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Abstract: A flow field analysis was performed in this research using the ANSYS Fluent module,
and a dynamic heat source employing UDF was constructed using the DEFINE_PROFILE macro. A
VOF model was developed to track the volume fraction of each fluid throughout the computational
domain as well as the steady-state or transient condition of the liquid–gas interface in the free liquid
surface area. To determine the distribution state and regularity of the molten pool flow field, the
flow field velocity was calculated iteratively by linking the Simple algorithm with the horizontal
set method. The molten pool was concave, indicating that the key hole was distributed narrowly.
Inserting cross-sections at different depths yielded the vector distribution of the molten pool flow
velocity along the depth direction. We set up monitoring sites along the molten pool’s depth direction
and watched the flow change over time. We investigated the effects of the process parameters on the
flow field’s vector distribution.
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1. Introduction

304 stainless steel has great corrosion resistance, can be used in most acidic situations
for a long time, and has a high strength and toughness [1–3]. It can also survive the erosion
caused by various corrosive media at room temperature, such as oxidation, alkalinity,
and high temperature, and is, thus, widely used in food processing equipment, pressure
vessels, chemical equipment, medical equipment, building decorations, car parts, and in
other sectors. However, the low hardness and poor wear resistance of 304 stainless steel
severely limit its industrial applications [4]. As a result, the application of a high-entropy
protective coating to the surface of stainless steel can significantly extend the service life of
severe wear strips under high-temperature settings. There have been few studies on how
to improve the performance of 304 stainless steel with high-entropy alloy coatings.

High-entropy alloys are significantly better than conventional metals because of their
high hardness, high toughness, and high thermal stability as well as their good wear
resistance, corrosion resistance, and other factors [5]. Under some special conditions, high-
entropy alloys can even break the limits of existing materials, so they have become a hot
spot within the development of material science [6–8]. Therefore, the preparation of a
high-entropy protective coating on the surface of stainless steel could effectively extend the
service life of severe wear strips under high-temperature conditions.
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The process parameters typically used have a significant impact on the shape and
coating quality of the final clad layer. The parameters of the laser cladding process include
the laser power, scanning speed, defocus amount, protective gas, and so on. The laser
power determines the temperature and depth of the covered area, which usually needs to
be adjusted according to the material type and thickness. The scanning speed affects the
speed of movement on the material’s surface and affects the thickness and compactness
of the cladding layer. Goodarzi et al. [9] analyzed the influence of laser cladding process
parameters on the geometry of the composite layer and analyzed the cladding results,
concluding that the laser power and cladding speed are the main parameters in controlling
the width of the cladding layer. Hofman et al. [10] used a novel method to determine the
envelope geometry. The correlation between the observable melt pool characteristics and
dilution was investigated using this model. Different combinations of the cladding speed,
laser power (distribution), and substrate temperature were simulated. The simulation
results were compared to the experimental results with high agreement. Benarji et al. [11]
performed a finite element analysis of the L-MD to understand the thermal behavior
governing the microstructural features (grain size and morphology). The input parameters
of the L-MD were the effects of the scanning rate, powder feeding rate, and laser power on
the cladding height and width and the variation in the solidification rate and temperature
gradient under various process parameters. The composite width and height increased
significantly with the laser power and the powder feeding rate but decreased with the
scanning rate.

The laser melting process involves a high-temperature melting and rapid cooling
process, which results in a harsh environment that is difficult to monitor. The laser cladding
process is accompanied by a variety of heat exchanges, such as heat conduction, heat
convection, and heat radiation, and the thermal change is difficult to analyze through
experiments, so the use of a numerical model that reproduces the physical process can
reduce the experimental period and cost [12]. Afshari et al. [13] used finite element tech-
niques to simulate the laser cladding process to assess the effects of the scanning rate and
laser power on the changes in the microstructure, geometry, and temperature of Inconel
718. It was shown that by increasing the scanning rate and decreasing the laser power,
the height and length decreased, as the heat transfer to the sample was faster than its
temperature rise speed. Hao et al. [14] constructed an adaptive cladding layer and mobile
heat source models through an inverse modeling method, which realized the temperature
distribution of laser cladding with different process parameter combinations, and they
verified the effectiveness of the proposed model through the numerical and experimental
results. Khomenko et al. [15] developed a new, coupled kinetic model of heat transfer
and coagulation for optimizing microstructures in laser additive manufacturing applica-
tions. Their developed model had a fairly good agreement with the experimental data.
In this paper, the influence of the processing parameters on the orbital macroscopic and
microscopic parameters are analyzed. A method for changing the average crystal size and
simultaneously preserving the orbital height and width is proposed.

2. Mathematical Modeling of Single-Track Laser Cladding
2.1. Model Building and Meshing

The cuboid model developed in this study was established using the ICEM CFD
module in the ANSYS 18.2 software, as shown in Figure 1. The lower layer was a stainless-
steel substrate, and the powder layer reflow field in the upper layer became an area of
free liquid level change. Because the substrate powder is basically symmetrical in the
actual cladding process, it could be divided from the symmetry surface, and half of the
model could be built to reduce the calculation amount in the simulation process. After
establishing the basic model, the six faces of the model needed to be named to impose the
boundary conditions on each face using the Fluent 18.2 software. After naming the six
sides of the model, the edges were linearly cut at the absolute value through the Blocking
module. The closer the mesh is to the molten pool, the denser the mesh division is, so the
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edges of the near seam area needed to be divided into more nodes, and each segment was
0.1 mm. The partition grid could be previewed in Pre-mesh. The model had 100,560 units.
If the preview grid met the requirements, the formal grid was generated through the Load
from the Blocking module, and the model was exported. The process parameters of this
simulation test are shown in Table 1. The total time step calculated by the simulation was
1 s, and the sub-time step was 0.001 s.
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Table 1. Laser cladding process parameters.

Number Laser Power
(W)

Scanning Speed
(mm/s)

Defocusing
Amount (mm)

Spot Radius
(mm)

1 2000 10 40 1
2 2500 10 40 1
3 3000 10 40 1
4 2500 5 40 1
5 2500 15 40 1

2.2. The User-Defined Function (UDF) Loads the Heat Source Model

The UDF is a user−defined function that can be passed to the solver, and is essentially
a set of macros, each with its own role. The compilation of the UDF can complete many of
Fluent’s dynamic processes, such as the loading of heat sources. The wall heat source of the
laser cladding process is not static but moves along the direction of the laser scan. Firstly,
the heat flux density of the laser heat source is not uniformly distributed (it can be Gaussian,
biellipsoidal, annular heat source distribution, etc.); secondly, the heat source sweeps across
the plane, changing the heated area in the space. In this scenario, the heating surface could
not be simply defined as a constant heat flux density, and the UDF must specify the thermal
wall surface to simulate the scanning heating of the heat source. This simulation applied a
dynamic heat source by writing a UDF via the DEFINE_PROFILE macro.

When using the attenuation heat source model to solve the problem, a heat source
outside the molten pool is present. The heat generation area in the molten pool is larger the
closer it is to the thermal escape surface, while the heat generation area outside the molten
pool is smaller. However, this is inconsistent with reality. Therefore, a Gaussian rotating
heat source model with the heat flow changing with the depth was selected. The function
expression is shown in the following equation [16]:

q(x, y, z) =
3MQ

πH
(

1− 1
e3

) exp

− 3M

log
(

H
z

)(x2 + y2
) (1)
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where H is the heat source height, Q is the heat input rate, and M is the heat source
concentration coefficient.

The heat source concentration coefficient M is a function of the heat source radius
correlation, as follows:

M =
3

R0
(2)

2.3. The Underlying Assumptions of the Model

Fluid movement is a complex physical process in practical problems. There are many
factors affecting the viscosity and compressibility of a fluid. In the process of laser melting,
the interaction process between the laser beam and the powder layer and substrate is also a
complex process. Therefore, to simulate the model, certain assumptions must be made:

1. This article ignored the thermal recoil pressure of metal evaporation and the influence
of the protective gas on the free interface of the melting tank.

2. The influences of the surface tension of the molten pool and the recoil pressure on the
morphology and flow of the molten pool were considered.

3. The liquid in question was an incompressible Newtonian liquid, and the molten pool
liquid exhibited laminar flow. The material was isotropic, and its heat did not vary
with the position.

3. The Volume of Fluid (VOF) Model and the Simple Algorithm
3.1. VOF Model

To simplify the model, we only considered the melting tank and air phases. The
numerical analysis of the interface between two insoluble fluids is typically handled using
the Lagrangian and Euler methods [17]. Compared with the Lagrangian method, the Euler
method addresses the significant interface deformation that occurs during laser melting.
The Euler method encompasses several techniques, including the phase field method, the
horizontal set method, and the diffuse reflection interface method. The selected method
was the VOF method. The VOF model was used to divide the fluid into small cells (or
grids) and define the volume fraction within each cell, representing the proportion of the
volume containing a substance in that cell to the total volume. Then, the volume fraction
within each cell was updated by calculating the mass and momentum transfer between
each of the phases in the fluid. The velocity, pressure, and other physical parameters of the
fluid were also calculated.

The VOF model was used to introduce the air-phase volume fraction αg and the
alloy-liquid-phase volume fraction αA. the following constraints also needed to be met for
the two-phase volume fraction:

αg + αA = 1 (3)

The interface between the two phases can be tracked by solving the continuity equation
for their volume fraction, as described in the following equation [18]:

1
ρA

[
∂

∂t
(ρAαA) +∇·(ρAαA

→
v )] = Sαg +

n

∑
αA=1

( .
mgA −

.
mAg

)
(4)

where ρA is the alloy liquid density,
→
v is the fluid flow rate,

.
mgA is the mass transfer from

the gas phase to the alloy liquid phase, and
.

mAg is the mass transfer from the alloy liquid
phase to the gas phase.

According to the volume fraction of one phase, it is possible to determine the corre-
sponding phase of cell. This can be achieved as follows:

αA = 1 −− Liquid phase (5)

0 < αA < 1 −− Air and liquid border (6)
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αA = 0 −− Gaseous phase (7)

However, it is difficult to solve the complex discontinuity fluid problem. In order to
solve the problem of discontinuity interface crossing, we used the horizontal set method
in conjunction with the VOF model. The VOF model was coupled with the horizontal set
method in laser cladding to investigate the flow behavior of the melting tank. This was
achieved by tracking the liquid–gas interface between the air and the melting tank. The
horizontal set method (level set) is a technique for analyzing curve or surface evolution.
It was first proposed by Osher and Sethian in 1988. Since then, it has become a popular
technique in the fields of computational fluid mechanics, image processing, and geometric
modeling. The scalar function (horizontal set function) is used to define the position and
shape of the fluid interface. The fluid interface is represented by the isosurface of the
horizontal set function, as shown in Figure 2. The interface of the two phases is indicated
by the red ellipse. The simulation of the motion and deformation of the fluid interface can
be simulated by evolving the level set function. The evolution of the level set function is
described by a partial differential equation, or the level set equation, a partial differential
equation that uses curvature flow to drive its evolution. The equation for the horizontal set
can apply force on a fluid interface or curve, causing it to move along the gradient direction
and adjust its shape based on the curvature.
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3.2. Simple Algorithm

Solving the three major control equations in fluid mechanics, namely the mass equa-
tion, the momentum equation, and the energy equation (the generalized N-S equation),
is a challenging task. The difficulty in solving the N-S equation mainly arises from the
following three points: (1) the N-S equation contains three velocity field equations, namely
Ux, Uy, and Uz, but it lacks the corresponding pressure equation. (2) The momentum
equation is also obtained through the continuous equation constraint as the three velocity
field equations are solved. (3) In the case of incompressible isothermal flow, the density
and temperature remain constant and cannot be determined through the equation of state.
To address the computational challenges with the N-S algorithm, the Simple algorithm was
used for this simulation. The Simple algorithm [19] is an iterative method used to solve the
pressure and velocity components of the N-S equation. The algorithm’s core involves two
steps: (1) deriving the pressure equation from the momentum equation and the continuity
equations and (2) correcting the velocity field to satisfy the continuity equation. The process
is as follows:
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1. The velocity field is first solved by the momentum equation, where the velocity does
not satisfy the following continuous equation:

MU = −∇p (8)

2. The pressure field is solved by Poisson’s ratio with the following formula:

∇ ·
(

A−1∇p
)
= ∇ ·

(
A−1H

)
(9)

3. After obtaining the pressure field, the velocity field can satisfy the
continuous equation.

4. The Force of the Molten Pool
4.1. Recoil Pressure of the Molten Pool

During the process, the metal liquid will vaporize when it reaches boiling point. This
will create a reverse pressure on the molten pool, causing its surface to sink. The laser can
then directly hit the bottom of the pit to create a thin and narrow shape of the molten pool.
This process continues until the recoil pressure reaches a dynamic balance with the surface
tension and gravity of the liquid metal. The pressure resulting from the recoil acts on the
wall surface of the hole perpendicular to the air–liquid interface. Semak V. proposed the
recoil pressure model [20] as follows:

Pr = 0.54P0 exp
(

∆Hv
T− Tb
RTTb

)
(10)

In the formula, P0 is the ambient pressure, ∆Hv is the evaporative and latent heat of
the material, T is the Spoon hole wall temperature, Tb is the boiling point of the material,
and R is the ideal gas constant.

4.2. Heat Buoyancy of the Molten Pool

The buoyancy of the pool thermal energy is typically combined with natural or forced
convection and is influenced by several factors, including the welding parameters, material
properties, environmental conditions, etc. During the melting process, the flow rate of
the molten pool is slow, and the flow area is small; thus, the Boussinesq assumption is
used. The Boussinesq assumption is based on the buoyancy effect of a small change in fluid
density, which creates a buoyancy perpendicular to the density gradient. This buoyancy
can be calculated by introducing a term called the Boussinesq approximation:

F = −ρ0β(T− T0)g (11)

In the formula, ρ0 is the density of fluid, β is the volume expansion system, and T0 is
the reference temperature.

4.3. The Surface Tension of the Molten Pool

During laser melting, the flow behavior of the molten pool is largely dependent on the
magnitude and direction of the surface tension. The surface tension flow is caused by a
surface tension gradient. As the temperature increases, the surface tension constantly de-
creases, and the two are negatively correlated. When the temperature gradient is generated,
the surface tension gradient of the molten pool also follows. Therefore, the calculation of
the surface tension can be simplified using the following equation:

σ = σ0
m +

dσ
dT

(T− Tm) (12)

whereσ0
m is the surface tension of the pure metal at the melting point, and Tm is the

melting point of the metal.
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5. Results and Discussion
5.1. Dynamic Evolution of the Flow Field of Laser-Coated High-Entropy Alloys

The morphology of the power of 2500 W and the surface flow velocity vector distribu-
tion with a scanning speed of 10 mm/s are shown in Figure 3a. The temperature range was
301–1671 K, which corresponded to the room temperature and the melting temperature
of the metal substrate. The molten pool was concave, resembling a spoon with a wide
top and narrow bottom. The material was rapidly vaporized by the laser, producing a
pressure that emitted the molten metal and formed a spoon-shaped hole. The laser melted
and evaporated the surface of the material. If the evaporation speed is large enough, the
steam recoil pressure can overcome the tension of the liquid metal surface and liquid
gravity, causing the molten pool in the liquid metal at the laser zone to become concave
and form a small pit. The beam acted directly at the bottom of the pit, causing the metal
to melt and gasify further. The high-pressure vapor then forced the liquid metal around
the molten pool, deepening the hole. This process continued until a hole was formed in
the liquid metal. The temperature at the center of the molten pool was the highest, and
it spread to all sides. When the metal vapor pressure generated by the laser beam in the
hole reached equilibrium with the surface tension and gravity of the liquid metal, a stable
hole was formed without further deepening. The maximum flow rate was observed at the
center of the molten pool due to the combined action of the recoil pressure and surface
tension, gradually decreasing towards the periphery. When the flow rate of the molten
pool decreased to a certain extent, the liquid metal moved from the center of the laser
beam to the periphery of the molten pool due to the negative temperature coefficient of
the surface tension. As a result, the flow rate of the molten pool rose again, exhibiting a
wave-like pattern.
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Figure 3. (a) Morphology of the molten pool; (b) vector distribution of flow velocity on the surface of
the molten pool.

5.2. Distribution of Molten Pool Flow Fields at Different Depths

In order to study the flow field distribution within the steady-state melting tank, this
simulation observed the symmetrical cross-section of the molten pool. Monitoring points
A, B, C, and D were selected at different depths of the molten pool, and the velocity change
curve over time is shown in Figure 4. It is evident that the molten pool had a flow rate of 0
before t = 0.001 s, indicating its initial formation at this time. The flow rate of the molten
pool increased over time and reached its peak at t = 0.006 s. Subsequently, the monitoring
point gradually decreased, with a faster decline rate closer to the bottom of the molten pool.
The laser’s rapid heating caused a decrease in the molten pool temperature gradient and
the liquid surface tension, resulting in a sudden decrease in the flow rate of the detection
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point at t = 0.003 s. The decrease was closer to the bottom of the molten pool. The maximum
flow rate decreased as the molten pool depth increased. This was due to the greater friction
force between the unmelted substrate and the molten pool fluid, which hindered the liquid
flow as the pool approached the bottom. The flow rate in the upper part of the molten pool
exceeded both the recoil pressure and the surface tension.
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To investigate the distribution of the flow field inside the molten pool, we obtained
the velocity vector distribution of the molten pool flow along the depth direction, as shown
in Figure 5. As the section depth decreased, the overall velocity of the molten pool slowed
significantly, and the wavy velocity distribution caused by the surface tension gradually
disappeared. The surface tension of the molten pool section increased as it approached
the heat source due to its proximity to the heat source and the higher temperature. Each
section of the molten pool had an upward flow trend, which weakened as the section depth
decreased continuously.
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Figure 5. Distribution of molten pool flow fields with different depth cross-sections.

A plane perpendicular to the laser scanning direction was inserted at the center of the
molten pool, and its flow rate distribution vector is shown in Figure 6. On the far-left-hand
side of the vector distribution map, there is a symmetric line on the symmetry surface. This
line reflects the flow rate distribution at the center of the molten pool. The molten pool
had vortices of varying sizes distributed along the symmetry line. The flow rate of the
molten pool corresponded to the distribution of the molten pool flow field in different cross-
sections. This distribution was affected by the large surface tension and recoil pressure,
causing the vortex at the bottom and closer to the center of the pool to have a greater flow
rate. Technical terms are explained when first used.
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5.3. Effect of Laser Power on the Flow Field of Laser-Coated High-Entropy Alloys

The convection within the molten pool occurred primarily in the cross-section parallel
to the laser scanning direction, specifically at the symmetric surface. In order to study the
influence of the laser power on the molten pool flow field, three molten pool flow fields
with laser powers of 2000 W, 2500 W, and 3000 W, all with a scanning speed of 10 mm/s,
were selected for comparison, as shown in Figure 7.
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The molten pool exhibited the highest flow rate at its top and the lowest at its bottom.
At the bottom and top of the molten pool, two symmetrical vortices appeared on the left
and right, respectively. The center of the molten pool is where the vortices intersected. The
left vortex was primarily sustained by the residual heat from the scanning and the heat
conduction from the front end. As a result, the flow vector distribution was diluted, and the
maximum flow rate was lower than that of the right vortex. As the laser cladding power
increased, the highest flow velocity in the molten pool also increased gradually. This was
due to the fact that the laser cladding process was mainly affected by the recoil pressure
and the liquid surface tension. As the laser power increased, the temperature of the hole
surface also increased. This, in turn, increased the recoil pressure and liquid surface tension,
enhanced the convection effect, and increased the flow velocity in the molten pool. At
2000 W, the vortex flow at the bottom of the molten pool was more pronounced. As the
power increased, the temperature gradient difference at the bottom of the molten pool
gradually decreased, weakening the convection at the bottom and resulting in a more stable
flow field.

5.4. Effect of Scanning Speed on the Flow Field of Laser-Coated High-Entropy Alloys

The speed at which the scanning is conducted has an impact on the flow field of
the high-entropy alloy melting cell during laser melting. An experiment was conducted
using a laser power of 2500 W at three different speeds: 5 mm/s, 10 mm/s, and 15 mm/s.
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Figure 8 shows the distribution of the flow field and the velocity vectors at the interface
of the molten pool. As the scanning speed increased, the heat input decreased, resulting
in a smaller temperature gradient in the molten pool. Therefore, the size of the molten
pool constantly decreased. Simultaneously, the increase in the scanning speed reduced
the heat accumulation at the back end, causing the left vortex to continuously decrease.
The maximum flow rates of the molten pool, as calculated from CFD-POST, were 3.5 m/s,
4.6 m/s, and 4.8 m/s, respectively. As the velocity of the laser sweep surface increased,
the maximum flow velocity in the molten pool also increased. This was due to the heat
accumulation decreasing, resulting in a reduction in the heat absorption per unit time. As a
result, the temperature gradient increased, which in turn increased the inner surface tension
of the molten pool, driving more intense convection at the top of the molten pool. The
velocity vector at the bottom of the molten pool decreased as the scanning speed increased.
At a speed of 5 mm/s, a vortex was clearly visible at the bottom of the molten pool. At a
scanning speed of 15 mm/s, the convection effect at the bottom of the molten pool was
negligible, and the fluid flow rate stabilized. A scanning speed that is too fast reduces the
heat input, resulting in a smaller temperature gradient at the bottom of the molten pool
and a decrease in the surface tension, which in turn leads to a smaller bottom flow rate.
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5.5. Comparison with the Other Numerical Simulations

Grange et al. [21] established a three-dimensional finite element model of Inconel
738 laser coating that considered the temperature, stress, and flow fields. The molten pool
flow vector map at the interface was plotted, as shown in Figure 9. The molten pool had a
wide keyhole shape at the top and narrowed at the bottom, and the maximum flow rate
of the molten pool was at the top, and the flow rate decreased as the depth decreased.
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Compared to the simulation results presented here, the distribution of the fluid vectors in
the molten pool was in agreement.
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6. Conclusions

This paper presented an analysis of the flow law of fluid inside the molten pool under
different processing parameters of the laser cladding flow field. It also investigated the
influence law of the laser power and scanning speed on the flow field. The main conclusions
are as follows:

1. At t = 0.001 s, the pool was formed. At t = 0.003 s, the flow rate suddenly decreased
and then increased and reached a peak at t = 0.006 s. The molten pool exhibited a
keyhole effect due to the recoil pressure, resulting in a wide and narrow hole. The
surface flow velocity vector of the molten pool decreased initially and then increased
in waves. Along the depth direction, the flow velocity at the top of the pool was much
higher than at the bottom of the pool.

2. With decreasing the depth of the molten pool in different cross-sections, the overall
flow rate of the molten pool slowed down. The wavy distribution shape gradually
disappeared, and the molten pool had an upward flow trend. The trend became more
intense closer to the top of the molten pool.

3. The velocity of the flow in the molten cell increased with the increase in the laser
power, and the maximum flow velocity appeared at the top of the molten pool. When
the laser power was low, there was a noticeable eddy current at the bottom of the
melting pool. As the eddy current gradually dissipated, the flow rate at the bottom of
the melting pool gradually stabilized.

4. With an increase in the scanning speed, the size of the melting pool decreased. Ad-
ditionally, the left and bottom vortices of the melting pool also decreased, while the
bottom flow velocity of the melting pool gradually decreased and the apical flow
velocity increased.

Author Contributions: D.T.: conceptualization, methodology, software, writing—original draft,
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draft, writing—review and editing. Z.H.: supervision, formal analysis, software, validation. X.L.:
visualization, investigation. Y.G.: visualization, investigation. X.F.: writing—review and editing. Z.X.:
writing—review and editing. X.S.: writing—review and editing. W.L.: writing—review and editing.
All authors have read and agreed to the published version of the manuscript.
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