11 system, whith the largest number of particles among pH 11 to 13), achieved
equilibrium in the shortest duration.

3. Digital image analysis of porosity revealed a direct link between higher pH levels,
increased porosity, and the prevalence of monomer species. Similarities in the poly-
condensation processes of systems at pH 11 and 12 tend to coarsen the final pore
structure with increasing pH. The comparative analysis between systems 11 and 12
shows an observed increase of 10.31% in pore dimensions, while the comparison
between systems 11 and 13 shows a discernible increase of 32.53% in pore dimensions.
pH 13 contains pores with larger diameters, in agreement with the higher percentage
of monomers at the end of the simulation.
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Appendix A

Table A1. Bond lengths defining the coarse-grained particle size for each particle, resulting in the
dimerization reactions of Si-O-Al and Si-O-Si, as denoted in Figure 2.

Atoms Bond Length (Angstrom)

O1-Si1 1.64
O2-Si1 1.64
O3-Si1 1.66
O4-Si1 1.63
O4-Si2 1.64
O5-Si2 1.64
O6-Si2 1.64
O7-Si2 1.64
O8-Al1 1.76
O9-Al1 1.76

O10-Al1 1.77
O11-Al1 1.76
O11-Si3 1.63
O12-Si3 1.65
O13-Si3 1.65
O14-Si3 1.64

Table A2. Angles between atoms defining the coarse-grained particle size for each particle, resulting
in the dimerization reaction of Si-O-Al and Si-O-Si, as denoted in Figure 2.

Atoms Angle (Degree)

O1-Si1-O2 106.74◦

O2-Si1-O3 106.97◦

O3-Si1-O4 104.25◦

O4-Si1-O1 110.56◦

Si1-O4-Si2 138.28◦

O4-Si2-O5 104.21◦

O5-Si2-O6 107.15◦

O6-Si2-O7 108.41◦

O7-Si2-O4 109.46◦

O8-Al1-O9 107.72◦

O9-Al1-O10 110.84◦

O10-Al1-O11 102.20◦

O11-Al1-O8 111.33◦

Al1-O11-Si3 135.12◦

O11-Si3-O12 109.02◦

O12-Si3-O13 104.84◦

O13-Si3-O14 111.35◦

O14-Si3-O11 110.30◦
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