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Abstract: SiCp/Al composites offer the advantages of lightweight construction, high strength, and
corrosion resistance, rendering them extensively applicable across various domains such as aerospace
and precision instrumentation. Nonetheless, the interfacial reaction between SiC and Al under high
temperatures leads to degradation in material properties. In this study, the interface segregation
energy and interface binding energy subsequent to the inclusion of alloying elements were computed
through a first-principle methodology, serving as a dataset for machine learning. Feature descriptors
for machine learning undergo refinement via feature engineering. Leveraging the theory of machine-
learning-accelerated first-principle computation, six machine learning models—RBF, SVM, BPNN,
ENS, ANN, and RF—were developed to train the dataset, with the ANN model selected based on
R2 and MSE metrics. Through this model, the accelerated computation of interface segregation
energy and interface binding energy was achieved for 89 elements. The results indicate that elements
including B, Si, Fe, Co, Ni, Cu, Zn, Ga, and Ge exhibit dual functionality, inhibiting interfacial
reactions while bolstering interfacial binding. Furthermore, the atomic-scale mechanism elucidates
the interfacial modulation of these elements. This investigation furnishes a theoretical framework for
the compositional design of SiCp/Al composites.

Keywords: SiCp/Al matrix composites; machine learning; first principle; interface modification element

1. Introduction

Good interfacial bonding is an important guarantee to improve the properties of metal
matrix composites, and the degree of interfacial reaction directly affects the strength of
interfacial bonding [1]. Among these composites, SiCp/Al composite materials have good
performance in terms of high-temperature resistance, corrosion resistance and high specific
stiffness [2–6]. However, there is a serious interfacial reaction at the SiCp/Al interface,
and the generated Al4C3 can seriously reduce the strength, elastic modulus, and corrosion
resistance of aluminum matrix composites [7]. In addition to the fact that the interface
reaction generated at the SiCp/Al interface will reduce the properties of the material, the
degree of bonding between the SiCp/Al interface also has a great impact on the mechanical
properties of the composite [8,9]. Existing studies have shown that the addition of alloying
elements can not only inhibit the SiCp/Al interface reaction to a certain extent but also
improve the bonding ability between the interfaces so as to improve the properties of
composite materials [10,11]. For example, the addition of Si, Cu, Ti, etc. can inhibit the
generation of Al4C3 and improve the mechanical properties of the material by reducing the
activity or generating other substances [12–14]. However, there are still some deficiencies
in the alloying elements added in the current study, such as the lack of explanation based
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on the atomic perspective for the mechanism of inhibiting the interfacial reaction through
the addition of Si atoms in the matrix [15,16]; Cu atoms can form a solid solution with
Al to improve the properties of the material, but the effect of their enhancement of the
properties of the material is not significant enough, and the introduction of Ti is prone to
generate Al-Ti brittle intermetallic compounds with Al, which leads to a reduction in the
strength of the material. The introduction of Ti can easily generate Al-Ti brittle intermetallic
compounds with Al, resulting in the reduction of material strength [17]. Therefore, it is
necessary to expand the research scope of alloying elements and search for more suitable
alloying elements within the scope of the periodic table.

Due to the complexity of the interface structure, mechanical deformation, and failure
mechanism, it is difficult for traditional experimental methods to reveal the mechanism of
interface bonding and segregation from the atomic point of view [18]. Therefore, most of
the existing studies start from the first-principles calculation, apply the theory of quantum
mechanics, calculate with the help of basic constants and reasonable approximations, and
determine the state of the system according to the relationship between the total energy
obtained and the electronic structure and the nucleus [19–21]. Although the first-principles
calculation can explain the interface reaction from the atomic point of view, the calculation
process needs a lot of resources and time. Therefore, the research on SiCp/Al interface
reaction has been limited to a certain extent, and the composition design in the current
research is mostly limited to a few common alloying elements. With the rapid development
of material genetics and big-data technology, the emergence of machine learning provides
a shortcut to solving the problems existing in first-principle computing. The machine
learning dataset is obtained by sorting out the first-principles calculation results, using
the machine learning model to train the dataset, and predicting the target through the
trained model, which can realize the acceleration of the first-principles calculation via
machine learning. For example, Miyazato et al. [22] used machine learning to accelerate
first-principles calculations to predict the magnetic moments of two-hundred-and-fifty-
four 2D materials and discovered eight stable 2D materials with high magnetic moments;
Artrith et al. [23] utilized a machine learning method combining a genetic algorithm (GA)
and artificial neural network (ANN) to accelerate the first-principles sampling of complex
structural spaces of amorphous and disordered materials.

Although first-principles calculations are time-consuming and costly, they can be
successfully solved with the acceleration of machine learning. Therefore, this paper com-
bines two materials research methods, machine learning and first-principles calculations, to
calculate the interface segregation energy and interface binding energy for elements in the
periodic table. The screening of most of the elements in the periodic table was realized via
machine-learning-accelerated first-principles calculations. We first calculated the interface
segregation energy and interface binding energy of the SiCp/Al interfacial model when
the model was doped with 25 different alloying elements using first principles. Then,
the elemental properties that were most suitable for the interface segregation energy and
interface binding energy were screened as input feature descriptors through feature engi-
neering to form a complete dataset, and the model with the best performance was screened
according to the R and MSE values. Finally, the prediction of interface segregation energy
and interface binding energy for the remaining 89 elements was realized by accelerating the
first-principles calculation through machine learning. Based on the prediction results, the
elements that were prone to interfacial cohesion and the elements that enhanced interfacial
bonding were selected. By taking the intersection of the two selected alloying elements, the
alloying elements that inhibit interfacial reactions while also enhancing interfacial bonding
were obtained. In this study, the machine learning method was used to break through the
difficulty of the long computation time of the first principle and also to realize the screening
of alloying elements for the whole periodic table except for some elements. The results of
the study can greatly accelerate the matrix composition design of SiCp/Al composites.
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2. Methods
2.1. First-Principles Calculations

All the first-principles calculations in this experiment were based on the DFT and
were performed using the CASTEP (Cambridge Serial Total Energy Package) module
in the Materials Studio 8.0 software. All the energy calculations and the optimization
process of the geometries in the paper use the PBE (Perdew–Burke–Ernzerhof) potential
function under the Generalized Gradient Approximation (GGA) to describe the correlation
interactions, solving the Kohn–Sham (KS) equations in a self-consistent way and using
the ultra-soft pseudo-potential to describe the valence-electron interactions with ions [24].
With the help of computational methods, the truncation energy was determined to be
350 eV, and the Brillouin zone was sampled with a Monkhorst–Pack k-point grid, with the
k-points taking the value of 6 × 6 × 6. During the geometry optimization process, it was
determined that the force of chirp to each atom was not greater than 0.3 eV/nm and that the
maximal distance of the atoms’ movement was 1 × 10−4 nm [25]. As shown in Figure A1,
through calculation, it was found that spin polarization has little effect on the interface
segregation energy and interface binding energy of the model, so the results in this paper
do not involve the spin polarization of magnetic alloy elements. In order to obtain accurate
energy calculations and the interface binding energy and interface segregation energy, the
geometry of the interfacial model is optimized before calculating the energy of each model.

Since the main object of study in this paper is the SiCp/Al interface, the interface
model needs to be constructed first. The different surfaces of SiC and Al are selected before
constructing the interface model, and the (100), (110), (111), and (211) surface energies of Al
are calculated using Equation (1) [26], and the (001), (011), (111), and (211) surface energies
of SiC are calculated using Equation (2) [27].

Esur f =
1

2Asur f ace

(
Etotal

slab − NAlµi

)
(1)

σSiC =
1

2Asur f ace

(
Eslab − NSiµ

Slab
Si − NCµslab

C

)
(2)

Here, Asurface is the surface area; Etotal
slab is the surface energy; NAl, NSi, and NC are the

total numbers of atoms; and µAl, µSi, and µC are the atomic chemical potentials.
In addition, in order to shorten the calculation time, we calculate the interfacial

adhesion work for both Si-top and C-top configurations separately, and the interfacial
adhesion work Wad is calculated as follows [28]:

Wad =
EAl + ESiC − EAl/SiC(x)

A
(3)

EAl and ESiC are the energies of Al and SiC films optimized in the SiCp/Al interface,
respectively. EAl/SiC(x) represents the energy after optimization of the SiCp/Al interface
structure. A indicates the interface area of the SiCp/Al interface.

Both the surfaces of SiC and Al as well as the optimal interfacial distance were selected
based on the calculation of surface energy and interfacial adhesion work, and the added
alloying elements were placed at the interface and inside the Al matrix, respectively, and
the interface segregation energy and interface binding energy of the model were calculated
using Equation (4) [29] and Equation (5) [30].

Esegregation = Einter f ace − Einside (4)

Ebinding = Einter f ace − ESiC − Ebasis (5)

Here, Esegregation is the interface segregation energy of the model after alloying elements
are added, Ebinding is the interface binding energy of the model after alloying elements are
added, Einterface is the total energy of the model when alloying elements are located at the
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SiCp/Al interface, and Einside is the total energy of the system when alloying elements are
located inside the model. ESiC is the energy of SiC reinforcement phase and Ebasis is the
total energy of Al matrix part after adding alloying elements.

Due to the long time period required for first-principles calculation, it takes a long
time to realize the screening of more than 100 alloying elements, so the machine learning
method is used in this paper to accelerate the first-principles calculation and shorten the
calculation time.

2.2. Machine-Learning-Accelerated First-Principle Computations

Due to the long time period required for first-principles calculation, it takes a long time
to realize the screening of more than one hundred alloying elements, so in this paper, we
use the machine learning method to accelerate the first-principles calculation and shorten
the calculation time. The idea of machine learning to accelerate the calculation of the
first principle is mainly composed of three parts. (1) The calculation of the nature of the
model occurs based on the first-principle method. (2) The results of the first-principles
calculation are screened and organized and the output part of the machine learning dataset
can be initially obtained. We can use feature engineering to select the input features for
machine learning, design the machine learning model by combining the existing inputs
and outputs, and carry out the next prediction of the model with the best fit and the
smallest error. (3) We use the best machine learning model for forward prediction to
screen out the alloy elements that meet the requirements. The method of accelerating the
first-principles calculation through machine learning makes the first-principles calculation
time plummet from thousands of hours to tens of seconds, which greatly improves the
calculation efficiency. Machine learning can not only screen alloy elements in the forward
direction but also carry out reverse prediction. When a target value is given, the trained
machine learning model can output the element characteristics corresponding to the value
and the target element can be obtained directly.

In this paper, six machine learning methods, namely Support Vector Machine (SVM),
Artificial Neural Network (ANN), BP Neural Network (BPNN), Radial Basis Neural Net-
work (RBF), Integration Algorithm (ENS), and Random Forest (RF) methods, are used to
train interface segregation energy and interface binding energy of alloying elements in
interface models. SVM is a classification model that is essentially a linear classifier with the
largest feature-space spacing. SVM has strong generalization ability and no local minimum
problem. It is an optimization algorithm for solving convex quadratic programming [31].
ANN is a machine learning algorithm that simulates the connection and information trans-
fer between human neurons, which are composed of a large number of neurons and the
connections between them [32]. An input layer, an output layer, and several hidden layers
constitute an artificial neural network, in which the input layer is responsible for receiving
signals, the hidden layer is responsible for data decomposition and processing, and the
final result is outputted after integration by the output layer [33]. Artificial neural network
is an important machine learning algorithm that learns and trains by establishing complex
connection relationships and realizes the processing and prediction of complex nonlinear
mapping between input and output. ANN has broad development prospects in pattern
recognition, automatic control, artificial intelligence, and other fields [34]. BPNN is an arti-
ficial neural network based on error backpropagation that is widely used to solve problems
such as classification, regression, and data mining. The calculation accuracy of BPNN is
high, but the calculation time is long, and it is easy to overfit [35]. RBF is a neural network
using RBF as the activation function that has the advantages of simple training and fast
convergence, but its interpretation is poor, and it cannot work when the data are insufficient.
Therefore, RBF is mainly used in the field of function approximation [36]. Ensemble is an
algorithm that accomplishes a learning task by building and combining multiple learners.
The method of integrated learning selected in this paper is Stacking. The method is used to
combine other models by training a model. Ensemble learning algorithms can solve many
problems such as feature selection, image processing, transfer learning, etc. Ensemble can
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improve the accuracy and stability of the model when dealing with complex problems, but
it is not suitable for small-scale datasets [37]. RF is a kind of integrated learning built on
the basis of decision trees. Multiple decision trees are used for calculation, and then the
output of multiple decision trees is integrated to get the output result [38]. RF not only
has the advantages of decision trees but also prevents overfitting [39]. By comparing R2

and MSE of several machine learning models, this paper successfully selects the machine
learning model with the best performance and generalization ability. The selected model
can predict the interface segregation energy and interface binding energy of other elements
in the periodic table, complete the screening of alloying elements, and achieve the goal of
accelerating the first-principles calculation.

3. Results
3.1. First-Principles Calculation Results

The results of the surface energy calculations are shown in Table 1; the surface energy
of Al (111) is the lowest because Al belongs to a face-centered cubic structure and (111) is
the surface with the highest density of Al, and so Al (111) is chosen. The surface energy of
SiC (001) surface is the lowest, the selected 4H-SiC belongs to a hexagonal crystal system,
and the surface of (001) is the surface with the highest density as well, and so the surface of
SiC (001) is chosen to construct the interface model.

Table 1. Surface energy values of different surfaces of Al and SiC.

Alsurf Esurf/(J·m−2) SiCsurf Esurf/(J·m−2)

(111) 0.83107594 (111) 3.83029199
(110) 0.97319305 (011) 3.22173635
(100) 0.95097756 (001) 2.96169004
(211) 1.06830391 (211) 4.21076767

In order to reduce the calculation time of the first principle, this paper carries out the
surface convergence calculations for Al and SiC’s. It is found that when the number of
atomic layers of Al is greater than or equal to four, its surface energy almost no longer
changes; when the number of atomic layers of SiC is greater than or equal to eight, its
surface energy tends to be unchanged. Therefore, the Al atoms of the constructed interface
model are in four layers and the SiC atoms are in eight layers. Since the surface of SiC
has two structures, a C-terminal and Si-terminal, it constitutes an interface model with Al
with six different structures as shown in Figure 1, namely the Si-top, Si-center, Si-vacancy,
C-top, C-center, and C-vacancy. According to the results of existing studies, the structures
of the Si-top and C-top are the most widely used and stable under realistic conditions.
Therefore, in this paper, the total energy of the interface model is calculated for Si-top and
C-top structures, and it is found that the total energy of the Si-top is lower than that of the
C-top and that the structure with Si as the top is more stable than that with the C-top.

According to the formula of interfacial adhesion work, the model energy values of
different interfacial distances can be calculated and the optimal interfacial spacing can be
screened out. The interfacial spacings of 0.1 nm, 0.2 nm, 0.3 nm, 0.4 nm, and 0.5 nm were
selected, and the relationship between the interfacial distance and the interfacial adhesion
work is shown in Figure 2. The interfacial adhesion work decreases with the increase in
interfacial spacing and then increases with the increase in interfacial distance for both Si-top
and C-top structures, and the interfacial adhesion work reaches the lowest value when the
interfacial spacing is 0.2 nm.

In summary, as shown in Figure 3a, the Al (111) plane and SiC (100) plane with Si as
the top were selected to construct an interface model with an interface distance of 0.2 nm
and a vacuum layer thickness of 20 Å. The SiCp/Al interface model was established by
placing the added alloying elements at the interface and inside the Al matrix. Subsequently,
25 typical alloying elements were chosen from the periodic table, encompassing metallic,
nonmetallic, semiconducting, and rare earth elements. The chosen alloying elements
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are evenly distributed across the periodic table, ensuring the randomness of the dataset
sampling and enhancing the accuracy of the machine-learning prediction results. As
depicted in Figure 3b, 25 standard alloying elements were positioned within the Al matrix
and at the SiCp/Al interface.
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We utilize Equations (4) and (5) to compute the interface segregation energy and
interface binding energy for the interface model incorporating additional alloying elements,
respectively. The results of the calculations are presented in Figure 4. The red portion
represents the interface segregation energy of the model while the blue portion represents
the interface binding energy of the model. The value of the dashed line corresponds to the
interface binding energy of the model at the SiCp/Al interface. Figure 4 illustrates that
eleven out of the twenty-five typical alloying elements exhibit interfacial partial cohesion
energies below 0, while eight demonstrate interface binding energies lower than those of the
system without added alloying elements. Consequently, the alloying elements determined
through first principles are deemed to be significant, and the findings are structured to
form the output component of the machine learning dataset.
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3.2. Database Establishment and Selection of Feature Values

The output portion of the machine learning dataset is obtained after the first-nature-
principle computation, and the input features of the dataset are determined using feature
engineering below. Based on the nature of interface binding energy and interface segre-
gation energy, we selected 24 features that can express the nature of alloying elements.
Next, we performed dimensionality reduction on the existing features using a Principal
Component Analysis (PCA) of feature engineering. PCA is the process of discarding some
of the original data or creating some new data, thus transforming the high-dimensional
data into low-dimensional data [40]. PCA is based on the main idea of finding the largest
direction of data change, so it is possible to reduce the dimensionality while still retaining
the most significant components. Therefore, the use of PCA can greatly reduce the cost of
computation and storage under the condition of ensuring the accuracy of the calculation,
and it can also filter meaningless data and improve the prediction accuracy of machine
learning [41]. PCA is mainly divided into the following parts: (1) data normalization;
(2) covariance calculation; (3) calculating eigenvalues and eigenvectors; and (4) calculating
each principal component and its contribution rate. This paper uses the Random Forest
algorithm to realize the principal component analysis of the dataset. The main idea is to
judge how much contribution each feature makes to each tree in the Random Forest and
then take the average value to compare the contribution between features. Finally, a feature
is selected according to the importance of the feature in order to achieve the dimensionality
reduction of the feature.

The PCA calculation results are shown in Figure 5. From Figure 5a, it can be found
that when the interface segregation energy and the number of input features combined
with the interface are greater than or equal to 10, the feature contribution rate reaches 95%.
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In Figure 5b, the importance of each feature can be obtained. The top ten features selected
by ranking their importance are the features selected by PCA dimensionality reduction. In
this paper, the interface binding energy and interface segregation energy are screened. The
characteristics of both are atomic number, period, main group, electronegativity, atomic
volume, melting point, relative atomic mass, atomic radius, electron configuration s, and
electron configuration p. The selected features are the input part of the dataset, and the
calculated interface segregation energy and interface binding energy are the output part of
the dataset. At this point, the construction of the dataset and the calculation of the feature
screening part are completed.

1 
 

 
Figure 5. Results of PCA: (a) effect of the number of features on the result; (b) importance of each
feature for predicting the output of interface segregation energy and interface binding energy.

3.3. Machine Learning Model Construction and Selection

After the dataset is established, we need to build the model of machine learning
and select the most suitable model to make it accelerate the first-principles calculation.
Therefore, in this paper, we have chosen six methods of machine learning, the SVM, BPNN,
ANN, RBF, RF, and Ensemble methods, to build models and train the existing dataset. In
order to ensure the accuracy of the machine learning results, we divided the dataset into
two parts: the training set and the test set. Among them, to ensure the learning effect of the
model, the training set comprises 80% and the test set comprises 20%.

There are many indicators for evaluating the goodness of machine learning models,
such as the R2, Adjusted-R2, MSE, RMSE, MAE, and MAPE. In this paper, we have chosen
R2 and MSE as the evaluation indicators of regression models. The coefficient of determi-
nation (R2) reflects the degree of model fit, and the range of R2 is from 0 to 1. The closer
its value is to 1, the stronger the explanatory power of the equation is, and the better the
model in question fits the data. The mean square error (MSE) is the square of the difference
between the true value and the predicted value, and then the average of the summation,
which is generally used to detect the deviation between the predicted and true values
of the model. Therefore, when faced with the selection of a machine learning model, it
is important to choose one that has a good fit, i.e., a large R2, and one that has a small
deviation between the predicted and true values, i.e., a small MSE. Considering only one of
the cases will affect the subsequent prediction accuracy. For example, if the R2 of the model
is large but the MSE is also large, overfitting will occur and the reliability of the prediction
results will not be high; on the contrary, if the R2 of the model is very small and the MSE
is also small, this case indicates that the machine learning model does not have a good
fit to the dataset and that it cannot explain the laws of the dataset. Therefore, we trained
the dataset constructed in the previous section with six machine learning methods and
obtained the R2 and MSE values of the interface segregation energy and interface binding
energy machine learning models, respectively.
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The R2 and MSE calculations for each model are shown in Figure 6a, which represents
the R2 value of the interface binding energy, and the R2 is sorted thus: RBF > ANN >
Ensemble > BPNN > RF > SVM. Figure 6b represents the MSE of the interface binding
energy, and the MSE is sorted thus: RBF > RF > Ensemble > BPNN > SVM > ANN. It is
found that although the R2 value of the RBF is very large, its prediction value also has a
large error with the true value being very large but the error between its predicted and
true values also being large. Then, comparing the MSE of its training set and test set, it
is found that the error of the training set is only 2 × 10−5 while the error of the test set is
8.95. Therefore, the RBF has an overfitting phenomenon when training on the dataset, and
it cannot be used for prediction in machine learning. Comparing the training results of
the ANN, not only is the value of R2 larger but also the value of MSE is the smallest, and
the difference between the error values of its training set and test set is not much, which
means it can be used as a machine learning model for this dataset. After comparison, it
is found that the rest of the machine learning methods are good, but the results are still
not accurate enough when compared with the ANN algorithm. Figure 6c,d represent the
R2 and MSE of the interface segregation energy. It can be found that in the process of
calculating the interface segregation energy, the Ensemble method also suffers from the
overfitting problem in the calculation of the interface binding energy, and the remaining
four methods, namely the RBF, the BPNN, the RF, and the SVM, have a lower degree of fit
and larger errors. The ANN is also the optimal choice for the machine learning model to
predict the interface segregation energy.
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Figure 6. Accuracy of different models: (a) R2 of interface binding energy; (b) MSE of interface
binding energy; (c) R2 of interfacial segregation energy; (d) MSE of interfacial segregation energy.

The selected artificial neural network (ANN) machine learning model for predicting
interface binding energy and interface segregation energy comprises an input layer, an
output layer, and a hidden layer with ten neurons. The model was trained using the
Levenberg–Marquardt (L-M) algorithm with a randomized division of the data, and the
training process involved seven iterations. The number of neurons in the hidden layer
was modified to decrease computational time while preserving computational accuracy. A
reduction in the number of neurons leads to both an increase in the mean squared error
(MSE) for both the test and training sets as well as a decrease in the R2. Conversely, an
increase in the number of neurons results in higher computational requirements and longer
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processing times. Thus, the presently chosen artificial neural network (ANN) model is
deemed the most appropriate machine learning model for the dataset of DFT calculation
results. The ten feature descriptors, including the atomic number, period, main group,
atomic radius, melting point, relative atomic mass, electron configurations s and p, atomic
volume, and electronegativity, are chosen as input variables for the input layer. Following
training in the ten hidden layers, these descriptors are then outputted in the output layer,
which in turn outputs the interface segregation energy or the interface binding energy.
Machine learning has been employed to predict interface segregation energy and interface
binding energy in order to expedite first-principles calculations.

The datasets of interface segregation energy and interface binding energy of the
machine learning model built above are used for training, and their R2 values and MSE
values are obtained. It can be seen from Figure 7 that the R2 value in the machine learning
model, whether it is of the interface segregation energy or the interface binding energy, is
greater than 0.95, and the MSE value is less than 2. Therefore, the model fully meets the
requirements of the machine model, and the next step can be taken to predict the remaining
elements of the element cycle.
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Figure 7. Results of the ANN model: (a,b) R and MSE of interfacial segregation energy; (c,d) R and
MSE of interface binding energy.

3.4. Screening of Alloying Elements for Interface Modulation

A trained artificial neural network (ANN) model was employed to forecast the in-
terface segregation energy and interface binding energy for an interfacial model with the
inclusion of the remaining elements. The range of elements screened encompasses all ele-
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ments of the periodic table with the exception of noble gases, heavy elements, and certain
actinides. The noble gases were excluded due to their lack of reactivity with other elements
and their primary use as protective atmospheres in metallic materials. Heavy metals and
actinides were omitted from the screening for two primary reasons. Firstly, the existing
studies have incomplete data on the properties of these elements. Secondly, accurate results
are challenging to compute using first-nature-principle calculations due to numerous errors.
Machine learning was employed to expedite first-principles calculations for the screening
of the remaining 89 alloying elements using a dataset of 25 alloying elements. This involved
the implementation of accelerated first-principles calculations with a mini-sample machine
learning model.

We used the dataset calculated using the DFT to train the machine learning model,
then used the model to predict the interface segregation energy and interface binding
energy; finally, we found that according to the prediction of the two screened elements, to
take the same portion of the screened alloying elements can not only inhibit the SiCp/Al
interfacial reaction to reduce the Al4C3 phase but also enhance the interfacial bonding
ability of SiCp/Al. For the screening of interface segregation energy, the main purpose
is to screen out the elements with negative interface segregation energy. According to
the formula of interface segregation energy, the presence of negative interface segregation
energy indicates that the energy of the alloying element at the interface is less than that of
the alloying element inside the matrix, and the lower the energy is, the more the element
tends to exist at the interface rather than inside, which can inhibit the interfacial reaction of
SiCp/Al. For the screening of the interface binding energy, the interface binding energy
of the model with the added alloying element was compared with that of the unadded
model. The interface binding energy of the SiCp/Al interface model without the alloying
element was calculated to be −0.97401 eV as per the first-nature principle, and if the value
of the interface binding energy of the interface model was less than −0.97401 eV after the
addition of the alloying element, it would mean that the addition of the alloying element
had improved the strength of interfacial bonding.

Figure 8 shows the screening process of the alloying elements. The alloying elements in
the yellow part of the figure are easy to polarize at the interface and enhance the interfacial
bonding, the alloying elements in the blue part of the figure can improve the bonding force
between the SiCp/Al interface, and the alloying elements in the gray part of the figure are
inclined to polarize to the interface and play the role of inhibiting the interfacial reaction.
There are 28 combined elements screened by interface segregation energy and 26 alloying
elements screened by interface binding energy. There are 21 alloying elements that can
both inhibit interfacial reactions and enhance SiCp/Al interfacial bonding. Among them, S,
P, O, and N are considered impurity elements in metal materials and cannot be added to
the aluminum matrix; C will react with Al to increase the Al4C3 phase, which makes the
material performance plasticity reduced and strength weakened; Cl and F as halogenated
elements will have a corrosive effect on the metal materials, so they also cannot be added
to the metal materials; Be is toxic and is rarely used in metal materials; and Pd, Ir, and
Pt are heavy-metal elements, the cost is too high, and the current application is not too
widespread. Adding H in the aluminum matrix causes hydrogen embrittlement and affects
the material performance. Therefore, the following nine alloying elements were finally
selected: B, Si, Fe, Co, Ni, Cu, Zn, Ga, and Ge.
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Figure 8. Matrix alloy element screening process: (a) screening range for alloying elements;
(b) alloying elements screened.

Nine target alloying elements were screened out after the calculation of first-nature
principles and machine learning. We choose one of them, Cu, to explain the effect of this
alloying element on the electronic structure of the interface from an atomic point of view
based on the first-nature principles. Shown in Figure 9 are the differential charge density
maps of SiCp/Al and SiCp/Al-Cu systems. The differential charge density was analyzed,
and it was found that the addition of Cu atoms to the system caused a great change in
the electronic structure of the material system due to the doping of the alloying atoms.
When no Cu atoms were added, comparing the similar C and Al atoms, C atoms had
a larger negative charge, Al atoms had a larger positive charge, and there were strong
ionic-bonding interactions between them, making the material plasticity and toughness
deteriorate. Adding Cu changed the above C and Al atoms’ differential charge density
distribution, ionic-bonding specific gravity became smaller, and there was more embodi-
ment of the metallic nature, which is conducive to the improvement of composite material
brittleness. The fractional-wave densities of states for the SiCp/Al and SiCp/Al-Cu systems
are shown in Figure 10. The increase in the values of the densities of states after the addition
of the Cu atoms indicates that the electrons cross the Fermi surface and jump from the
valence state to the conduction band and that there is a larger interaction between the SiC
and Al atoms and the Cu, which further indicates that the system is more metallic. The
orbital coupling of the 3d orbitals of Cu with the 2p orbitals of C, Si, and Al, as well as
with the 2s orbital of Al, indicates that Cu interacts with all of these atoms. In addition, the
orbital coupling between C and Al is weakened by the addition of Cu atoms, which implies
that the introduction of Cu inhibits the interfacial reaction to some extent. Therefore, the
addition of interface-regulating alloying elements can improve the material properties,
control the interfacial reaction, and enhance the interfacial bonding to a certain extent.
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Figure 9. Differential charge density for different interface models: (a) SiCp/Al; (b) SiCp/Al-Cu.
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Figure 10. Density of states for different interface models: (a) SiCp/Al; (b) SiCp/Al-Cu.

4. Conclusions

In this paper, we have presented a machine-learning-based approach that significantly
enhances the efficiency of screening interfacially modified elements through accelerated
first-principles calculations. The results of first-principles calculations were used as a
machine learning dataset to select the best-performing machine learning models to predict
the remaining 89 alloying elements in the periodic table. The screening process identified
28 alloying elements based on interface segregation energy and 25 alloying elements based
on interface binding energy. Further screening was carried out based on existing studies,
and the following nine alloying elements were finally screened: B, Si, Fe, Co, Ni, Cu, Zn, Ga,
and Ge. The results of the differential charge density analysis of the model of the SiCp/Al-
Cu system using first-principles calculations confirm the enhancement of the metallicity of
the system with the addition of alloying elements. The screened alloying elements not only
inhibit interfacial reactions in SiCp/Al but also enhance metallic bonding, improve material
toughness, and augment the interfacial bonding between the reinforcement and matrix,
consequently increasing material strength. Overall, this paper demonstrates an improved
screening efficiency for interface-modified alloying elements through the integration of
machine learning and computational first-principles calculations.
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Appendix A

The four alloying elements Fe, Co, Ni, and Cu are considered to be magnetic. We
calculated the model with spin polarization added and the model without spin polarization
separately, and the results are shown in Figure A1. It can be seen that whether spin
polarization is considered has little effect on the interface polarization and interface binding
energy of the model, so the spin polarization of magnetic alloy elements was not involved
in the calculation in this paper.
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