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Abstract: In the present study, a piecewise-integrated composite bumper beam for passenger cars
is proposed, and the design innovation process for a composite bumper beam regarding a bumper
test protocol suggested by the Insurance Institute for Highway Safety is carried out with the help
of machine learning models. Several elements in the bumper FE model have been assigned to be
references in order to collect training data, which allow the machine learning model to study the
method of predicting loading types for each finite element. Two-dimensional and three-dimensional
implementations are provided by machine learning models, which determine the stacking sequences
of each finite element in the piecewise-integrated composite bumper beam. It was found that the
piecewise-integrated composite bumper beam, which is designed by a machine learning model, is
more effective for reducing the possibility of structural failure as well as increasing bending strength
compared to the conventional composite bumper beam. Moreover, the three-dimensional implemen-
tation produces better results compared with results from the two-dimensional implementation since
it is preferable to choose loading-type information, which is achieved from surroundings when the
target elements are located either at corners or junctions of planes, instead of using information that
comes from the identical plane of target elements.

Keywords: composite material; bumper beam; machine learning; stacking sequence; piecewise-
integrated composite

1. Introduction

The improvement in the crashworthiness of automobiles cannot be overestimated. The
National Highway Traffic Safety Administration estimated that over 60% of cases among
11,927 fatal passenger car accidents were due to frontal collisions, and frontal collisions
were found to be the most harmful accident in 2021 [1]. This, together with a range
of environmental concerns and social pressures backed by legislation, has led and will
continue to lead to highly innovative design involving lighter materials such as light metals
and composites [2–5]. The use of composite materials, however, is also governed by their
ability to meet the increasing demands for crashworthiness, with the ultimate goal being
the reduction of occupant harm and/or vehicle damage [5,6]. During the frontal collision, a
bumper beam is the first exposed part in the passenger car onto the barrier or the other car;
therefore, it is crucial to design the bumper beam in order to maximise its load-resisting
capability [6–8]. In the meantime, it has been found that composite products, which are
designed based on conventional methods with a simple combination of several stacking
sequences, are no longer competitive. The best way to achieve structural performances
beyond the limits without a weight-saving effect is by applying either artificial intelligence
techniques or machine learning models [9].

Of particular interest to this study is designing a composite bumper beam with the
help of machine learning models in order to improve its load-resisting capability beyond
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the current limit. The objective is to improve the crashworthiness of the composite bumper
beam, since crashworthiness depends on external load-resisting capability at a certain level
of deformation.

Kim et al. [10] suggested an optimised design for a hybrid glass/carbon mat thermo-
plastic composite bumper beam and showed effective weight reduction with improved
impact performance. Belingardi et al. [11] suggested lightweight materials as well as a
manufacturing process for a composite bumper beam. Liu et al. [12] applied particle swarm
optimisation to the design of an automotive composite bumper system. Rao et al. [13]
analysed the crash behaviour of bumper beams made of several materials with different
thicknesses, and the material with the highest yield strength was recommended for manu-
facturing bumper beams. Kong et al. [14] performed a structural design on an automotive
hood with a natural flax fibre/vinylester composite. Wang et al. [15] proposed a bumper
beam with periodic inner hexagonal cellular structures in order to achieve negative Pois-
son’s ratio characteristics for improving energy absorption capability during crashes. As
shown so far, there have been many studies on improving the characteristics by changing
the material of the bumper beam; however, the entire range of composite bumper beams
has been made based on a conventional single-style stacking sequence without applying
other types of stacking sequences over the entire region of the composite structure.

Jeong et al. [16] proposed a novel concept of PIC (piecewise-integrated composite), in
which the loading type of bumper beam was analysed and dissimilar stacking sequences,
i.e., tension-dominant, compression-dominant, and shear-dominant stacking sequences,
were assigned into five macro sub-regions of the composite bumper beam. Even though a
PIC bumper beam showed a slight possibility to improve load-resisting capability, its result
was far from satisfactory since external loading types altered based on a finite element size
scale, i.e., each local element of the bumper beam model was experiencing different types
of loading during a crash.

Consequently, it is necessary to automatically assign robust stacking sequences against
different loading types to each finite element of a composite bumper beam model, and the
most efficient way to assign dissimilar stacking sequences to all elements is using machine
learning models.

The aim of the current work is to design a PIC bumper beam using machine learning
models in order to improve its external load-resisting capability, i.e., bending strength
beyond the current limit.

A preliminary FE (finite element) crash analysis, which regards the bumper test
protocol suggested by IIHS (Insurance Institute for Highway Safety) [17], reveals external
loading types acting on selected finite elements or reference elements of a bumper beam.
An FE model and machine learning algorithms are applied in order to effectively classify
the loading types of every finite element of a bumper beam. Meanwhile, training data,
which allow the machine learning models to study the method of predicting loading types
for every finite element, are obtained from preliminary FE crash analysis regarding the
bumper test protocol by IIHS. Also, the training data in the current study should contain
information about stress triaxiality along with location in the form of coordinate values.
Five different types of algorithms, which underlie the machine learning model, are applied
to guarantee the highest performance in view of improving the bending strength and
structural lightweight effect of the product [18–20]. The results of the highest performance
predict the loading type of each finite element, and robust stacking sequences against
loading type are mapped into the entire region of bumper beam finite elements. Finally, the
load-resisting ability and structural weight-saving effect of the designed PIC bumper beam
are verified through FE crash analysis regarding the identical protocol, i.e., the bumper test
protocol by IIHS.

2. Outline of the PIC Bumper Beam Design Process

The PIC is assigning different stacking sequences for each shell element with a size of
4 mm × 4 mm as a similar form of mosaic, and elements are assumed to have been perfectly
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bonded to each other in order to increase robustness towards various external loading
types. Firstly, a preliminary FE crash analysis regarding the bumper test protocol by IIHS is
carried out to obtain data, which are the input to machine learning models. For the material
of the bumper beam during the preliminary FE crash analysis, aluminium alloy 7021 [21] is
used since stress distribution within the beam is identical regardless of the material of the
beam. Several elements among finite elements are chosen to be reference elements in order
to collect stress triaxiality for judging the state of loading type, i.e., tension, compression,
or shear with proper location. These data, resulting from reference elements, i.e., loading
type and location, are defined as training data, which are the input to machine learning
model, as explained previously.

The acquired training data are randomly assigned to five groups, i.e., each group
contains 20% of training data for generalisation’s sake [22]. One of the groups is arbitrar-
ily chosen for testing; the others are for training, which are put into machine learning
models; therefore, five trials are to be carried out per iteration, which are known to be
k-fold cross-validation [23]. In the meantime, machine learning models produce different
performances according to their hyperparameter values. Mean value of accuracy and
ROC (receiver operating characteristic)-AUC (area under the curve) result from perfor-
mance testing of machine learning algorithms. On the condition that the results are not
satisfactory, hyperparameters are tuned through the Bayesian optimisation algorithm and
iterations are conducted until the lowest error or the highest performance is obtained. The
iterative process, i.e., training group, machine learning algorithms, performance testing,
and hyperparameter tuning, are known as the machine learning model. When the results
are acceptable, then loading types of unreferenced elements are able to be assigned and
mapped into finite elements of the PIC bumper beam. Figure 1 shows the flowchart of the
entire process for designing PIC bumper beams.
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3. Preliminary Bumper FE Crash Analysis

FE analysis was conducted with ANSYS LS-DYNA (ANSYS, Inc., Canonsburg, PA,
USA), one of the representative explicit finite element programs.

The Belytschko–Lin–Tsay quadrilateral shell element based on three integration points
through the thickness direction with a 6 mm average element size [24] was selected in order
to model the thin-walled structures of bumper beams, excluding hourglass mode, since
it is known to be suitable for expressing the nonlinear anisotropic behaviour of thin shell
structures, including complex loads and large deformations, effectively saving computation
time [25].

A material model that needs to represent an elasto-plastic behaviour with an arbitrary
stress as a function of strain curve and arbitrary strain rate dependency was selected [26].
As previously noted, aluminium alloy 7021 was used for the material of the bumper beam
during the preliminary FE crash analysis. The mechanical properties of aluminium alloy
7021 are summarised in Table 1 and Figure 2 [21].

Table 1. Mechanical properties of Aluminium alloy 7021.

Mechanical Properties Value

Density ρ 2700 kg/m3

Young’s modulus E 70 GPa
Poisson’s ratio ν 0.3

Yield stress Y 360 MPa
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Figure 2. Effective stress vs effective plastic strain curve for Aluminium alloy 7021.

About 13% of the total finite elements were assigned as references in order to collect
stress triaxiality for judging the state of the loading type. Stress triaxiality and coordinate
location values for each reference element were included in the training data. The total
number of elements in the bumper beam was about 9500, and that of the reference elements
was 1210. Figure 3 shows the finite element bumper beam model, indicating reference
elements and the cross-section of the bumper beam. The cross-sectional shape, total length,
and radius of curvature for the bumper beam were designed with regard to the current
product, which was installed in a representative average passenger car of “A” company.
Actual vehicle weight was modelled as a concentrated mass element [16].
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Figure 3. FE bumper beam model.

The IIHS bumper test was representatively used to measure the damage regions of a
vehicle during a low-speed crash. It requires a vehicle as well as a deformable barrier. For
the simulation, the deformable barrier was modelled with 39,800 elements based on the
bumper test protocol by IIHS [17]. The FE model for an automotive bumper beam with
bumper crash boxes and an IIHS standard deformable barrier is illustrated in Figure 4.
Aluminium alloy 7021 was also used for the material of the bumper crash box, which is
firmly connected to a rectangular cross-sectional to both ends of the bumper beam. As
indicated in Figure 4, the initial speed is set to be 10 km/h, and the vehicle mass of 2200 kg
is given to the specific point in which the real C.O.G. (centre of gravity) of a passenger car
is located. A detailed description of the boundary condition and vehicle mass in the IIHS
crash analysis is summarised in Table 2.

Table 2. Boundary conditions and vehicle mass in the IIHS crash analysis.

Boundary Condition Mass

Bumper beam
10 km/h 2200 kg on C.O.G.Crash box

Vehicle

IIHS deformable barrier Deformable (Front)
Stationary (Rear wall) -
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Figure 4. The bumper beam model and the deformable barrier for IIHS bumper crash analysis.

After finishing the analysis, it was found that there were 505 reference elements in
tension, 593 in compression, and 112 in shear among 1210 reference elements, which were
necessary information for preparing the training data.

4. Training Data Acquisition and Random Grouping

As previously mentioned, the training data, which consist of stress triaxialities and
coordinate location values, are obtained from preliminary IIHS bumper beam FE analysis.

There are two different implementation methods for random grouping, i.e., two-
dimensional (2-D) implementation and three-dimensional (3-D) implementation. When the
2-D implementation is used, the training data is obtained from each face of the bumper, i.e.,
the training data for the top, front, chamfered, bottom, rear, and rib faces, respectively. Each
training data is regulated on each face, i.e., training data that is obtained from the top face
is used only for predicting the loading type of reference elements located in the top face,
etc. Meanwhile, training data for any face can be used for any face in 3-D implementation.

The loading type of reference elements is determined by the stress triaxiality of each
element. The definition of stress triaxiality, denoted by η, is shown in Equation (1).

η =
σm

σ
(1)

where σm and σ are the mean principal stress and the von Mises stress, respectively [27,28].
Equations (2) and (3) show the definitions of mean principal stress and von Mises stress,
respectively.

σm =

(
σx + σy + σz

)
3

(2)

σ =

√
1
2

[(
σx − σy

)2
+

(
σy − σz

)2
+ (σz − σx)

2 + 3
(

σ2
xy + σ2

yz + σ2
zx

)]
(3)

The loading type can be classified by the stress triaxiality value. Bai and Wierzbicki [27,28]
found that the dominant loading type for Al alloy 7021 is considered to be tension when η
is bigger than 0.1. Also, compression is prevalent if η is smaller than −0.1. In case the η
value of a specific part is bigger than −0.1 and smaller than 0.1, that part is subjected to
shear loading.
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Acquired training data are randomly divided into five groups, i.e., each group contains
20% of training data for the sake of generalisation. As previously noticed, one of the groups
is arbitrarily chosen for testing, the others for training, which are put into machine learning
algorithms; therefore, five trials are to be carried out per iteration, which are known to be
k-fold cross-validation, as illustrated in Figure 5.

Figure 5. k-fold cross validation.

5. Machine Learning Models
5.1. Machine Learning Algorithms

Machine learning model consists of machine learning algorithms, performance esti-
mation/testing and hyperparameter tuning. Among them, machine learning algorithms
are able to characterise data for the sake of classification, regression, clustering, and outlier
detection. In the present study, classification related machine learning algorithms are
considered since the problem can be considered it is indispensable to classify unknown
data with decent prediction.

Decision tree, ensemble decision tree (boosted and bagged), SVM (support vector
machine), and k-NN (k-nearest neighbours) classification are chosen among classification
algorithms according to their ability to classify imbalanced data [29]. Each algorithm
has several different parameters, i.e., hyperparameters, which are to be iteratively tuned
according to the Bayesian algorithm in order to optimise the results [30]. The sequence in
which machine learning models are applied in this study is the same as the part indicated as
“Machine learning model” in Figure 1. Each classification is described in detail, as follows.

5.1.1. Decision Tree

A decision tree is normally used to compare unknown data to tree structure, which
consists of roots, branches, and leaves. During the root process, unknown data are input
to the decision tree algorithm, and the output of the root process is transferred to various
branches. Intermediate results for determining loading types of unknown data are gen-
erated based on the characteristics of training groups, which survive criteria during the
branch process. The final loading types of unknown data are unveiled in the leaf process.
The decision tree has two hyperparameters, i.e., the maximum number of splits and criteria,
which are summarised in Table 3 [31].
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Table 3. Hyperparameters. for decision tree method.

Machine Learning Model Hyperparameter Variable

Decision tree

Max. number of splits 1~1209

Split criterion
Gini’s diversity index

Towing rule
Maximum deviance reduction

5.1.2. Ensemble Method

There is a high possibility that overfitting occurs, which means that the predicted
results of loading types are sufficiently good for the training group and poor prediction
is generated for unreferenced elements when it involves too many branch processes. To
reduce the effect of overfitting, it is recommended to apply the ensemble method, which
merges outcomes from several branches into one value. In the present study, boosted
decision trees and bagged decision trees are considered since they are representative
machine learning algorithms with ensemble methods [9]. The boosted decision tree applies
the same algorithm model, which was previously used for the decision tree, iteratively and
sequentially. Iterations are conducted with an updated weighting factor until the results
fulfil the criterion. It requires the maximum number of splits, the number of learners, and
the learning rate as its hyperparameters. A bagged decision tree needs to apply several
decision trees, which are generated by bootstrapping variations of the same decision tree
algorithm model simultaneously. The best result is selected among the aggregated ones
based on a majority vote. The bagged decision tree needs two hyperparameters, i.e., the
maximum number of splits and the number of learners. Table 4 shows the hyperparameters
for the ensemble method [32].

Table 4. Hyperparameters for ensemble method.

Machine Learning Model Hyperparameter Variable

Boosted decision tree

Max. number of splits 1~1209

Number of learners 10~500

Learning rate 0.001~1

Bagged decision tree
Max. number of splits 1~1209

Number of learners 10~500

5.1.3. SVM (Support Vector Machine)

SVM aims at forming the finest suitable decision limit or boundary, known as the
hyperplane, which separates n-dimensional space into loading types, making it easy to
place a different point in the appropriate area. In the SVM algorithm, extreme vector
points called support vectors are chosen, which help in creating a proper hyperplane. The
hyperplane of SVM is defined as the best possible decision boundary out of various possible
decision boundaries that accurately classifies the classes in n-dimensional space. The
features of the training group determine the dimensions of the hyperplane. A hyperplane
having maximum margins, which means the distance between two data points is maximum,
is preferred. Kernel function, kernel scale, box constraint level, and multiclass method are
hyperparameters, which are listed in Table 5 [33].
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Table 5. Hyperparameters for SVM method.

Machine Learning Model Hyperparameter Variable

SVM

Kernel function

Gaussian
Linear

Quadratic
Cubic

Kernel scale 0.001~1000

Box constraint level 0.001~1000

Multiclass method One-vs-One
One-vs-All

5.1.4. k-NN Classification

The k-NN classification is an instance-based learning method used to classify objects
based on their closest training group in the feature space. An object is classified by a
majority vote of its neighbours, i.e., the object is assigned to the class that is most common
amongst its k-nearest neighbours, where k is a positive integer. In the k-NN classification,
the classification of a new test feature vector is determined by the classes of its k-nearest
neighbours. Here, the k-NN classification is implemented using various distance metrics to
locate the nearest neighbour. Number of neighbours, distance metric, and distance weight
are its hyperparameters, as shown in Table 6 [34].

Table 6. Hyperparameters for k-NN classification.

Machine Learning Model Hyperparameter Variable

k-NN classification

Number of neighbors 1~605

Distance metric

City block
Chebyshev
Correlation

Cosine
Euclidean
Hamming

Distance weight
Equal

Inverse
Squared inverse

5.2. Performance Estimation and Testing

There are four types of cross-validations, i.e., k-fold, holdout, leave-p-out, and leave-
one-out, in order to estimate the performance of the machine learning algorithms [35]. In
the present study, k-fold cross-validation was selected among them since it is known to
have the ability to reduce biases and classify loading types with a low capacity of training
data [36]. Acquired training data are randomly divided into five groups. One of the groups
is arbitrarily chosen for testing, the others for training, which are put into machine learning
algorithms; therefore, five trials are carried out per iteration.

The performance of the machine learning algorithms is estimated using accuracy and
the ROC-AUC value [37]. Accuracy at the n-th iteration, denoted by An, is the proportion
of correct predictions made by the model out of the total number of predictions as shown
in Equation (4) [38].

An =
Number o f correct predictions
Total number o f predictions

× 100 (4)

Accuracy is a widely used metric because of its simplicity and effectiveness; however,
it contains the mixed information of tension, compression, and shear loading types. Accord-
ing to the possibility of imbalanced training data, which are produced from preliminary
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FE crash analysis, ROC-AUC might alleviate the misleading results of the imbalanced
data [39]. ROC-AUC is suitable for estimating imbalanced loading type data since it can
separately show individual values for each loading type among the training group. The
ROC curve comes from ratios based on correctly predicted data and incorrectly predicted
data, and the AUC means the area under the ROC curve. Generally, AUC takes values
from 0 to 1, where a value of 0 indicates a perfectly inaccurate estimation, and a value of
1 reflects a perfectly accurate estimation. A value of less than 0.5 suggests no discrimination,
0.7 to 0.8 is considered acceptable, 0.8 to 0.9 is considered excellent, and more than 0.9 is
considered outstanding [40,41]. The convergence criterion ( Ccrit) is defined as the change
in accuracy, as shown in Equation (5) [42].

Ccrit =

∣∣∣∣ An − An−1

An

∣∣∣∣ (5)

In order to meet the highest performance, the value for the convergence criterion is
set to be 0.1. When the results are not satisfactory, hyperparameters are tuned based on
the Bayesian optimisation algorithm. Iterative performance estimation and testing are
conducted simultaneously.

5.3. Hyperparameter Tuning with Bayesian Optimisation Algorithm

As shown in Figure 1, inside the red dotted box with the name of the machine learning
model, hyperparameters are tuned through the Bayesian optimisation algorithm, which is
famous for being more effective compared to grid search or random search, and iterations
are conducted until the lowest error or the highest performance is obtained on the condition
that the results are not satisfactory [43,44]. The main feature of the optimisation technique is
to maximise the objective function, which is denoted by f along with hyperparameters as its
independent variables. The output of the objective function is the performance of machine
learning algorithms. Each iteration needs updating or tuning the hyperparameters within
their own domain, which is represented by X. Accordingly, the Bayesian optimisation
algorithm can be explained as Equation (6):

x* = argmax
x∈X

f (x) (6)

where x denotes a set of hyperparameter values in the domain X, and x∗ is the hyperpa-
rameter value set that maximises the performance, i.e., the output of the objective function
f [45]. Hyperparameters are tuned by the Expected-Improvement-Per-Second Plus, which
provides the fastest speed of the convergence criterion as well as prevents overexploiting
possible ranges of hyperparameter domains from being illuded by the local maximum [46].
When the value of the convergence criterion becomes lower than 0.001, hyperparameter
tuning is completed. Table 7 indicates the completely tuned hyperparameter values, which
maximise the performance of each algorithm. The learning rate in the Boosted decision
trees, Kernel scale, and box constraint level of SVM are displayed with a precision of four
decimal points.

Tables 8 and 9 show the highest performances, i.e., accuracy and ROC-AUC value,
of 2-D and 3-D implementations. All values in Tables 8 and 9 are the average of the
top, front, chamfered, bottom, rear, and rib faces, both for accuracy and the ROC-AUC.
The accuracy of the three-dimensional implementation is higher than that of the two-
dimensional implementation. The k-NN classification shows the highest accuracy both
for two-dimensional and three-dimensional implementations. As shown in Tables 8 and 9,
predicted ROC-AUC values for shear-dominant loading types are the smallest compared
with either tensile or compressive ones, since the portion of shear-dominant reference
elements is the lowest.
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Table 7. Optimised hyperparameters using Bayesian algorithms.

Machine Learning Model Hyperparameter Values

Decision tree
Max. number of splits 17

Split criterion Gini’s diversity index

Boosted decision trees

Max. number of splits 1149

Number of learners 50

Learning rate 0.8987

Table 7. Cont.

Machine Learning Model Hyperparameter Values

Bagged decision trees
Max. number of splits 694

Number of learners 214

SVM

Kernel function Gaussian

Kernel scale 30.2498

Box constraint level 3.8962

Multiclass method One-vs-One

k-NN classification

Number of neighbors 4

Distance metric City block

Distance weight Squared inverse

Table 8. Performances of 2-dimensional implementation.

Machine
Learning Model Accuracy (%)

ROC-AUC

Tension Compression Shear

Tree 84.2 0.85 0.88 0.73
Boosted decision

trees 85.1 0.89 0.92 0.75

Bagged decision
trees 81.1 0.90 0.91 0.75

SVM 85.9 0.89 0.90 0.62
k-NN

classification 86.0 0.90 0.92 0.75

Table 9. Performances of 3-dimensional implementation.

Machine
Learning Model Accuracy (%)

ROC-AUC

Tension Compression Shear

Decision tree 85.4 0.95 0.94 0.80
Boosted decision

tree 85.1 0.98 0.97 0.87

Bagged decision
tree 85.3 0.98 0.97 0.87

SVM 86.2 0.96 0.94 0.62
k-NN

classification 86.3 0.98 0.97 0.87

6. Prediction and Mapping of Loading Type of Unreferenced Elements

The k-NN is applied in order to predict loading types of unreferenced finite elements
in the PIC bumper beam with the coordinate values of target locations since it is revealed
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to be the most excellent classification both for 2-D and 3-D implementations from the
comparison of the resultant performance of machine learning.

Predicted results contain loading types and locations for unreferenced elements; there-
fore, robust stacking sequences against each loading type are mapped into the FE model, as
shown in Figure 6. In the meantime, robust stacking sequences against each loading type
are listed in Table 10 [47].

1 
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Figure 6. Mapping results –based on 2-D implementation vs 3-D implementation.

Table 10. Robust stacking sequences against each loading type.

Dominant Loading Robust Stacking Sequence

Tension [90/0/ 0
]

6s
Compression [±5 / ± 45/90] 3s

Shear [0/90]15

While machine learning algorithms predict dominant loading types at a certain face,
only training data are obtained from reference elements, which are located at the same face
during 2-D implementation. On the other hand, training data from reference elements,
which are located at various faces depending on the metric values, are used for dominant
loading type prediction in 3-D implementation, as previously mentioned. As expressed in
Figure 6, it is observed that three different loading types are mixed together at both ends,
which are firmly connected to rectangular cross-sectional bumper crash boxes.

As a result, 42.3%, 53.2%, and 4.5% portions of tension-, compression-, and shear-
dominant loading types are predicted for the entire PIC bumper beam FE model from
2-D implementation, whilst 42.1%, 50.4%, and 7.5% of tension-, compression-, and shear-
dominant loading types from 3-D implementation are predicted for the same bumper
beam FE model. Also, each loading type area difference is conspicuous in the rib face, i.e.,
tension-dominant area from 3-D is 6.5% larger than that from 2-D, compression-dominant
area from 3-D is 12.5% smaller than that from 2-D, and shear-dominant area from 3-D is
5.9% larger than that from 2-D, as expressed in Figure 6. Meanwhile, loading type areas are
the most similar to 2-D and 3-D on the front face. These results are summarised in Table 11.
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Table 11. Predicted dominant loading type—2-D implementation vs. 3-D implementation.

Face
2-D implementation 3-D implementation

Tension Comp. Shear Tension Comp. Shear
Top 43.5% 53.3% 3.2% 41.2% 50.2% 8.6%

Front & chamfered 0.8% 97.5% 1.8% 2.1% 95.9% 2.0%
Bottom 20.7% 30.4% 2.1% 15.8% 29.5% 7.9%

Rear 95.5% 2.0% 2.5% 92.0% 2.8% 5.2%
Rib 30.0% 54.4% 15.6% 36.6% 41.9% 21.5%

Total 42.3% 53.2% 4.5% 42.1% 50.4% 7.5%

7. Bending Strength Evaluation of the PIC Bumper Beam

IIHS bumper crash analyses were performed using ANSYS LS-DYNA (ANSYS, Inc.)
in order to evaluate the bending strength of the PIC bumper beam based on the 2-D
and 3-D implementations employing a machine learning model as well as a composite
bumper beam with a conventional stacking sequence of [0/ ± 45]5S for comparison’s sake.
A fully integrated shell formulation is selected to express nonlinear anisotropic behaviour
without hourglass mode under the function of improved transverse shear treatment for
the composite beam FE model [48]. The enhanced composite damage type material model,
which is frequently used for describing material anisotropy with the help of the laminated
shell theory, is selected for the whole composite part [25,49,50]. Table 12 shows the material
properties and damage parameters that are used as inputs for the T700/2510 carbon fibre
epoxy composite [51,52]. Element size, initial velocity, vehicle mass, and miscellaneous
details are the same as those used in the preliminary IIHS bumper beam FE crash analysis.

Table 12. Material properties of T700/2510 carbon epoxy composite [51,52].

Properties Values

Density 1520 kg/m3

Longitudinal modulus 126 GPa
Transverse Modulus 8.40 GPa

Shear modulus 4.23 GPa
Major Poisson’s ratio 0.31
Axial tensile strength 2172 MPa

Axial compressive strength 1450 MPa
Transverse tensile strength 49 MPa

Transverse compressive strength 199 MPa
In-plane shear strength 155 MPa

Softening reduction factor for material strength in crashfront element 0.57
Softening for fibre tensile strength 0.5

Reduction factor for compressive fibre strength after matrix failure 1.2

The deformation of the PIC bumper beam and crash box is illustrated in Figure 7. From
Figure 7b, pure bending deformation of the bumper beam is observed until
0.009 s (C.O.G. displacement: 24 mm), while buckling type crash box deformation starts at
0.02 s (C.O.G. displacement: 54 mm), as shown in Figure 7c. Deformation of the crash
box initiates from the inner part and propagates to the outer part owing to the convex
shape of the IIHS barrier. The bumper beam deforms to become a straight shape along
with the y-axial direction, and the visible main deformation of the crash box occurs at
0.035 s (C.O.G. displacement: 80 mm), as depicted in Figure 7d. In Figure 7e, the maximum
bending deformation happens both in the bumper beam and crash box at 0.045 s (C.O.G.
displacement: 107 mm), and the elastic spring back starts from this moment. Meanwhile,
it is observed that two representative types of deformation have occurred in the bumper
beam during crash simulation, i.e., deformation due to bending at the centre part and
buckling type along with cross-sectional direction at both ends, which are connected to the
crash box, as depicted in Figure 7e.
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Tsai–Wu indexes [53] are calculated for specific elements, which are exposed to com-
paratively higher loading. The no. 66,246 element and the no. 67,010 element are cho-
sen from the centre part and the RH end part of the composite bumper beam, respec-
tively, as visible in Figure 7a, since these parts undergo severer deformation during FE
crash analyses.

The dominant loading type for the No. 66,246 element and the No. 67,010 element was
found to be “shear”, by the 3-D implementation, but the 2-D implementation predicts “com-
pression” for these elements. As a result, the Tsai–Wu indexes for the no. 66,246 element
and the no. 67,010 element are shown in Figure 8.
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Figure 7. Deformation of the PIC bumper beam (3-D implementation): (a) Time: 0 s, C.O.G. displace-
ment: 0 mm, (b) time: 0.009 s, C.O.G. displacement: 24 mm, (c) time: 0.02 s, C.O.G. displacement:
54 mm (d): time: 0.035 s, C.O.G. displacement: 80 mm, (e) time: 0.045 s, C.O.G. displacement:
107 mm.
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Figure 8. Tsai-Wu index: (a) Centre part (element no. 66246), (b) end part (element no. 67010).

In Figure 8, the index, which is calculated based on the conventional composite beam,
is found to be exceeding 1. The index for 2-D is close to 1, but the index for 3-D is the
lowest, i.e., conventional composite beams experience fracture, while PIC bumper beams
are safe under the same level of external loading. It is found that the conventional stacking
sequence does not sufficiently respond to external loading, and the PIC bumper beams
are safe and effective. In the meantime, the Tsai–Wu indexes reveal that the PIC beam
of 3-D implementation is safer compared with that of 2-D implementation. The force–
displacement of C.O.G. point curve results of conventional composite bumper beams and
PIC bumper beams are plotted in Figure 9. Deformation stages (a), (b), (c), (d), and (e) in
Figure 7 are marked in Figure 9.

The force curve slope increases at point (d) because crash boxes and both end parts of
the composite bumper beam start to deform. A higher external load-resisting capability
of a composite bumper beam is dependent on the proper stacking sequences of both
end parts.



Materials 2024, 17, 602 15 of 18

The maximum bending strength of the conventional composite bumper beam is 158 kN,
while that of the PIC bumper beam based on the 2-D implementation is 184 kN, and that of
the 3-D implementation is 206 kN, i.e., the bending strength of the PIC bumper beam of the
3-D implementation is about 10.4% and 23.0% higher than that of the 2-D implementation
and that of the conventional stacking sequence, respectively. The PIC bumper beams with
a machine learning model show superior bending strength to conventional composite
bumpers. As previously observed, the PIC bumper beam of the 3-D implementation
shows higher external load-resisting ability compared to that of the 2-D implementation.
Therefore, it is found that the 3-D implementation is more effective in assigning proper
stacking sequences to exact places of the composite bumper beam. If PIC bumper beams
were designed to target the same bending strength level as the conventional composite
bumper beam, 31% and 33% weight-saving effects could be achieved, as summarised in
Table 13.
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From a crashworthiness point of view, conventional composite bumper beams absorb
6980 J during the IIHS bumper crash analysis. Meanwhile, 2-D-implemented, and 3-D-
implemented PIC bumper beams absorbed 8230 J and 8260 J, respectively. The PIC bumper
beam of 3-D implementation also shows slightly higher energy absorption characteristics
than either conventional or 2-D implemented composite bumper beams. Therefore, it is
certain that the PIC bumper beam design with machine learning is effective in reducing the
possibility of structural failure as well as increasing bending strength. The 3-D implementa-
tion produces better results compared with the 2-D implementation since it is preferable
to choose the external loading type information which is achieved from surroundings
when the target elements are located either at corner or junction of planes instead of using
information came from the same plane of target.

Table 13. Mass of same bending strength level composite bumper beam.

Design Method Bumper Beam Mass (kg) Weight Saving Effect (%)

Conventional 3.36 -
2-D implementation 2.32 31 %
3-D implementation 2.25 33 %
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8. Conclusions

Employing machine learning models, a PIC bumper beam is proposed in order to
improve the bending strength and structural lightweight effect, which are proved by FE
crash simulations regarding the bumper test protocol suggested by IIHS. The composite
bumper beam undergoes two major types of deformation, i.e., bending-type deformation at
the centre part and buckling-type deformation along with cross-sectional direction at both
ends, which are connected to a crash box. Two- and three-dimensional implementations
are provided by machine learning models, which determine the stacking sequences of each
finite element in the PIC bumper beam. It was found that the PIC bumper beams have
a higher bending strength; however, the conventional composite bumper beam does not
sufficiently withstand external loading. In the meantime, the Tsai–Wu indexes reveal that
the PIC bumper beam of the 3-D implementation is safer compared with that of the 2-D
implementation. Also, the dominant loading type, which is predicted based on the 3-D
implementation, for the centre part and both end parts is found to be shear, which is the
correct loading type, but the 2-D implementation predicts compression for the same parts.

Bending strength of 3-D implementation is about 10.4% and 23.0% higher than that of
2-D implementation and that of the conventional stacking sequence. The PIC bumper beam
of 3-D implementation shows higher external load-resisting capability compared to that of
2-D implementation. Therefore, it is found that the 3-D implementation is more effective
to assign proper stacking sequences into exact places of composite bumper beam. If PIC
bumper beams were designed targeting the same bending strength level of conventional
composite bumper beam, 31% and 33% of weight saving effects could be achieved. It is
certain that the PIC bumper beam design with machine learning is effective to reduce the
possibility of structural failure as well as increasing bending strength.

From a crashworthiness point of view, the conventional composite bumper beam
absorbs 6980 J during the IIHS bumper crash analysis. Meanwhile, 2-D-implemented
and 3-D-implemented PIC bumper beams absorb 8230 J and 8260 J, respectively. The
PIC bumper beam of 3-D implementation also shows slightly higher energy absorption
characteristics than either conventional or 2-D-implemented composite bumper beams. The
3-D implementation produces better results compared with the 2-D implementation since
it is preferable to choose loading-type information, which is achieved from surroundings
when the target elements are located either at corners or junctions of planes, instead of
using information that comes from the same plane as the target elements.
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