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Abstract: Binary Ti100-x–Cux (x = 1.6 and 3.0 wt.%) alloys were produced by the application of
mechanical alloying and powder metallurgy processes. The influence of the copper concentration
in titanium on the microstructure and properties of bulk alloys was investigated. The synthesized
materials were characterized by an X-ray diffraction technique, scanning electron microscopy, and
chemical composition determination. The electrochemical and corrosion properties were also in-
vestigated. Cold compaction and sintering reduced the content of α-Ti content in Ti98.4–Cu1.6 and
Ti97–Cu3 alloys to 92.4% and 83.7%, respectively. Open Circuit Potential measurements showed
a positive shift after the addition of copper, suggesting a potential deterioration in the corrosion
resistance of the Ti–Cu alloys compared to pure Ti. Electrochemical Impedance Spectroscopy analysis
revealed significant improvement in electrical conductivity after the addition of copper. Corrosion
testing results demonstrated compromised corrosion resistance of Ti–Cu alloys compared to pure Ti.
In summary, the comprehensive investigation of Ti100-x–Cux alloys provides valuable insights for
potential applications in biosensing.

Keywords: titanium; Ti–Cu alloys; mechanical alloying; electrochemical properties; corrosion
resistance; biosensors

1. Introduction

Titanium and its alloys are commonly used for hard tissue implants. Their properties
include high biocompatibility, corrosion resistance in body fluids, osseointegration, and high
relative strength [1–4]. Advancements in electronics and microfabrication techniques have
generated growing interest in the application of implantable biosensors in precision medicine.

TiO2 stands out among transition metal oxides due to its superior conductivity and
high biocompatibility. It is recognized as a promising material, being an N-type semi-
conductor oxide with a 3d24s2 electronic configuration in the outermost shell. The four
valence electrons in TiO2 form covalent bonds with oxygen atoms, ensuring high chemical
stability. With a band gap of approximately 3.2 eV, the sensing characteristics of TiO2 can be
enhanced by introducing additional energy levels to the conduction band through doping
or imperfections [5–7].

TiO2 has recently found applications in various biosensing tasks, including the detec-
tion of glucose, cholesterol, troponin, and cancer diagnosis [8–11]. However, the electrical
and electrochemical properties of TiO2 have to be improved by doping more conductive el-
ements/structures like gold nanoparticles, copper nanoparticles, graphene, etc., to improve
detection performance. Due to the non-stable connection between Ti-based electrodes
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and conductive additives, developing new, homogeneous materials with high electrical
conductivity is recommended. Due to the high conductivity of copper (5.96 · 107 S/m at
20 ◦C) Ti–Cu-type materials seem to be promising in biosensing.

Many attempts have been made to create Ti–Cu-type biomaterials [12–17]. According
to the phase diagram of Ti–Cu, the maximum solubilities of Cu in (α-Ti) and (β-Ti) are 1.6
and 13.5 at.% at 790 and 1005 ◦C, respectively. At room temperature, the solid solubility of
copper in α-Ti is negligibly small [13]. Extended solid solubility by mechanical alloying
approaches was reported earlier in several alloy systems [18,19].

Ti–Cu alloys have broad application prospects in the biomedical field due to their
excellent properties. The properties of Ti–Cu alloys were strongly dependent on Cu content,
microstructures, their Ti2Cu phase, and their preparation process. The effect of Cu content
on the precipitation behaviors and the mechanical and corrosion properties of the as-cast
Ti–Cu alloys was studied recently by Wang et al. [17]. The volume fraction of Ti2Cu phases
affected the electrochemical performances of the alloys.

Ti–Cu alloys with different Cu contents (3, 5, and 7 wt.%) were fabricated by arc-
melting [12]. These alloys with the microstructure of α-Ti + Ti2Cu showed the best duc-
tility compared with other Ti–Cu alloys. These results indicated that the Ti–Cu alloys with
the microstructure of α-Ti + Ti2Cu showed the best ductility compared with other Ti–Cu
alloys with microstructures of α-Ti + transformed β-Ti and completely transformed β-Ti. The
increase in the Cu content significantly contributed to the decreased ductility due to the in-
creasing amount of Ti2Cu, which brought both solid solution strengthening and precipitation
strengthening [12]. Additionally, the Ti–5Cu alloy showed excellent antibacterial properties
and corrosion resistance.

One of the other methods of Ti-based alloy powder synthesis was mechanical alloy-
ing (MA), which allows obtaining biomaterials [18,19]. MA can be controlled by some
parameters like milling time, ball-to-powder mass ratio (BPR), milling atmosphere and
temperature, mill type, milling speed, etc. [18,19]. Improved material properties due to
the nanocrystalline or ultrafine structure transition were observed. Hardness improve-
ment can be detected in synthesized biomaterials due to the grain boundary strengthening
mechanism [20,21]. In published studies, metal surfaces utilizing low-micron to nanophase
topography demonstrated increased adhesion of osteoblasts [22,23].

Amorphous Ti1-x–Cux (0.10 < x ≤ 0.87) [24] and Tix–Cu100-x (x = 90, 80, 70, and 60)
alloys were synthesized by using a high-energy ball mill [25], and their microstructure and
amorphous phases were studied. For example, the Ti80Cu20 alloys were obtained in an
amorphous state after 30 h of MA, and the amorphous phase was stable up to 340 ◦C. At
higher temperatures, the crystallization of the amorphous phase produced an intermetallic
compound, Ti2Cu, and α-Ti [25]. Crystalline Ti–Cu alloys showed good mechanical properties
and biocompatibility [26,27], as well as good bio-corrosion [28]. Additionally, the as-cast Ti–Cu
alloys showed a higher hardness and mechanical strength as well as a higher antibacterial rate
but lower corrosion resistance in comparison to titanium metal. On the other hand, annealing
at 900 ◦C/2 h increased the hardness and strength and improved the corrosion resistance but
had a small influence on the antibacterial property [28]. It was shown that the Ti2Cu phase
played a key role in the antibacterial mechanism.

The relationship between the temperature of spark plasma sintering and the character-
istics of the Ti–Cu material has been established recently [16]. The mechanical properties
increase due to the phase composition changes as a function of an increase in the tempera-
ture of the sintering process.

In this study, crystalline Ti–Cu alloys of 1.6 and 3.0 wt.% Cu were produced using
the MA method. The resulting material was in powder form and was formed into bulk
samples by cold pressing and sintering. Electrochemical properties of the Ti–Cu alloys with
different Cu content were studied through Open Circuit Potential (OCP) measurements,
electrochemical impedance spectroscopy, and polarization resistance measurements. Each
characteristic was performed in 0.01 M phosphate-buffered saline and Ringer solution.
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2. Materials and Methods

This paper describes the research results of a study carried out on Ti100-x–Cux (x = 1.6
and 3.0 wt.%) alloys synthesized by MA in an argon atmosphere using the powder metal-
lurgy method.

2.1. Materials and Reagents

Powders of titanium (<45 µm, 99.9%,) and copper (53–88 µm, 99.9%) were purchased
from Alfa Aesar (Haverhill, MA, USA). Phosphate-buffered saline (0.01 M PBS, 0.0027 M
potassium chloride, and 0.137 M sodium chloride pH 7.4) was purchased from Sigma-
Aldrich (St. Louis, MO, USA). Ringer solution was prepared by dissolving one tablet
(Merck, no 115525) in 500 mL neutral deionized water and then sterilized in an autoclave
(15 min at 121 ◦C). The final solution (500 mL) contained NaCl—1.125 g, KCl—0.0525 g,
anhydrous CaCl2—0.03 g, and NaHCO3—0.025 g, with a pH value in the range of 6.8–7.2
at 25 ◦C. All solutions of chemical substances were prepared with Milli-Q water.

2.2. Sample Preparation

Powders of α-Ti and Cu were used for the synthesis of alloys. The Ti and Cu powders
were weighed, blended, and inserted into stainless steel vials in a glove box (LabMaster
130, National Institute of Standards and Technology, Gaithersburg, MD, USA) filled with
automatically controlled argon atmosphere (O2 < 2 ppm and H2O < 1 ppm). The MA was
performed under Ar (99.999% purity) by the application of the SPEX 8000 Mixer Mill (SPEX
SamplePrep, Metuchen, NJ, USA). MA lasted 7 h. The ratio of hard steel ball weight (12 mm
diameter) to powder weight equaled 6:1. As-milled materials were finally cold-pressed at a
pressure of 1.4 GPa and heat-treated at 1000 ◦C for 1 h under high-purity argon atmosphere
with 2% hydrogen; heating and cooling of the samples took place together with the furnace.

2.3. Materials Characterization

The crystallographic structure evolution of the samples during the synthesis pro-
cess was studied at room temperature using X-ray diffraction (XRD) with a Panalytical
Empyrean diffractometer with CuKα (λ = 1.54056 Å) radiation (Almelo, The Netherlands).
Rietveld analysis [29] was applied to calculate the lattice constants and phase quantity
using Malvern Panalytical B.V. HighScore 5.2 version with Plus option software. α-Ti (ref.
code 01-071-4632), Ti2Cu (ref. code 04-003-2231), and TiO (ref. code 01-086-2352) were used
as structural models.

A scanning electron microscope (SEM, Tescan MIRA3, Brno, Czech Republic) with an
energy dispersive spectrometer (EDS, ULTIM MAX Oxford Instruments, Abingdon, UK) was
applied to characterize the chemical composition and element distribution of the elements in
the alloys. The density of the bulk sintered alloys was calculated by the Archimedes method.
For the sample porosity measurement, the formula P = (1 − ρ/ρth) × 100% was used, where ρ
is the density of the porous material, and ρth is its corresponding theoretical density calculated
based on the rule of mixtures.

The electrochemical experiments were performed in the three-electrode system using
an Autolab PGSTAT302N (Metrohm, Herisau, Switzerland) in 0.01 M PBS and Ringer
solution. The working electrode was commercial pure Ti and Ti100-x–Cux alloy, the counter
electrode was a platinum mesh, and the reference electrode was a silver chloride electrode
(EAg/AgCl = 0.222 V vs. standard hydrogen electrode). The OCP was measured for 1800 s.
Electrochemical Impedance Spectroscopy (EIS) was recorded over the frequency range of
0.1 Hz to 105 Hz (10 frequency steps/decade) with an excitation voltage of 10 mV. The EIS
results were analyzed by fitting the experimental impedance data with electrical equivalent
circuit models using NOVA 2.1 software. The criteria for assessing the fitting quality
included considering the lower chi-squared value and the lower estimative errors (in %)
for all components.

Potentiodynamic polarization curves were obtained by changing the electrode poten-
tial in the range of −1 to 1 V against Ag/AgCl with a scan rate of 1 mV/s. The corrosion
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potentials (Ecorr) and anodic and cathodic Tafel slopes (ba and bc) were calculated from
the polarization curves using the linear extrapolation method. The linear polarization
resistance (Rp) was determined by the slope of the current–potential plot in the range of
2 mV about the corrosion potential. Then, the corrosion current density (Icorr) and the
corrosion rate (νcorr) were calculated using the Stern–Geary equation.

Electrochemical studies (OCP, EIS, Tafel) were conducted with a minimum of 5-fold
repeatability.

3. Results and Discussion
3.1. Crystallography and Microstructure

The synthesis of the Ti100-x–Cux (x = 1.6 and 3.0 wt.%) alloys by MA and powder
metallurgy method was the aim of the current study. The crystal structure changes during
MA of the Ti100-x–Cux system were studied in detail (Figures 1 and 2). The typical (hkl)
indexes of the copper were not visible after 1 h of MA. After 7 h of milling, only the α-Ti
phase was visible. During processing, an energy transfer to a powdered material results
in an increase in the density of defects with a subsequent subgrain formation. In some
cases, depending on the composition of the starting chemical composition of the alloy, an
amorphization can occur [19].
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Figure 2. XRD spectra of Ti97–Cu3 powders mechanically alloyed for different times (0, 1, 3, 5, and
7 h) and bulk alloy sintered at 1000 ◦C/1 h.

The cold compaction and sintering of Ti100-x–Cux MA powders did not cause the
formation of the single-phase α-Ti-type structures (Figures 1 and 2). The amount of α-
Ti decreased to 92.4 and 83.7% in the Ti98.4–Cu1.6 and Ti97–Cu3 alloys, respectively.
Except the Ti2Cu phase, Ti oxide (TiO) was detected by the X-ray method for both alloys
(Tables 1 and 2). The crystallite sizes estimated by the Williamson–Hall UDM (Uniform
Deformation Model) approach of MA for 7 h and sintered at 1000 ◦C for 1 h were close to
165 nm for Ti98.4–Cu1.6 and 270 nm for Ti97–Cu3, respectively. The theoretical density
(ρth), the calculated density of the synthesized alloys (ρcal), and porosity (P) are shown in
Table 3. The porosity of the obtained alloys by cold-pressing and sintered at 1000 ◦C/1 h
approach was 13%; see Figure 3.
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Table 1. Crystal structure and lattice parameters of phases present in the synthesized alloys.

Phases Structure Lattice Parameters

α-Ti Hexagonal
P63/mmc

a (Å): 2.953
c (Å): 4.709

Ti2Cu Tetragonal
I4/mmm

a (Å): 2.939
c (Å): 10.728

TiO Cubic
Fm-3m a (Å): 4.325

Table 2. Results of phase abundance analysis in Ti100-x–Cux (x = 1.6, 3.0 wt.%) alloys by the Rietveld
method.

Phase Fractions %

Composition α-Ti Ti2Cu TiO
Ti98.4–Cu1.6 92.4 7.1 0.5

Ti97–Cu3 83.7 16.0 0.3

Table 3. Theoretical density (ρth), the calculated density of the porous materials (ρcal) and porosity
(P) of bulk Ti100-x–Cux (x = 1.6, 3.0 wt.%) alloys.

Composition ρth [g/cm3] ρcal [g/cm3] P [%]

Ti98.4–Cu1.6 4.5545 3.9280 13.8
Ti97–Cu3 4.5966 3.9874 13.3
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The SEM image of the commercial pure α-Ti (cp-Ti) surface sample was equivalent 
to the mechanically polished surface represented by the typical morphology of native ox-
ide film, with a thin and non-porous structure (Figure 3). This native oxide film was spon-
taneously formed on the Ti surface on exposure to air at room temperature [30]. The re-
sults of the EDS analysis of the distribution of elements on the surface of polished samples 
of Ti100-x–Cux alloys (x = 1.6, 3.0 wt.%) are shown as pictures in Figure 4 and as the chemical 
composition in Table 4. The obtained results indicate that the structure of both alloys con-
sists of the basic α-Ti phase and the second Ti2Cu phase located at the grain boundaries. 
The analysis of Rietveld method phase participation showed that the Ti2Cu phase was 7.1 

Figure 3. SEM micrographs of commercial pure α-Ti (cp-Ti) and bulk Ti100-x–Cux (x = 1.6, 3.0 wt.%)
alloys.

The SEM image of the commercial pure α-Ti (cp-Ti) surface sample was equivalent
to the mechanically polished surface represented by the typical morphology of native
oxide film, with a thin and non-porous structure (Figure 3). This native oxide film was
spontaneously formed on the Ti surface on exposure to air at room temperature [30].
The results of the EDS analysis of the distribution of elements on the surface of polished
samples of Ti100-x–Cux alloys (x = 1.6, 3.0 wt.%) are shown as pictures in Figure 4 and as
the chemical composition in Table 4. The obtained results indicate that the structure of
both alloys consists of the basic α-Ti phase and the second Ti2Cu phase located at the grain
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boundaries. The analysis of Rietveld method phase participation showed that the Ti2Cu
phase was 7.1 and 16% for x = 1.6 and 3.0 wt.%, respectively. EDS analysis also showed the
presence of oxygen in Ti100-x–Cux samples (Table 4). This was confirmed by X-ray analysis
which showed the presence of Ti oxides (TiO) (Figures 1 and 2).
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Table 4. Results of spot EDS analysis of the chemical composition of the studied alloys.

Composition EDS Analysis
Point Number

Ti Cu O

wt.% Σ wt.% σ wt.% σ

Ti97–Cu3

Results obtained for the inner areas of the grains

1 92.2 0.4 1.2 1.2 6.6 0.4
2 92.9 0.4 1.4 0.2 5.7 0.4
3 92.7 0.4 1.1 0.2 6.2 0.4

Results obtained for grain boundaries

4 64.6 0.3 31.5 0.3 3.9 0.3
5 66.9 0.3 25.3 0.3 4.8 0.3
6 66.6 0.3 28.4 0.3 5.0 0.3

Ti98.4–Cu1.6

Results obtained for the inner areas of the grains

7 93.1 0.4 0.7 0.2 6.2 0.4
8 92.8 0.4 0.7 0.2 6.5 0.4
9 92.9 0.2 1.2 0.2 5.9 0.4

Results obtained for grain boundaries

10 71.7 0.3 24.0 0.3 4.2 0.3
11 70.4 0.3 24.8 0.3 4.7 0.3
12 72.4 0.3 22.6 0.3 5.0 0.3

3.2. Electrochemical Properties

The corrosion potential, the potential of the samples in relation to the reference elec-
trode, was recorded in an open circuit for a duration of 1800 s in 0.01 M PBS (Figure 5a) and
Ringer solution (Figure 5b). The final potential recorded during this period was considered
as the corrosion potential and is listed in Figure 5. The corrosion potentials of Ti100-x–Cux
(x = 0, 1.6, 3.0 wt.%) alloys measured in Ringer solution (Figure 5b) closely approximate
each other, measuring approximately −86–−69 mV. In contrast, the corrosion potential
of commercially pure Ti measured in 0.01 M PBS is lower, with a value of −238 mV, com-
pared to Ti98.4–Cu1.6 and Ti97–Cu3, with values of −2 mV and −38 mV, respectively.
The presence of copper in the examined surfaces results in shifts in the Ecorr for more
positive values.
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Based on the SEM images (Figures 3 and 4), the passive film developed on the surfaces
of α-Ti and Ti–Cu alloys is anticipated to possess a double-layer structure consisting of
an inner barrier layer and an outer hydroxide layer. Examination of the Bode magnitude
plot (Figure 6a,b) reveals that the modulus of impedance |Z| remained constant in the
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high-frequency range, spanning from 105 Hz down to 103 Hz, with the phase angle ap-
proaching 0◦ (as depicted in the Bode phase plot, Figure 6c,d). This behavior indicates a
resistive nature corresponding to the solution resistance between the working and reference
electrodes [31]. In the PBS and Ringer medium and low-frequency range (from 103 to 10−1),
the Bode phase plot (Figure 6b) exhibited one-time constants within the frequency range of
100 to 102 Hz [32–34]. This observation aligns with the anticipated one-layer structure of
the passive film.
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Ti98.4–Cu1.6 and Ti97–Cu3 showed a linear relationship in the Bode magnitude plot
(Figure 6a,b) within the same medium (0.01 M PBS and Ringer) and low-frequency range
(from 100 to 10−1). Simultaneously, the phase angle values (Figure 6c,d) approached 83◦

and 82◦ in PBS and 78◦ and 77◦ in Ringer, respectively. These EIS results correspond to
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the expected capacitive behavior for titanium and Ti–Cu alloys in the nearly capacitive
region [33,35]. This behavior is attributed to the response of the highly stable passive
film. As explained by Li et al. [36], changes in the capacitive behavior can be discerned
by analyzing the values of phase angle approaching 90◦ in the low-frequency region i.e.,
0.1 Hz, indicating the presence of a highly compact oxide film.

The corrosion resistance of the Ti97–Cu3 alloy can be directly inferred from the radius
of the capacitive-semi arcs in the Nyquist representation (Figure 6e,f). In Figure 6e, the
depressed size of the arc following the addition of 1.6 and 3.0 wt.% Cu indicates a decrease
in charge transfer resistance. Obtained EIS results were fitted to the Electric Equivalent
Circuit (EEC) shown in Figure 6g. Within this EEC, Rs represents the resistance of the
phosphate-buffered saline solution, R1 denotes the resistance of the barrier layer [22], and
C1 corresponds to the impedance of the double-layer passive film [31,37]. These electric
elements represent the double layer, including charge transfer resistances and capacitances
of the inner-barrier and outer-hydroxide layers.

The values for the circuit parameters for the Ti100-x–Cux alloys (x = 0, 1.6, and 3.0 wt.%)
are presented in Table 5, derived from fitting the EEC to the experimental EIS data us-
ing NOVA software. The magnitudes of resistances for the barrier layer decrease with
increasing copper concentration. Reducing the resistance of the electrical double layer
resulted in the sample surface exhibiting lower resistance to the infiltration of corrosive
ions, such as Cl−, onto the TiCu substrate [34]. The magnitudes of capacitances for the
barrier layer increase with the concentration of copper. These observations from the EIS
fitting are consistent in 0.01 M PBS and Ringer solution and align with findings in existing
literature [31].

Table 5. EIS fitting results for cp-Ti and Ti100-x–Cux (x = 1.6 and 3.0 wt.%) alloys measured in 0.01 M
PBS and Ringer solution using the equivalent circuit shown in Figure 6g.

EC Parameter
cp-Ti Ti98.4–Cu1.6 Ti97–Cu3

Value SD Value SD Value SD

0.01 M PBS

Rs [Ohm·cm2] 46.15 1.99 72.77 8.03 39.23 4.86
R1 [Ohm·cm2] 9.70 × 104 2.54 × 104 2.68 × 104 1.17 × 104 4.76 × 104 4.24 × 104

C1 [F] 1.10 × 10−4 1.38 × 10−5 3.02 × 10−4 7.90 × 10−6 3.22 × 10−4 1.27 × 10−4

Error [10−3] 0.32 0.04 1.63 0.49 0.76 0.57
τ1 = R1 × C1 10.64 0.35 8.09 0.09 15.31 5.36

RINGER

Value SD Value SD Value SD

Rs [Ohm·cm2] 75.47 8.60 91.71 12.16 71.28 5.67
R1 [Ohm·cm2] 6.94 × 104 5.33 × 103 1.90 × 104 2.18 × 103 1.71 × 104 3.91 × 103

C1 [F] 9.94 × 10−5 8.27 × 10−6 3.39 × 10−4 1.42 × 10−5 3.60 × 10−4 3.01 × 10−5

Error [10−3] 0.49 0.07 2.64 0.57 2.51 0.99
τ1 = R1 × C1 6.89 0.04 6.42 0.03 6.16 0.12

Table 6 shows the calculated values of the corrosion potential (Ecorr), corrosion current
density (Icorr), and corrosion rate (νcorr) obtained from the polarization plot represented
in Figure 7. Corrosion parameters were calculated based on the potential values of the
cathodic and anodic regions from the Tafel plot. Increasing the Cu content in Ti100-x–Cux
resulted in decreasing Ecorr and increasing Icorr measured in 0.01 M PBS and Ringer solution.
The extrapolated values of corrosion rate indicate a shift toward higher current densities.
The negative shift in Ecorr and the increase in Icorr affirm that the corrosion rate magnifies
with the incorporation of copper into the Ti alloys.
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Table 6. Results of potentiodynamic polarization studies measured in 0.01 M PBS and Ringer
solution, where: Ecorr—corrosion potential, Icorr—corrosion current density, νcorr—corrosion rate,
Rp—polarization resistance.

Ti Ti98.4–Cu1.6 Ti97Cu3

0.01 M PBS

Ecorr [mV] −590 ± 32 −634 ± 37 −662 ± 124
Icorr [µA/cm2] 10.80 ± 2.49 21.94 ± 3.058 26.40 ± 5.53
νcorr [mmpy] 0.041 ± 0.010 0.091 ± 0.013 0.109 ± 0.023
Rp [Ω/cm2] 12765 ± 3392 6381 ± 793 4037 ± 1578
χ2·10−3 0.26 ± 0.005 0.28 ± 0.018 0.23 ± 0.063

RINGER

Ecorr [mV] −422 ± 9 −589 ± 10 −675 ± 49
Icorr [µA/cm2] 7.34 ± 1.16 24.31 ± 1.65 26.49 ± 8.79
νcorr [mmpy] 0.028 ± 0.004 0.101 ± 0.007 0.109 ± 0.036
Rp [Ω/cm2] 20249 ± 2561 6431 ± 414 4748 ± 260
χ2·10−3 4.14 ± 0.61 5.38 ± 0.58 6.41 ± 3.22
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Obtained values of the corrosion parameter were similar to other results in the liter-
ature indicating that Ecorr of α-Ti measured in 0.01 M PBS was –0.60 V [38] and Ecorr of
α-Ti measured in Ringer solution was −421 [39]. The decrease in corrosion performance by
the addition of copper was also confirmed in another study [38]. However, it should be
noted that the corrosion rates were still within the acceptable range (0.02–0.13 mm/y) for
biocompatibility of metal [40].

4. Conclusions

The bulk Ti100-x–Cux alloys (x = 1.6 and 3.0 wt.%) were produced by the application
of MA and powder metallurgy. Various research methods, including detailed studies of
crystal structure changes during MA, microstructure analyses, and electrochemical and
corrosion investigations, were applied.

Microstructure analysis revealed the dynamic nature of the MA process, evident in the
disappearance of characteristic (hkl) copper indexes after 1 h of milling, and the dominance
of the α-Ti phase after 7 h. Despite several attempts, cold compaction and sintering did not
lead to the formation of a single-phase α-Ti structure, reducing the α-Ti content to 92.4%
and 84% in Ti98.4–Cu1.6 and Ti97–Cu3 alloys, respectively.

OCP measurements showed a positive shift after the addition of copper, suggesting a
potential deterioration in the corrosion resistance of the alloys compared to pure Ti. EIS
analysis revealed significant changes in impedance modules, especially after the addition
of copper. A substantial reduction in the impedance module was observed, indicating
increased susceptibility to the penetration of corrosive ions and higher electric conductivity
in biosensing. Corrosion testing results demonstrated compromised corrosion resistance of
Ti–Cu alloys compared to pure Ti, particularly for the Ti97–Cu3 alloy.
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In summary, the comprehensive investigation of Ti100-x–Cux alloys, including synthesis
methods, crystal structure changes, and corrosion behavior, provides valuable insights for
potential applications in biosensing. Future studies can further explore the optimization
of alloy compositions and surface modification for enhanced performance in biological
environments.
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